DEVELOPMENT OF NOVEL BIOSORBENTS IN REMOVING HEAVY METALS FROM AQUEOUS SOLUTION

A

Thesis Submitted in Fulfilment of the Requirement for the degree of

DOCTOR OF PHILOSOPHY IN ENVIRONMENTAL ENGINEERING

By **Md Anwar Hossain**

Under the Guidance of Prof. Dr. Huu Hao NGO

School of Civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology, Sydney (UTS) Sydney, Australia December, 2013

Certificate

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that the thesis has been written by me and any help that I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

(Md Anwar Hossain)

.

I dedicated this work to my beloved parents

Md Akbar Ali Mosa. Ruhila Khatun

Acknowledgement

It was not simple and easy task, but both nerve-racking and enjoyable during my doctoral research at Centre for Technology in Water and Wastewater (CTWW), University of Technology, Sydney (UTS), Australia. It would not have been feasible and possible to achieve this doctoral research without the help and support of the people around me and therefore they need a special mention and thanks here.

I would like to appreciate the people for their help and support during my research. My first thanks and gratitude goes to my principal supervisor Prof. Dr. Huu Hao NGO. He was a source of continuous inspiration, motivation, stimulation and strength throughout my research. I would like to show my deep gratitude to my co-supervisors Dr Wenshan GUO, Dr. T. V. Nguyen and Prof. Dr. S. Vigneswaran for their constant help and support.

My thanks also go to lab technical officer of the environmental laboratory Md Abu Jahir and Technical officer of MEP, Mr. Harj Sandhu for their valuable effort in the environmental laboratory with appropriate instructions and methods. It is a pleasure to thank Mr. Rami Hadad, lab manager and David Hooper for their help and support. I would also like to thank my colleagues and mates Wen, Thanh, Zuthi, Hang, Zhou, Bandita, Lijuan, Santonu and Luo, I had a wonderful time with these guys.

I would like to show my gratitude to IPRS and UTS-SP authorities for the financial support to conduct this research and for living allowances to stay my family in Australia. I owe my thanks to the academic and technical support of the University of Technology, Sydney and its staff, especially Ms. Phyllis for all my academic support. Above all, I would like to thank my wife-Kabita, my children, Kabbyo and Kathon for their personal support and great patience at all times. My family was always with me during the accomplishment of this doctoral research. Thanks very much every one.

Finally, I would like to forward all my appreciation to almighty ALLAH who guided those people who supported and helped me through my research.

Table of Contents

Title	Page		i		
Cert	ificate		ii		
Dedi	cation		iii		
Ackı	nowledg	jement	iv		
Tabl	e of Co	ntents	V		
List	of Tabl	es	XV		
List	of Figu	res	xix		
Acro	onyms a	nd symbols	xxvi		
List of Publications					
Abst	ract		xxix		
Cha	pter 1		1-1		
Intr	- oducti	on	1-1		
1.0	Backg	round	1-2		
1.1	Heavy	metals pollution in water and health risk	1-2		
1.2	Remov	val of heavy metals from water	1-3		
1.3	Biosor	ption of heavy metals	1-4		
1.4	Aims a	and objectives	1-5		
1.5	Resear	ch hypotheses and outline of thesis	1-6		
Cha	pter 2		2-1		
Rev	iew of	Literature	2-1		
2.1	Backg	round	2–2		
2.2	Heavy	metals: sources, toxicity and environmental fates	2–3		
	2.2.1.	Sources of heavy metals	2–3		
	2.2.2	Heavy metals in industrial wastewater	2–4		
	2.2.3	Heavy metals in domestic wastewater	2–5		
	2.2.4	Forms and fate of heavy metals in the aquatic environment	2–6		
		2.2.4.1 Cadmium	2–6		
		2.2.4.2 Copper	2–6		
		2.2.4.3 Lead	2–6		
		2.2.4.4 Zinc	2–7		
	2.2.5	Toxicity	2–7		
		2.2.5.1 Effect of lead	2-8		
		2.2.5.2 Effect of cadmium	2-10		
		2.2.5.3 Effect of copper	2-12		

		2.2.5.4	Effect of zinc	2-14
	2.2.6	Heavy n	netal pollution scenario	2-15
		2.2.6.1	Heavy metal pollution in Australia	2-17
2.3	Techr	nologies fo	or removal of heavy metals from wastewater	2–20
	2.3.1	Physical	l methods and processes	2–22
		2.3.1.1	Evaporators	2–22
		2.3.1.2	Precipitation	2–23
		2.3.1.3	Cementation	2–24
		2.3.1.4	Ion-exchange	2–24
		2.3.1.5	Membrane process	2–25
		2.3.1.6	Reverse osmosis	2–26
		2.3.1.7	Electrodialysis	2–26
		2.3.1.8	Ultrafiltration	2–27
		2.3.1.9	Flocculation and coagulation	2–27
		2.3.1.10	Flotation	2–28
	2.3.2	Chemica	al methods and processes	2–28
		2.3.2.1	Chemical precipitation	2–28
		2.3.2.2	Hydroxide precipitation	2–29
		2.3.2.3	Carbonate precipitation	2–29
		2.3.2.4	Sulphide precipitation	2–29
		2.3.2.5	Chemical reduction	2-30
		2.3.2.6	Xanthate process	2-30
		2.3.2.7	Solvent extraction	2-31
		2.3.2.8	Electrodeposition	2-31
	2.3.3	Biologic	cal methods	2-32
		2.3.3.1	Phytoremediation	2-32
		2.3.3.2	Microremediation	2–33
		2.3.3.3	Heavy metals biosorption by microorganisms	2–33
2.4	Bioso	rption an	d biosorbents	2–37
	2.4.1	Introduc	ction	2-37
	2.4.2	Bioadso	rbents	2–38
	2.4.3	Importa	nce of biosorbents in water treatment	2–40
	2.4.4	Advanta	ges and disadvantages of biosorption	2–40
		2.4.4.1	Advantages	2–41
		2.4.4.2	Disadvantages	2–42
	2.4.5	Characte	eristics of bioadsorbents	2–42
		2.4.5.1	Specific surface area	2–42
		2.4.5.2	Pore volume	2–43
		2.4.5.3	Ash content	2–43

		2.4.5.4	Particle sizes	2–43
		2.4.5.5	pH	2–44
		2.4.5.6	Charge/polarity	2–44
		2.4.5.7	Surface functional groups	2–45
	2.4.6	Mechani	sm of metal biosorption	2–45
		2.4.6.1	Physisorption	2–45
		2.4.6.2	Chemisorption	2–45
		2.4.6.3	Biosorption	2–47
		2.4.6.4	Biosorption mechanism	2–48
	2.4.7	Factors a	ffecting biosorption	2–53
		2.4.7.1	Nature of adsorbate	2–53
		2.4.7.2	Nature of biosorbent	2–53
		2.4.7.3	Specific area of the adsorbent	2–54
		2.4.7.4	pH of water	2–54
		2.4.7.5	Pressure	2–54
		2.4.7.6	Temperature	2-55
		2.4.7.7	Activation of the adsorbent	2-55
		2.4.7.8	Enthalpy of adsorption	2-55
		2.4.7.9	Co-ions	2-56
		2.4.7.10	Initial metal concentration	2-57
		2.4.7.11	Biomass concentration	2–57
		2.4.7.12	Contact time	2–58
	2.4.8	Applicati	ion of agro-wastes in removal of heavy metals from	2-58
		wastewat	ter	
		2.4.8.1	Process design	2–59
		2.4.8.2	Regeneration of the biomass	2–59
		2.4.8.3	Suitability of the biosorption technology for an	2-60
			industrial use	
		2.4.8.4	Recent uses for biomaterials for removal of heavy	2-60
			metals	
2.5	Mode	lling of bi	osorption	2-62
	2.5.1	Adsorpti	on theories/isotherms	2–63
		2.5.1.1	Langmuir model	2–63
		2.5.1.2	Freundlich model	2-64
		2.5.1.3	Redlich-Peterson model	2–65
		2.5.1.4	Koble-Corrigan model	2–65
		2.5.1.5	Sips isotherm model	2–66
		2.5.1.6	Temkins' isotherm	2–66
		2.5.1.7	Dubinin-Radushkevich isotherm model	2–67

		2.5.1.8	Flory-Huggins isotherm model	2–68
		2.5.1.9	Hill isotherm model	2–68
		2.5.1.10	Unilan equation	2–69
		2.5.1.11	Khan isotherm model	2–69
		2.5.1.12	Radke-Prausnitz isotherm model	2–69
		2.5.1.13	Toth isotherm model	2–69
	2.5.2	Sorption	kinetics	2-70
		2.5.2.1	Pseudo-first-order model	2-71
		2.5.2.2	Pseudo-second-order model	2-71
		2.5.2.3	Intraparticle diffusion model	2–73
		2.5.2.4	Avrami kinetic model	2–73
		2.5.2.5	Elovich kinetics model	2–74
		2.5.2.6	Fractional power model	2–74
2.6	Colun	nn adsorp	tion	2–75
	2.6.1	The Brea	ık-through Curve	2–75
	2.6.2	Models o	of column studies	2–76
		2.6.2.1	Thomas model	2–77
		2.6.2.2.	Yoon and Nelson model	2–78
		2.6.2.3.	The Adams-Bohart model	2–79
		2.6.2.4.	The Wolborska model	2–79
		2.6.2.5.	The Clark model	2-80
Cha	pter 3	1		3-1
Exp	erime	ntal Inve	estigation	3-1
3.0	Intro	duction		3-2
3.1	Bioso	rbents coll	lection and preparation	3-2
	3.1.1	Garden g	grass (GG)	3-2
	3.1.2	Maple lea	aves (ML)	3-2
	3.1.3	Banana p	beels (BP)	3-2
	3.1.4	Cabbage	wastes (CW)	3-3
	3.1.5	Palm oil	fruit shells (POFS)	3-3
3.2	Stock	solution o	of metals	3-3
	3.2.1	Copper (II) solution	3-3
	3.2.2	Lead (II)	solution	3-3
	3.2.3	Cadmiun	n (II) solution	3-4
	3.2.4	Zinc (II)	solution	3-4
	3.2.5	Wastewa	ter and synthetic wastewater	3-4
3.3	Exper	rimental p	rocedures	3-4

	3.3.1	Characterisati	on of biosorbents	3-4
		3.3.1.1 SEM	ſ	3-5
		3.3.1.2 XRE)	3-6
		3.3.1.3 FTIF	R	3-7
		3.3.1.4 BET	analysis	3-7
	3.3.2	Experimental	conditions	3-10
		3.3.2.1 Effe	et of pH	3-10
		3.3.2.2 Effe	ct of biosorbents doses	3-11
		3.3.2.3 Effe	et of stirring rate	3-12
		3.3.2.4 Effe	ct of contact time	3-12
		3.3.2.5 Effe	ct of initial metal concentrations	3-12
		3.3.2.6 Effe	ct of particles sizes	3-12
		3.3.2.7 Effe	ct of temperatures	3-13
	3.3.3	Desorption ex	periments	3-13
	3.3.4	Adsorption an	nd desorption equilibriums	3-13
	3.3.5	Adsorption an	nd desorption kinetics	3-14
	3.3.6	Binary, ternar	y and quaternary adsorption	3-16
	3.3.7	Lab-scale colu	umn experiments toward the application	3-16
	3.3.8	Flame atomic	absorption spectroscopy	3-17
3.4	Data	nalysis		3-19
Cha	apter 4			4-1
Bio	sorptio	n of Cu(II),	Pb(II), Cd(II) and Zn(II) from	4-1
aqu	ieous s	olution onto	garden grass	
4.1	Intro	uction		4-2
4.2	Resul	s and discussi	on	4-3
	4.2.1	Characterisati	on of garden grass	4-3
		4.2.1.1 Surfa	ace structure	4-3
		4.2.1.2 X-ra	y mapping	4-4
		4.2.1.3 Fund	tional groups	4-5
		4.2.1.4 Spec	ific surface area	4-6
	4.2.2	Affecting fact	ors on biosorptions	4-7
		4.2.2.1 Effe	ct of pH	4-7
		4.2.2.2 Effe	ct of initial concentration and contact time	4-8
		4.2.2.3 Effe	ct of doses	4-9
		4.2.2.4 Effe	ct of particle size	4-10
		4.2.2.5 Effe	ct of temperature	4-12
		4.2.2.6 Effe	ct of shaking speed	4-13

	4.2.3	Regene	Regeneration of garden grass		
	4.2.4	Adsorpt	4-16		
		4.2.4.1	Copper (II) adsorption and desorption equilibriums	4-16	
		4.2.4.2	Lead (II) adsorption and desorption equilibriums	4-18	
		4.2.4.3	Cadmium(II) adsorption and desorption equilibriums	4-20	
		4.2.4.4	Zinc(II) adsorption and desorption equilibriums	4-22	
		4.2.4.5	Comparison of Cu(II), Pb(II), Cd(II) and Zn(II)	4-24	
			adsorption and desorption		
	4.2.5	Adsorpt	tion and desorption kinetics	4-29	
		4.2.5.1	Pseudo-first-order equation	4-30	
		4.2.5.2	Pseudo-second-order equation	4-31	
		4.2.5.3	Fractional power equation	4-33	
		4.2.5.4	Avrami kinetic equation	4-35	
		4.2.5.5	Intra-particle diffusion model	4-36	
	4.2.6	Multim	etals adsorption	4-39	
		4.2.6.1	Antagonism of multi-metals system	4-41	
4.3	Concl	usion		4-43	
Chapter 5					
Rer	noval (of Cu(II	l), Pb(II), Cd(II) and Zn(II) from aqueous	5-1	
SOIL 5 1	Ition u Backo	sing car	odage dio-wastes	5-2	
5.2	Resul	ts and di	scussion	5-3	
0.2	521	Charact	registron of biosorbent	5-3	
	0.211	5211	Surface morphology	5-3	
		5212	Functional groups	5-4	
		5.2.1.3	Specific surface area	5-4	
	5.2.2	Affectir	ng factors on the performance of biosorption	5-5	
		5.2.2.1	pH	5-5	
		5.2.2.2	Contact time	5-6	
		5.2.2.3	Doses	5-7	
		5.2.2.4	Initial metals concentration	5-8	
	5.2.3	Regener	ration of biosorbent	5-9	
	5.2.4	Kinetics	s of adsorption and desorption	5-11	
		5.2.4.1	Pseudo-first-order kinetics	5-11	
		5.2.4.2	Pseudo-second-order kinetics	5-15	
		5.2.4.3	Elovich equation	5-17	
		5.2.4.4	Avrami kinetic equation	5-19	
	5.2.5	Adsorpt	tion and desorption equilibrium	5-21	

		5.2.5.1	The Langmuir isotherm	5-22
		5.2.5.3	Sips isotherm	5-28
		5.2.5.4	Redlich-Peterson isotherm	5-29
		5.2.5.5	Koble-Corrigan isotherm	5-30
		5.2.5.6	Khan isotherm	5-32
		5.2.5.7	Comparison of models fitness	5-33
	5.2.6	Multime	etals adsorption	5-34
		5.2.6.1	Adsorption behaviour in binary solutions	5-34
		5.2.6.2	Adsorption behaviour in ternary solutions	5-36
		5.2.6.3	Adsorption behaviour in quaternary solutions	5-38
		5.2.6.4	Antagonism of multi-metals system	5-40
5.3	Concl	usions		5-45
Cha	opter 6			6-1
Ban	ana p	eels – a	novel bio-waste for removal of Cu(II),	6-1
Pb(II), Cd	l(II) and	d Zn(11) from aqueous solution	67
0.1	Dacky	ground ta and di		0-2
0.2	Kesu	Environ	scussion	0-2 6 2
	0.2.1	Charact	arisetion of PD	0-2 6 3
	0.2.2	6 2 2 1	Surface mernhology of PP	6.3
		6222	Surface morphology of Br	0-3 6 4
		6223	Specific surface area of BP	0-4 6 4
	672	0.2.2.3	specific surface area of BF	0-4 6 5
	0.2.3	6 2 2 1	pH of water	0- <i>3</i>
		6232	Particle sizes	0- <i>3</i>
		6233	Doses	6-7
		6234	Contact Time	6-8
		6235	Shaking speed	6-0
		6236	Thermodynamic Parameters	6-10
	624	Regener	ration of hanana peels	6-12
	625	Modelli	ing of adsorption and desorption isotherms	6-14
	0.2.0	6251	Langmuir isotherm	6-15
		6252	SIPS isotherm	6-18
		6253	Redlich-Peterson isotherm	6-20
		6.2.5.4	Radke-Prausnitz model	6-23
		6.2 5 5	The Brouers-Sotolongo isotherm	6-24
		6.2.5.6	Model results comparison	6-25
	626	Biosorn	tion and desorption kinetics	6-26
		=P		0 -0

		6.2.6.1	Pseudo-first order model	6-26
		6.2.6.2	Pseudo-second order model	6-30
		6.2.6.3	Avrami kinetic equation	6-33
		6.2.6.4	Intra-particle diffusion model	6-35
	6.2.7	Multime	etals adsorption	6-36
		6.2.7.1	Antagonism among metals ions	6-38
6.3	Concl	usion		6-41
Cha	pter 7	,		7-1
Maj	ple lea	ves: a b	io-waste for removal of Cu(II), Pb(II),	7-1
Cd(II) and	d Zn(II)	from aqueous solution	
7.1	Backg	ground	-	7-2
7.2	Resul	ts and Di	iscussion	7-3
	7.2.1	Charact	erisation of biosorbent	7-3
		7.2.1.1	Surface area of ML	7-3
		7.2.1.2	Surface morphology	7-4
		7.2.1.3	X-ray mapping	7-5
		7.2.1.3	Functional groups	7-6
	7.2.2	Affectir	ng factors on the performance of biosorption	7-7
		7.2.1.1	Influence of pH	7-7
		7.2.1.2	Influence of biosorbent amount and initial metals	7-8
		7.2.1.3	Influence of contact time and initial concentration	7-9
		7.2.1.4	Influence of particle sizes	7-10
		7.2.1.5	Biosorption thermodynamics	7-12
	7.2.2	Regener	ration of maple leaves	7-14
	7.2.3	Biosorp	tion and desorption kinetics	7-15
		7.2.3.1	Pb(II) biosorption and desorption kinetics	7-16
		7.2.3.2	Cd(II) biosorption and desorption kinetics	7-19
		7.2.3.3	Cu(II) biosorption and desorption kinetics	7-21
		7.2.3.4	Zn(II) biosorption and desorption kinetics	7-23
		7.2.3.5	Intra-particle diffusion model	7-26
	7.2.4	Biosorp	tion and desorption equilibrium	7-27
		7.2.4.1	Isotherm models	7-28
		7.2.4.2	Equilibrium of Pb(II) adsorption and desorption	7-30
		7.2.4.3	Equilibrium of Cd(II) adsorption and desorption	7-32
		7.2.4.4	Equilibrium of Cu(II) adsorption and desorption	7-35
		7.2.4.5	Equilibrium of Zn(II) adsorption and desorption	7-37

		7.2.4.6	Comparison of fitness for Pb(II), Cd(II), Cu(II) and	7-40
			Zn(II)	
		7.2.4.7	Adsorption mechanism	7-40
	7.2.5	Multim	etals adsorption	7-40
		7.2.5.1	Adsorption behaviour in binary solutions	7-41
		7.2.5.2	Adsorption behaviour in ternary solutions	7-43
		7.2.5.3	Adsorption behaviour in quaternary solutions	7-45
		7.2.5.4	Antagonism of multi-metals system	7-47
7.3	Conc	lusions		7-53
Cha	pter 8	}		8-1
Palı	n oil f	ruit she	lls as biosorbent for copper removal from	8-1
aqu 8.1	eous s Backg	olution ground		8-2
8.2	Resul	ts and di	scussion	8-2
	8.2.1	Charact	erization of palm oil fruit shells	8-2
		8.2.1.1	Surface morphology	8-2
		8.2.1.2	Surface area of POFS	8-3
		8.2.1.3	Functional groups	8-4
	8.2.2	Effect o	f pH	8-5
	8.2.3	Equilibr	ium sorption modelling	8-6
		8.2.3.1	Two-parameter models	8-7
		8.2.3.2	Three-parameter models	8-10
	8.2.4	Sorption	n kinetics	8-13
		8.2.4.1	Pseudo-second-order kinetics	8-13
		8.2.4.2	Elovich equation	8-14
		8.2.4.3	Avrami kinetic equation	8-15
8.3	Conc	lusion		8-16
Cha	pter 9)		9-1
Lab the Cd(orato applic II), Cu	ry-scale ability (1(II) and	fixed bed column experiments for evaluation of cabbage biosorbent to remove Pb(II), d Zn(II) from aqueous solution	9-1
9.1	Back	ground		9-2
9.2	Resul	ts and di	scussions	9-2
	9.2.1	Effect o	f flow rate	9-2
	9.2.2	Effect o	f bed depth	9-4
	9.2.3	Effect o	f initial metals concentrations	9-5
	9.2.4	Metals i	ons uptake at different column operation parameters	9-6

	9.2.5	Influence of functional parameters on breakthrough curves	9-8
	9.2.6 Evaluation of column data by dynamic models		
		9.2.6.1 Bed Depth Service Time (BDST) model	9-9
		9.2.6.2 The Thomas, Yoon-Nelson and Clark models	9-11
	9.2.7	Fixed bed column design	9-14
9.3	Concl	usions	9-16
Cha	pter 1	0	10-1
Con	clusio	ns and Recommendations	10-1
10.1 Conclusions		usions	10-2
	10.1.1	Characteristics	10-2
	10.1.2	Experimental conditions	10-2
	10.1.3	Regeneration and reuse	10-2
	10.1.4	Equilibrium biosorption	10-2
	10.1.5	Kinetics of biosorption	10-3
	10.1.6	Laboratory scale test with fixed-bed column	10-4
10.2	Recor	nmendations	10-4
Refe	rence		R-1
App	Appendices		

List of Tables

Table 2.1	The MCL standards for the most hazardous heavy metals					
Table 2.2	Heavy metal contents of representative gold mine tailings in	2-18				
	Australia					
Table 2.3	Australian heavy metals found in different water bodies	2–19				
Table 2.4	Comparison of the effectiveness of removal of heavy metals	2-21				
	using various techniques					
Table 2.5	Pb(II) adsorption capacities (mg/g) by biosorbents recently reported in literature	2–61				
Table 2.6	Cu(II) adsorption capacities (mg/g) by biosorbents recently	2–61				
Tabla 2.7	Cd(II) adsorption appaaities (mg/g) by biosorbants recently	2 62				
1 able 2.7	cu(ii) adsorption capacities (ing/g) by biosorbents recently	2-02				
Tabla 2 8	$Z_{n}(II)$ adsorption capacities (mg/g) by biosorbents recently	2_62				
1 abic 2.0	reported in literature	2 02				
Table 4-1	Surface parameters of garden grass from BET test	4-7				
Table 4.2	Calculated parameters depends on the particle sizes of garden	4-11				
	grass					
Table 4.3	Thermodynamic parameters for the adsorption of metals by	4-13				
	garden grass					
Table 4.4	Isotherm parameters for adsorption and desorption of Cu(II)	4-18				
	onto GG					
Table 4.5	Isotherm parameters for adsorption and desorption of Pb(II)	4-20				
	onto GG					
Table 4.6	Isotherm parameters for adsorption and desorption of Cd(II)	4-21				
	onto GG					
Table 4.7	Isotherm parameters for adsorption and desorption of Zn(II)	4-23				
	onto GG					
Table 4.8	Kinetics parameters of Cu(II) adsorption and desorption onto	4-30				
	garden grass					
Table 4.9	Kinetics parameters of Zn(II) adsorption and desorption onto	4-33				
	garden grass					
Table 4.10	Kinetics parameters of Pb(II) adsorption and desorption onto	4-34				
	garden grass					
Table 4.11	Kinetics parameters of Cd(II) adsorption and desorption onto	4-36				
	garden grass					
Table 4.12	Isotherm parameters from quaternary metals [Cd(II)-Cu(II)-	4-39				
	Zn(II)-Pb(II)] adsorption					

Table 5.1	Surface parameters of cabbage wastes from BET test	5-5
Table 5.2	Parameters of pseudo-first-order kinetics for Pb(II), Cd(II), Cu(II) and Zn(II) adsorption onto and desorption from cabbage waste	5-12
Table 5.3	Parameters of pseudo-second-order kinetics for Pb(II), Cd(II), Cu(II) and Zn(II) adsorption onto and desorption from cabbage waste	5-16
Table 5.4	Parameters of Elovich model for Pb(II), Cd(II), Cu(II) and Zn(II) adsorption onto and desorption from cabbage waste	5-18
Table 5.5	Parameters of Avrami model for Pb(II), Cd(II), Cu(II) and Zn(II) adsorption onto and desorption from cabbage waste	5-20
Table 5.6	The predicted and experimental parameters of Langmuir isotherm model for adsorption and desorption of Pb(II), Cd(II), Cu(II) and Zn(II) onto CW	5-24
Table 5.7	The predicted and experimental parameters of Freundlich isotherm model for adsorption and desorption of Pb(II), Cd(II), Cu(II) and Zn(II) onto CW	5-27
Table 5.8	The predicted and experimental parameters of SIPS isotherm model for adsorption and desorption of Pb(II), Cd(II), Cu(II) and Zn(II) onto CW	5-29
Table 5.9	The predicted and experimental parameters of Redlich-Peterson isotherm model for adsorption and desorption of Pb(II), Cd(II), Cu(II) and Zn(II) onto CW	5-30
Table 5.10	The predicted and experimental parameters of Koble-Corrigan isotherm model for adsorption and desorption of Pb(II), Cd(II), $Cu(II)$ and $Zn(II)$ onto CW	5-32
Table 5.11	The predicted and experimental parameters of Khan isotherm model for adsorption and desorption of Pb(II), Cd(II), Cu(II) and Zn(II) onto CW	5-33
Table 5.12	Calculated parameters from Langmuir model for binary adsorption of Pb(II)-Cd(II), Cu(II)-Pb(II), Cd(II)-Zn(II), Cd(II)-Cu(II), Cu(II)-Zn(II) and Pb(II)-Zn(II) ions on CW	5-36
Table 5.13	Ternary adsorption parameters calculated from Langmuir model for Pb(II), Cd(II), Cu(II) and Zn(II) adsorption	5-38
Table 5.14	Isotherm parameters of Langmuir model of quaternary metals [Cd(II)-Cu(II)-Zn(II)-Pb(II)] adsorption	5-39
Table 6.1	Surface parameters of banana peels from BET test	6-5
Table 6.2	Calculated value of thermodynamic parameters for the equilibrium adsorption of Cu(II), Pb(II), Cd(II) and Zn(II) onto banana peels	6-12

Table 6.3	Parameters of isotherm models for adsorption and desorption of	6-16
	Cu(II) onto and from banana peels	
Table 6.4	Parameters of isotherm models for adsorption and desorption of	6-19
	Cd(II) onto and from banana peels	
Table 6.5	Parameters of isotherm models for adsorption and desorption of	6-22
	Pb(II) onto and from banana peels	
Table 6.6	Parameters of isotherm models for adsorption and desorption of	6-23
	Zn(II) onto and from banana peels	
Table 6.7	Kinetics parameters of Cu(II) adsorption and desorption onto	6-27
	banana peels	
Table 6.8	Kinetics parameters of Cd(II) adsorption and desorption onto	6-28
	banana peels	
Table 6.9	Kinetics parameters of Pb(II) adsorption and desorption onto	6-30
	banana peels	
Table 6.10	Kinetics parameters of Zn(II) adsorption and desorption onto	6-35
	banana peels	
Table 6.11	Isotherm parameters from quaternary metals [Cd(II)-Cu(II)-	6-37
	Zn(II)-Pb(II)] adsorption	
Table 7.1	BET characteristics of biosorbent produced from maple leaves	7-3
Table 7.2	Effects of particle sizes of ML for Pb(II), Cd(II), Cu(II) and	7-11
	Zn(II) adsorption	
Table 7.3	Thermodynamic parameters for the adsorption of Pb(II), Cd(II),	7-13
	Cu(II) and Zn(II) ions by ML	
Table 7.4	Kinetics parameters of Pb(II) adsorption and desorption onto	7-18
	ML	
Table 7.5	Kinetics parameters of Cd(II) adsorption and desorption onto	7-21
	ML	
Table 7.6	Kinetics parameters of Cu(II) adsorption and desorption onto	7-23
	ML	
Table 7.7	Kinetics parameters of Zn(II) adsorption and desorption onto	7-25
	ML	
Table 7.8	The prediction of isotherm models for adsorption and	7-31
	desorption of Pb(II) on maple leaves	
Table 7.9	The prediction of isotherm models for adsorption and	7-33
	desorption of Cd(II) on maple leaves	
Table 7.10	The prediction of isotherm models for adsorption and	7-35
	desorption of Cu(II) on maple leaves	
Table 7.11	The prediction of isotherm models for adsorption and	7-39
	desorption of Zn(II) on maple leaves	

Table 7.12	Calculated parameters from Langmuir model for binary adsorption of Pb(II)-Cd(II), Cu(II)-Pb(II), Cd(II)-Zn(II),	7-42
Table 7.13	Cd(II)-Cu(II), Cu(II)-Zn(II) and Pb(II)-Zn(II) ions on ML Ternary adsorption parameters calculated from Langmuir model for Pb(II), Cd(II), Cu(II) and Zn(II) adsorption	7-45
Table 7.14	Isotherm parameters of Langmuir model for quaternary metals [Cd(II)-Cu(II)-Zn(II)-Pb(II)] adsorption	7-46
Table 8.1	BET characteristics of biosorbent produced from Palm Oil Fruit Shells	8-5
Table 8.2	Isotherm parameter of two-parameter models for copper sorption onto POFS	8-9
Table 8.3	Isotherm parameter of three-parameter models for Cu(II) sorption onto Palm Oil Fruit Shell	8-12
Table 8.4	Kinetics model's parameters of Cu(II) sorption onto POFS	8-15
Table 9.1	Uptake of Pb(II), Cd(II), Cu(II) and Zn(II) at different operating conditions (particle size > 0.3 mm, bed depth = 2.25 cm inlet pH= $6-6.5$)	9-7
Table 9.2	BDST model parameters for the sorption of Pb(II), Cd(II), Cu(II) and Zn(II) onto cabbage waste at varying bed heights (flow rate = 34.5 ml/min, initial metals concentration = 10 mg/l, particle size > 0.3 mm, temperature = room temp., inlet pH = 6-6.5)	9-10
Table 9.3	The Thomas, Yoon-Nelson and Clark models parameters for Pb(II) biosorption onto cabbage waste at different bed heights, flow rate and inlet concentration (particle size >0.3mm, temperature = room temp., inlet pH: 6-6.5)	9-12
Table 9.4	The Thomas, Yoon-Nelson and Clark models parameters for Cd(II) biosorption onto cabbage waste at different bed heights, flow rate and inlet concentration (particle size >0.3mm, temperature = room temp., inlet pH: 6-6.5)	9-13
Table 9.5	The Thomas, Yoon–Nelson and Clark models parameters for Cu(II) biosorption onto cabbage waste at different bed heights, flow rate and inlet concentration (particle size >0.3mm, temperature = room temp., inlet pH: 6-6.5)	9-13
Table 9.6	The Thomas, Yoon–Nelson and Clark models parameters for Zn(II) biosorption onto cabbage waste at different bed heights, flow rate and inlet concentration (particle size >0.3mm, temperature = room temp., inlet pH: 6-6.5)	9-14

Lists of Figures

Figure 2.1	Heavy metals pollution: A prize tag of modern society	2-4
Figure 2.2	Global scenario of heavy metal pollution from the ancient time	2-16
	(adapted from Nriagu, 1996)	
Figure 2.3	A schematic showing a typical solvent extraction process for	2-31
	copper	
Figure 2.4	Plausible mechanism of biosorption (adapted from Sud et al.,	2-52
	2008)	
Figure 2.5	A schematic diagram of adsorption zone in different zone and	2-76
F* 2 1	resulting break through curve (adapted from Tor et al., 2009)	25
Figure 3.1	A typical scanning electron microscope (Gemini, JSM-35CF,	3-5
Б. 33	UK)	2.0
Figure 3.2	Adsorption isotherm plot for BET surface area calculation	2-9
Figure 3.3	Flow diagram of experimental setup for optimisation of pH	3-11
Figure 3.4	A typical platform snaker where all the batch experiments are	3-14
Figure 2.5	A trained fleesewleter where all binetics adaptation and	2 15
Figure 5.5	A typical nocculator where all kinetics adsorption and	3-13
Figure 2 (The schematic diagram of the constructed column with all	2 17
Figure 5.0	The schematic diagram of the constructed column with an	3-17
Figuro 3 7	An Atomic Advantion Spectroscopy (AAS) (Contra®AA 300	3 18
Figure 5.7	Analytikiena Germany)	5-18
Figure 1 1	SEM micrograph of garden grass with different magnifications	4-3
Figure 4.1	(A 1KX B 2KX C 4KX and D 10KX)	J
Figure 1 2	(A. IKA, D. 2 KA, C. 4 KA and D. 10 KA) X_{ray} manning of (a) Garden grass (b) Garden grass exhausted	1_1
Figure 4.2	with copper (c) Colour mapping of garden grass (d) Colour	4-4
	mapping of garden grass exhausted with copper (e) Spectra of	
	garden grass (f) Spectra of garden grass exhausted with copper	
Figure 4.3	X-ray mapping micrograph of GG exhausted with metals (a.	4-5
	Exhausted with Pb(II), b. Exhausted with Cd(II) and c.	
	Exhausted with Zn(II))	
Figure 4.4	The FTIR spectra with predicted peaks for functional groups of	4-6
	garden grass	
Figure 4.5	Effect of pH on Cd(II), Cu(II), Zn(II) and Pb(II) adsorptions	4-8
	(Co = 10 mg/l; dose = 0.5g/100ml)	
Figure 4.6	Effects of contact time and initial metals concentration on	4-9
	removals of Cu(II), Pb(II), Cd(II) and Zn(II) from water by	
	garden grass	
Figure 4.7	Effects of doses of biosorbents on removals of Cu(II), Pb(II),	4-10
	Cd(II) and Zn(II) from water	
Figure 4.8	Effects of particle sizes of biosorbents on removals of Cu(II),	4-11
	Pb(II), Cd(II) and Zn(II) from water	

- Figure 4.9 Effect of shaking speed on removal of Cu(II), Pb(II), Cd(II) and 4-14 Zn(II) (Co: 10 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm: 120; T: 20°C)
- Figure 4.10 Regeneration of garden grass after adsorption of Cu(II), Pb(II), 4-15 Cd(II) and Zn(II) ions (Vo: 100; d: 0.5 g; t: 3 h; rpm: 120; T: 20°C)
- Figure 4.11 Adsorption and desorption cycle for Cu(II), Pb(II), Cd(II) and 4-15 Zn(II) onto garden grass (Vo: 100 l; d: 0.5 g; t: 3 h; rpm: 120; T: 20°C)
- **Figure 4.12** Isotherm modelling of adsorption and desorption of Cu(II) onto 4-17 garden grass with different doses (Co: 1-500 mg/l; d: 0.05-1 g; t: 3 h: pH: 6-6.5; rpm: 120; T: 20°C)
- Figure 4.13 Isotherm modelling of adsorption and desorption of Pb(II) onto 4-19 garden grass with different doses (Co: 1-500 mg/l; d: 0.05-1 g; t: 3 h: pH: 6-6.5; rpm: 120; T: 20°C)
- **Figure 4.14** Isotherm modelling of adsorption and desorption of Cd(II) onto 4-21 garden grass with different doses (Co: 1-500 mg/l; d: 0.05-1 g; t: 3 h: pH: 6-6.5; rpm: 120; T: 20°C)
- Figure 4.15Isotherm modelling of adsorption and desorption of Zn(II) onto4-23garden grass with different doses (Co: 1-500 mg/l; d: 0.05-1 g;t: 3 h: pH: 6-6.5; rpm: 120; T: 20°C)
- Figure 4.16Plots of percent deviation of adsorption capacity of Cu(II), 4-28Pb(II), Cd(II) and Zn(II) onto 10 g garden grass
- Figure 4.17 Kinetics modelling of Cu(II) adsorption and desorption onto GG 4-31
- Figure 4.18 Kinetics modelling of Zn(II) adsorption and desorption onto GG 4-32
- Figure 4.19 Kinetics modelling of Pb(II) adsorption and desorption onto GG 4-34
- Figure 4.20 Kinetics modelling of Cd(II) adsorption and desorption onto GG 4-35
- Figure 4.21 Plots for intra-particle diffusion kinetic model of garden grass 4-37 for adsorption and desorption of Cu(II) (Co: 10, 50, 100 mg/l; d: 0.5 g; t: 24h: pH: 6-6.5; rpm: 120; T: 20°C)
- Figure 4.22 Plots for intra-particle diffusion kinetic model of garden grass 4-37 for adsorption and desorption of Cd(II) (Co: 10, 50, 100 mg/l; d: 0.5 g; t: 24h: pH: 6-6.5 ; rpm: 120; T: 20°C)
- Figure 4.23Plots for intra-particle diffusion kinetic model of garden grass4-38for adsorption and desorption of Pb(II) (Co: 10, 50, 100 mg/l; d:0.5 g; t: 24h: pH: 6-6.5; rpm: 120; T: 20°C)
- Figure 4.24Plots for intra-particle diffusion kinetic model of garden grass4-38for adsorption and desorption of Zn(II) (Co: 10, 50, 100 mg/l; d:0.5 g; t: 24h: pH: 6-6.5; rpm: 120; T: 20°C)
- Figure 4.25Quaternary adsorptionamong the Cu(II), Pb(II), Cd(II) and4-40Zn(II) in the four metals system of Cd(II)-Pb(II)-Cu(II)-Zn(II)

Figure 4.26	Experimental and model predicted surface areas in terms of	4-41
	adsorption capacity of metals in surface diagram for quaternary	
	metals adsorption onto GG	
Figure 4.27	Engaged area in terms of capacity of metals in radar diagram for	4-42
	quaternary metals adsorption onto GG	
Figure 5.1	Micro-graphs of cabbage wastes taken by SEM	5-3
Figure 5.2	FTIR spectra of the biosorbent from cabbage wastes	5-4
Figure 5.3	Effect of pH on Cd(II), Cu(II), Zn(II) and Pb(II) adsorptions	5-6
	(Co = 10 mg/l; dose = 0.5g/100ml)	
Figure 5.4	Effects of contact times on the removals of Pb (II), Cd(II),	5-7
	Cu(II) and Zn(II) from water by CW	
Figure 5.5	Effects of different doses on the removals of Pb(II), Cd(II),	5-8
	Cu(II) and Zn(II) from water by cabbage waste biosorbents	
Figure 5.6	Effect of initial concentrations of Pb(II), Cd(II), Cu(II) and	5-8
	Zn(II) on the percent removal by CW	
Figure 5.7	Regeneration of cabbage waste by different eluent from Pb(II),	5-10
	Cu(II), Cd(II) and Zn(II) adsorption(Vo: 100; d: 0.5 g; t: 3 h;	
	rpm: 120; T: 20°C)	
Figure 5.8	Regeneration cycles of cabbage waste from Pb(II), Cu(II),	5-10
	Cd(II) and Zn(II) adsorption and desorption by 0.1N H2SO4.	
	(Vo: 100; d: 0.5 g; t: 3 h; rpm: 120; T: 20°C)	
Figure 5.9	Kinetics modelling of adsorption and desorption of Pb(II) onto	5-14
	cabbage waste (Co: 50 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm:	
	120; T: room temp.)	
Figure 5.10	Kinetics modelling of adsorption and desorption of Cd(II) onto	5-17
	cabbage waste (Co: 50 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm:	
	120; T: room temp.)	
Figure 5.11	Kinetics modelling of adsorption and desorption of Cu(II) onto	5-19
	cabbage waste (Co: 50 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm:	
Figuro 5 12	120, 1. room temp.) Kinetics modelling of adsorption and desorption of $Zn(II)$ onto	5-21
Figure 5.12	cabbase waste (Co: 50 mg/l: d: 0.5 g: t: 3 h: nH: 6-6.5: rnm:	5-21
	120; T: room temp.)	
Figure 5.13	Isotherm modelling of adsorption and desorption of Pb(II) onto	5-23
C	cabbage waste with different doses (Co: 1-500 mg/l; d: 0.05-1 g;	
	t: 3 h: pH: 6-6.5; rpm: 120; T: 20°C)	
Figure 5.14	Isotherm modelling of adsorption and desorption of Cd(II) onto	5-26
	cabbage waste with different doses (Co: 1-500 mg/l; d: 0.05-1 g;	
T' - 4 -	t: 3 h: pH: 6-6.5; rpm: 120; T: 20°C)	5 0 0
Figure 5.15	isotnerm modelling of adsorption and desorption of $Cu(II)$ onto ashbaga wasta with different dagas (Co: 1.500 mg/l; d: 0.05.1 c;	5-28
	cabbage waste with different doses (Co: 1-500 mg/l; d: $0.05-1$ g; t: 3 h: nH: 6.6.5: rnm: 120: T: 20°C)	
	i. 5 ii. prii. 0-0.3, ipiii. 120, 1. 20 C)	

Figure 5.16	Isotherm modelling of adsorption and desorption of Zn(II) onto	5-31
	cabbage waste with different doses (Co: 1-500 mg/l; d: 0.05-1 g;	
	t: 3 h: pH: 6-6.5; rpm: 120; T: 20°C)	
Figure 5.17	Equilibrium of binary adsorption of Pb(II)-Cd(II), Cu(II)-Pb(II),	5-35
	Cd(II)-Zn(II), Cd(II)-Cu(II), Cu(II)-Zn(II) and Pb(II)-Zn(II)	
	ions on CW	
Figure 5.18	Ternary adsorption of among the Cu(II), Pb(II), Cd(II) and	5-37
	Zn(II) in the ternary systems of Cd(II)-Pb(II)-Cu(II), Cd(II)-	
	Pb(II)-Zn(II), Cu(II)-Cd(II)-Zn(II) and Cu(II)-Pb(II)-Zn(II)	
Figure 5.19	Quaternary adsorption of among the Cu(II), Pb(II), Cd(II) and	5-39
	Zn(II) in the four metals system of Cd(II)-Pb(II)-Cu(II)-Zn(II)	
Figure 5.20	Antagonism among the metals for Cu(II)-Zn(II) (A&B) and	5-41
	Pb(II)-Cd(II) (C&D) binary system	
Figure 5.21	Antagonism among the metals for Cd(II)-Zn(II) (A&B), Cu(II)-	5-42
	Cd(II) (C&D) and Pb(II)-Cu(II) (E&F) binary system	
Figure 5.22	Occupied physical surface area of metals in terms of capacity	5-43
	for ternary metals adsorption system onto cabbage waste	
Figure 5.23	Engaged area in terms of capacity of metals in radar diagram for	5-44
	quaternary metals adsorption onto cabbage waste	
Figure 6.1	BSE (backscattered electron) images of banana peels taken by	6-3
	SEM	
Figure 6.2	Fourier Transform Infrared Spectroscopy (FTIR) spectra of BP	6-4
Figure 6.3	Effect of of pH on the removal of Cu(II), Pb(II), Cd(II) and	6-6
	Zn(II) by BP	
Figure 6.4	Effect of particle sizes of BP on the removal of Cu(II), Pb(II),	6-7
	Cd(II) and Zn(II)	
Figure 6.5	Effect on the removal of Cu(II), Pb(II), Cd(II) and Zn(II) for the	6-8
	doses of banana peels	6.0
Figure 6.6	Effect on the removal of Cu(II), Pb(II), Cd(II) and Zn(II) for the	6-9
D· (7	doses of banana peels	C 10
Figure 6.7	Effect of shaking speed on removal of Cu(II), Pb(II), Cd(II) and $T_{\rm c}$ (II) (1.241, C, 10, 10, 14, 15, 14, T, 200C, II) (1.55)	6-10
E ² (0	2n(11) (t: 24n; Co: 10 mg/l; d: 5 g/l; 1: 20°C; pH: 6-6.5)	(11
Figure 6.8	Plots of Globs free energy (ΔG^2) versus Temperature (1) for $C_{\rm U}({\rm II})$, $C_{\rm d}({\rm II})$, $P_{\rm b}({\rm II})$ and $Z_{\rm r}({\rm II})$ adsorption onto BP	0-11
Figure 6 9	Regeneration of banana neels from Cu(II) Pb(II) Cd(II) and	6-13
i igui e ois	Zn(II) from adsorption	0 10
Figure 6.10	Regeneration cycles of banana peels from Cu(II) Pb(II) Cd(II)	6-13
i igui e oiro	and Zn(II) from adsorption	0 10
Figure 6.11	Isotherm modelling of adsorption and desorption of Cu(II) onto	6-17
	and from banana peels (Co: 1-500 mg/l: d: 0.05-1 g: t ⁻ 3h ⁻ nH ⁻	
	6-6.5; rpm: 120; T: 20°C)	
Figure 6.12	Isotherm modelling of adsorption and desorption of Cd(II) onto	6-20
8=	and from banana peels (Co: 1-500 mg/l; d: 0.05-1 g; t: 3h: pH:	
	6-6.5; rpm: 120; T: 20°C)	

- **Figure 6.13** Isotherm modelling of adsorption and desorption of Pb(II) onto 6-21 and from banana peels (Co: 1-500 mg/l; d: 0.05-1 g; t: 3h: pH: 6-6.5; rpm: 120; T: 20°C)
- **Figure 6.14** Isotherm modelling of adsorption and desorption of Zn(II) onto 6-24 and from banana peels (Co: 1-500 mg/l; d: 0.05-1 g; t: 3h: pH: 6-6.5; rpm: 120; T: 20°C)
- Figure 6.15 Kinetics modelling of adsorption and desorption of Cu(II) onto 6-29 banana peels (Co: 50 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm: 120; T: room temp.)
- **Figure 6.16** Kinetics modelling of adsorption and desorption of Cd(II) onto 6-31 banana peels (Co: 50 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm: 120; T: room temp.)
- Figure 6.17 Kinetics modelling of adsorption and desorption of Pb(II) onto 6-33 banana peels (Co: 50 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm: 120; T: room temp.)
- **Figure 6.18** Kinetics modelling of adsorption and desorption of Zn(II) onto 6-34 banana peels (Co: 50 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm: 120; T: room temp.)
- **Figure 6.19** Quaternary adsorption of among the Cu(II), Pb(II), Cd(II) and 6-38 Zn(II) in the four metals system of Cd(II)-Pb(II)-Cu(II)-Zn(II)
- Figure 6.20 Experimental and model predicted surface areas in terms of 6-39 adsorption capacity of metals in surface diagram for quaternary metals adsorption onto BP
- **Figure 6.21** Engaged area in terms of capacity of metals in radar diagram for 6-40 quaternary metals adsorption onto BP
- **Figure 7.1** SEM micrograph of ML with different magnifications (A. 3KX, 7-4 B. 14 KX, C. 19.5 KX and D. 105 KX).
- Figure 7.2SEM micrograph 150x (HWOF=600μm) (a) Maple leaves (b)7-5Maple leaves exhausted with lead (c) X-ray mapping of maple
leaves exhausted with lead (d) Spectra of maple leaves (e)Spectra of maple leaves exhausted with metals
- **Figure 7.3** The Fourier transforms infrared spectroscopy (FTIR) spectra of 7-6 maple leaves powder (ML)
- Figure 7.4Effect of pH on the removal of Pb(II), Cd(II), Cu(II) and Zn(II)7-7
- **Figure 7.5** Effect of ML doses on the removal of Pb(II), Cd(II), Cu(II) and 7-8 Zn(II)
- **Figure 7.6** Effect of contact time and initial Pb(II), Cd(II), Cu(II) and 7-9 Zn(II) concentrations
- Figure 7.7Effect of particle sizes of ML on removal of Pb(II), Cd(II),
Cu(II) and Zn(II) ions.7-11
- Figure 7.8Plots of Gibbs free energy (ΔG°) versus Temperature (°T) for 7-12
Cu(II), Cd(II), Pb(II) and Zn(II) adsorption onto ML
- **Figure 7.9** Regeneration of ML from Pb(II), Cd(II), Cu(II) and Zn(II) from 7-14 adsorption
- **Figure 7.10** Regeneration cycles of ML from Pb(II), Cd(II), Cu(II), and 7-15 Zn(II) from adsorption

Figure 7.11	Kinetics modelling of adsorption and desorption of Pb(II) onto maple leaves (Co: 10, 50, 100 mg/l; d: 0.5 g; t: 3 h: pH: 6-6.5; rpm: 120 [.] T [.] 20 ^o C)	7-17
Figure 7.12	Kinetics modelling of adsorption and desorption of Cd(II) onto maple leaves (Co: 10, 50, 100 mg/l; d: 0.5 g; t: 2h: pH: 6-6.5; rpm: 120: T: 20°C)	7-19
Figure 7.13	Kinetics modelling of adsorption and desorption of Cu(II) onto maple leaves (Co: 10, 50, 100 mg/l; d: 0.5 g; t: 2h: pH: 6-6.5; rpm: 120 [.] T [.] 20 ^o C)	7-22
Figure 7.14	Kinetics modelling of adsorption and desorption of Zn(II) onto maple leaves (Co: 10, 50, 100 mg/l; d: 0.5 g; t: 2h: pH: 6-6.5; rpm: 120: T: 20°C)	7-24
Figure 7.15	Plots for intra-particle diffusion kinetic model ML for adsorption Pb(II), Cd(II), Cu(II) and Zn(II) (Co: 10, 50, 100 mg/l; d; 0.5 g; t; 2h; pH; 6-6.5; rpm; 120; T; 20°C)	7-27
Figure 7.16	Isotherm modelling of adsorption and desorption of Pb(II) onto ML with different doses (Co: 1-500 mg/l; d: 0.05-1 g; t: 3 h: pH: 6-6 5: rpm: 120: T: 20°C)	7-30
Figure 7.17	Isotherm modelling of adsorption and desorption of Cd(II) onto ML with different doses (Co: 1-500 mg/l; d: 0.05-1 g; t: 3 h: pH: 6-6 5: rpm: 120; T: 20°C)	7-34
Figure 7.18	Isotherm modelling of adsorption and desorption of Cu(II) onto ML with different doses (Co: 1-500 mg/l; d: 0.05-1 g; t: 3 h: pH: 6.6.5; rpm: 120; T: 20°C)	7-36
Figure 7.19	Isotherm modelling of adsorption and desorption of Zn(II) onto ML with different doses (Co: 1-500 mg/l; d: 0.05-1 g; t: 3 h: pH: 6.65: rpm: 120; T: 20°C)	7-38
Figure 7.20	Equilibrium of binary adsorption of Pb(II)-Cd(II), Cu(II)-Pb(II), Cd(II)-Zn(II), Cd(II)-Cu(II), Cu(II)-Zn(II) and Pb(II)-Zn(II)	7-41
Figure 7.21	Ternary adsorption of among the Cu(II), Pb(II), Cd(II) and Zn(II) in the ternary systems of Cd(II)-Pb(II)-Cu(II), Cd(II)-Pb(II)-Zn(II), Cu(II)-Cd(II)-Zn(II) and Cu(II)-Pb(II)-Zn(II)	7-44
Figure 7.22	Quaternary adsorption of among the Cu(II), Pb(II), Cd(II) and Zn(II) in the four metals system of Cd(II)-Pb(II)-Cu(II)-Zn(II)	7-46
Figure 7.23	Experimental and model predicted surface areas in terms of adsorption capacity of metals in surface diagram for quaternary metals adsorption onto ML	7-47
Figure 7.24	Antagonism among the metals for Pb(II)-Cd(II) (A & B), Cd(II)-Cu(II) (C & D) and Cu(II)-Pb(II) (E & F) binary system	7-48
Figure 7.25	Antagonism among the metals for Cu(II)-Zn(II) (A&B), Cd(II)- Zn(II) (C&D) and Zn(II)-Pb(II) (E&F) binary system	7-49
Figure 7.26	Occupied physical surface area of metals in terms of capacity for ternary metals adsorption system onto ML	7-50

- Figure 7.27 Engaged area in terms of capacity of metals in spider diagram 7-52 for quaternary metals adsorption onto ML Figure 8.1 SEM micrograph of pofs with different magnifications (A. 1X, 8-4 B. 5KX, C. 50X AND D. 90KX) Figure 8.2 FTIR spectra of palm oil fruit shells (POFS) 8-6 Figure 8.3 Effect of ph on removal of Cu(II) by POFS 8-7 Isotherm modelling of Cu(II) sorption onto palm oil fruit shells 8-10 Figure 8.4 for two-parameter models Isotherm modelling of Cu(II) sorption onto POFS for three-Figure 8.5 8-11 parameter models Figure 8.6 Kinetics modelling of Cu(II) sorption on palm oil fruit shells 8-16 Figure 9.1 Breakthrough curves for Pb(II), Cd(II), Cu(II) and Zn(II) 9-3 biosorption onto cabbage waste at different flow rates (bed depth = 2.25 cm, inlet Pb(II), Cd(II), Cu(II) and Zn(II) concentrations = 5 mg/l, particle size > 0.3 mm, temperature = room temp. and influent pH 6.0-6.5) Figure 9.2 Breakthrough curves for Pb(II), Cd(II), Cu(II) and Zn(II) 9-4 biosorption onto cabbage waste at different bed heights (inlet
- biosorption onto cabbage waste at different bed heights (inlet Pb(II), Cd(II), Cu(II) and Zn(II) concentrations = 9 mg/l, flow rate = 7.07 l/h, particle size > 0.3 mm, temperature = room temp and influent pH 6.0-6.5)
- Figure 9.3 Breakthrough curves for Pb(II), Cd(II), Cu(II) and Zn(II) 9-5 biosorption onto cabbage waste at different initial Pb(II), Cd(II), Cu(II) and Zn(II) concentrations (flow rate = 2.07 l/h, bed depth = 2.25 cm, particle size > 0.3 mm, temperature = room temp, influent pH 6.0-6.5)
- **Figure 9.4** BDST model plots for Pb(II), Cd(II), Cu(II) and Zn(II) 9-9 biosorption onto cabbage waste at different bed heights (flow rate = 2.07 l/h, initial metals concentration = 10 mg/l, particle size > 0.3, temperature = room temp, inlet pH= 6-6.5)

Acronyms and symbols

GG	:	Garden grass
CW	:	Cabbage waste
BP	:	Banana peel
ML	:	Maple leaves
POFS	:	Palm oil fruit shells
FTIR	:	Fourier-transform infrared spectroscopy
XRD	:	X-ray diffraction
SEM	:	Scanning electron microscopy
AAS	:	Atomic absorption spectroscopy
BDST	:	Bed Depth Service Time
TEMP	:	Temperature
TIME	:	Contact time
BET	:	Brunauer, Emmer and Teller model
US EPA	:	United States Environmental Protection Agency
Cd	:	Cadmium
Cu	:	Copper
Pb	:	Lead
Zn	:	Zinc
min	:	Minute
ml	:	Millilitre (0.001 litre)
mm	:	Millimetre (0.001 metre)
1	:	Litre
MW	:	Molecular weight
А	:	Cross-section area of the media sample
C_0	:	Initial metal concentration
Ce	:	Final metal (or residual/equilibrium) concentration
m	:	Dry weight of biomass (dose)
q _e	:	Equilibrium uptake of metal
q _m	:	Maximum metal uptake or maximum adsorption capacity
V	:	Volume of liquid
K _L	:	Langmuir constant (empirical constant)
K _F	:	Freundlich capacity factor
n	:	Freundlich intensity parameter (dimensionless)
K _{RP}	:	Redlich-Peterson isotherm constant
α_{RP}	:	Redlich-Peterson isotherm constant
β	:	Redlich-Peterson isotherm exponent
A _{KC}	:	Koble-Corrigan parameter

BKC	:	Koble-Corrigan parameter
р	:	Koble-Corrigan parameter
K _T	:	Temkin isotherm constant
А	:	specific surface area
B_1	:	Temkin constant in relation to heat of sorption
b _T	:	Toth parameter
β_R	:	Radke-Prausnitz isotherm exponent
α_R	:	Radke-Prausnitz model constants
r _R	:	Radke-Prausnitz model constants
b _K	:	Khan model constant
a _K	:	Khan model exponent
S	:	Temperature dependent Unilan model constants
d	:	Temperature dependent Unilan model constants
$K_{\rm FH}$:	Flory-Huggins model's equilibrium constant
n _{FH}	:	Flory-Huggins model's exponent
B _{DR}	:	Dubinin-Radushkevich constant related to sorption energy
3	:	Dubinin-Radushkevich polanyi potential
Ks	:	Sips isotherm constants
α_{s}	:	Sips isotherm constants
β	:	Sips isotherm exponent
\mathbf{k}_1	:	First-order rate constants
k ₂	:	Second-order rate constants
kp	:	Intraparticle diffusion rate constant
K _{AV}	:	Avrami kinetic constant
n _{AV}	:	Fractionary constant for Avrami kinetic
Cs	:	The concentration at the solid/liquid interface
D	:	The axial diffusion coefficient
β_a	:	The kinetic coefficient of the external mass transfer
C _{break}	:	The outlet concentration at breakthrough
t _{break}	:	The time at breakthrough
τ	:	Time required for 50% adsorbate breakthrough
K _T	:	Thomas rate constant
θ	:	The volumetric flow rate
ΔG°	:	Gibbs free energy
ΔH°	:	Enthalpy change
ΔS°	:	Entropy change

List of Publications

Publications and presentations as the outcomes from this study:

- 1. Hossain, M.A., H.H. Ngo, W.S. Guo, T.V. Nguyen. "Palm oil fruit shells as biosorbent for copper removal from water and wastewater: Experiments and sorption models" Bioresource Technology 113 (2012) 97–101.
- Hossain, M.A., H.H. Ngo, W.S. Guo, T. Setiadi. "Adsorption and desorption of copper(II) ions onto garden grass". Bioresource Technology 121 (2012) 386–395.
- Hossain, M. A., H. H. Ngo, W. S. Guo and T. V. Nguyen. "Biosorption of Cu(II) From Water by Banana Peel Based Biosorbent: Experiments and Models of Adsorption and Desorption" Journal of Water Sustainability, Volume 2, Issue 1, March 2012, 87–104.
- Hossain, M. A., H. H. Ngo, W. S. Guo, T. V. Nguyen and S. Vigneswaran, *"Performance of cabbage and cauliflower wastes for heavy metals removal"*. Journal of Desalination and Water Treatment- Science and Engineering (2013) 1–17.
- 5. Hossain, M. A., H. Hao Ngo, W. S. Guo "Introductory of Microsoft Excel SOLVER function-spreadsheet method for isotherm and kinetics modelling of metals biosorption in water and wastewater" Journal of Water Sustainability Journal of Water Sustainability, Vol.3(4), 2013, 223–237.
- 6. Hossain, M. A., H. Hao Ngo, W. S. Guo, J. Zhang and S. Liang. "A laboratory study using maple leaves as a biosorbent for lead removal from aqueous solutions". Water Quality Research Journal of Canada (Accepted and in press).
- Hossain, M. A., H. H. Ngo, W. S. Guo, L. D. Nghiem, F. I. Hai, S. Vigneswaran, T. V. Nguyen, "*Competitive adsorption of metals on cabbage waste from multi-metal solutions*", Bioresource Technology, (Accepted and in press).

Conference papers:

- 1. *Feasibility study of palm oil fruit shells as biosorbent for copper removal from water and wastewater*, International Conference on Challenges in Environmental Science & Engineering (4th CESE 2011, Tainan, Taiwan).
- 2. Comparison study on the performance of cabbage and cauliflower for heavy *metals removal*, International Conference on Challenges in Environmental Science & Engineering (5th CESE 2012, Melbourne, Australia).

Abstract

The contamination of water by toxic heavy metals including lead, cadmium, copper and zinc is a global problem. The release of these metals into the environment has become a serious health problem due to its toxicity. Progressively stricter discharge regulations on heavy metals have accelerated the search for highly efficient but economically feasible or alternative treatment methods for its removal. The use of low-cost and bio-waste or agro-waste as biosorbents for dissolved metal ions removals has shown potential to provide economic solutions to this environmental setback.

Garden grass (GG), cabbage waste (CW), banana peels (BP), maple leaves (ML) and palm oil fruit shells (POFS) have been identified as potentially low cost and efficient biosorbent for the removal of toxic heavy metals from aqueous solution. Very simple methods were used to prepare these biosorbents. The collected GG, CW, BP, ML and POFS were washed, cut into pieces, dried in oven at 105°C, grounded into powder and used for experiments.

The biosorbents were characterized by SEM, XRD, FTIR and BET tests. Surprisingly, all biosorbents showed that the surfaces of biosorbents' particles are porous, heterogeneous structures, with uneven, asymmetric steps and pores which contained high internal spaces and posed higher specific surface area. The BET surface areas are 21.28, 1.027, 22.59, 10.94 and 39.76 m²/g for GG, CW, BP, ML and POFS, respectively. These biosorbents possesses many hydroxyl, carbonyl and phenyl functional groups (by FTIR test) and therefore, all these biosorbents are good contenders for water treatment and purification utilizations.

Biosorption of all four metals [Pb(II), Cd(II), Cu(II) and Zn(II)] by GG, CW, BP, ML and POFS was found to be dependent on experimental conditions. The optimum biosorption were noted at pH 6-6.5, shaking speed of 120 rpm, initial concentration of 10 mg/l, dose of 5g/l, contact time of 2 h and particle sizes < 75 μ m. The increase of temperature negatively affected the metals biosorption and at room temperature the metals biosorption process is spontaneous and exothermic in nature. The acid medium (0.1N H₂SO₄) was found be a better eluent for regeneration of exhausted biosorbents and it could be reused 5-7 times with minor deviation of efficiency except CW. The efficient metal removing ability of biosorbents in both batch experiments and continuous flow fixed bed column bioreactors used to produce a biosorbent based metals removal system. It suggests that these novel biosorbents could lead to the development of a viable and cost-effective technology for metals removal from water and wastewaters. The prepared biosorbents were evaluated for the adsorption of Pb(II), Cd(II), Cu(II) and Zn(II) ions from single and multimetals aqueous solution by the batch method. The biosorption data were evaluated by equilibrium isotherms models. GG isotherm data posed better fitness with Langmuir, Freundlich and SIPS models as the R² lies between 0.991 and 0.999. Three-parameter models (Redlich-Peterson, Koble-Corrigan and SIPS) and two-parameter models (Langmuir and Freundlich) showed good fitness (R²: 0.991-1.0) with equilibrium adsorption data from CW. The biosorption data from BP are evaluated by Langmuir, SIPS, Redlich-Peterson, Radke-Prausnitz, and Brouers-Sotolongo and results showed a good fitness as the R² were between 0.998 to 1. Among the models three-parameter models such as Sips, Redlich-Peterson and Unilan showed good fitness with isotherm data from ML as the R^2 are 0.988-1.00. Likewise the equilibrium data from POFS posed proper agreement with three parameter models for biosorption of Cu(II). Significantly low RMSE and γ^2 values are found from all the used models which also signify the models fitness.

The maximum Pb(II) adsorption capacities (q_m) are 54.205, 61.267, 120.096 and 50.267 mg/g for GG, CW, BP and ML respectively; whereas it were 41.66, 22.123, 50.459 and 39.599 mg/g for Cd(II) biosorption. Among the biosorbents GG, ML and POFS showed good biosorption capacities for Cu(II) ion and the values are 58.34, 34.534 and 59.502 mg/g. The Zn(II) adsorption capacities are moderate and the magnitude of capacities are 57.53, 12.236, 51.896 and 29.94 mg/g for GG, CW, BP and ML respectively. A strong antagonisms were found among the metals ions [Pb(II), Cd(II), Cu(II) and Zn(II) ions] in the multimetals adsorption systems though Pb(II) and Cd(II) ions dominated. Surprisingly, the maximum reduction in capacities were also found for Pb(II) and Cd(II). The equilibrium and kinetics data for desorption were also evaluated the by isotherm models and kinetics models. Some data from GG and ML showed good agreement with models but most of the data did not pose appropriate fitness.

The kinetics of metal removal by all biosorbents was extremely fast, reaching equilibrium in about 15-60 minutes which is showed the practical potentiality. The both

pseudo-first-order and pseudo-second-order models was found to be the best fit (R^2 : 0.991-1.00) to describe the biosorption mechanism of Pb(II), Cd(II), Cu(II) and Zn(II) ions onto the biosorbents. This is implies that the adsorption mechanisms are both physisorption and chemisorption. As reaction constant, k_2 and n_{AV} (from order and Avrami equation) values were greater than 1 suggested that biosorption reaction is more than one order. Intraparticle diffusion also involved for biosorption process. Along with this, Elovich and Fraction power models also posed good fitness with kinetics data.

The metal removing capacity of CW was also tested in continuous flow fixed-bed column bioreactors for artificial wastewater. The removal capacities were 15.72, 62.23, 68.23 and 70.71 times higher than that obtained in a batch system for Pb(II), Cd(II), Cu(II) and Zn(II) ions. The appropriate service times to breakthrough and metals ions concentration were 5-10 h and 10 mg/l, respectively. The design of a continuous fixed bed column treatment system with CW biosorbent for Pb(II), Cd(II), Cu(II) and Zn(II) laden wastewater can be reached using the BDST, Yoon-Nelson and Clark breakthrough models.

Elucidate the biosorption mechanisms is one of the aims for biosorption of metals. Fitness of pseudo-first-order and pseudo-second-order models suggested the biosorption are both physisorption and chemisorption. FTIR tests showed the functional groups which responsible ions exchange. Isotherm data fitted more with three-parameter models which signifies the adsorption onto heterogeneous surface. It is also found from SEM and XRD data. Thus, it could not be ascertained from the results which single mechanism involved for metals biosorption. However, it could presume that combination of all mechanisms with complexation are responsible for Pb(II), Cd(II), Cu(II) and Zn(II) ions and therefore, high biosorption capacities were found.