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Abstract—In this paper we use a Hierarchical Hidden of words are broken down into phonemes. Hence the use
Markov Model (HHMM) to represent and learn complex  of a grammar based on APs is an attractive approach to
activities/task performed by humans/robots in everyday lie. represent tasks performed by a human. The use of APs
Action primitives are used as a grammar to represent complex . . L .
human behaviour and learn the interactions and behaviour of a"QWS_‘ fgr a “symbolic d_escrlpthn of complex actions.
human/robots with different objects. The main contribution ~ This is in accordance with the idea that a human task
is the use of a probabilistic model capable of representing recognition process may be considered as an understanding
behaviours at multiple levels of abstraction to support the of sequential human behaviours which, in its turn, consists
proposed hypothesis. The hierarchical nature of the model of interpreting a sequence of action primitives [6]. Along

allows decomposition of the complex task into simple action ith th dvant f top-d h |
primitives. The framework is evaluated with data collectedfor wi e advantage of a top-down approach (complex

tasks of everyday importance performed by a human user. tasks decomposed into APs), this also enables bottom-up
approach whereby APs can be shared to construct different
I. INTRODUCTION & MOTIVATION task sequences.

For a robot, learning of everyday human activities is a A challenging part of detecting and recognising grasping

challenaing problem. Imitation leamina has gained mucﬁmd manipulation related tasks is the representation of the
ging p ' 9 9 noisy sensory data. For a robot to learn these tasks, it is

attention in the last decade and attracted considerable te- ;
. : ! . Important that the task sequence presented to the robot is
search [1]. Despite this, we are still a long way from having a . . . . )
. . . complete, with minimal loss of information. In real sceari
robot working alongside humans and demonstrating the same L . .
. 27 . sensor limitation and other environmental factors, makess t
competencies. This is due to the fact that human behaviours : . . i
) . . L . very challenging. Given the inherent level of uncertainty
are inherently highly complicated and the limitation ofivar . o e i
. in the sensors, it is difficult to model these tasks in a
ous sensors to capture such complex behaviours. It therefg . : o
: . eterministic manner. Stochastic or probabilistic modets
remains an open challenge how to model behaviour fro . )
the techniques of choice that researchers have explored to
sensor data. ; Lo
In the area of araspina and manioulation of ever darepresent the possible uncertainties involved.
grasping P Y98Y our main contribution in this paper is to exploit a temporal

objects there has _bee_n a growing interest in expressin obabilistic model,Hierarchical Hidden Markov Model
tasks as a combination of meaningful subparts calle

Action Primitives (APs) [2]. Research done on human HMM) capable of representing and learning grasp and

) : . anipulation related complex human activities. The model
motion and other biological movements postulates that . . . .
. . ; : uilds upon alphabets of APs which can be combined in

movement behaviour consists of simpl&Ps: atomic

; t%ifferent order to compose and describe complex human
movements that can be combined and sequenced 10 ) :
form complex behaviours [3], [1], [4]. For example astasks. The hierarchical nature of the framework allows the
shown in F::i 1 the task opénurin’ w.ater from apmij decomposition of a typical task into different APs which are
could be dg(.:om osed into the ge uence of APs %u(l:%arned by the model at different levels of the hierarchy. An
as  apor oach- pr asp-lift-til t(—qunti I't-opl ace éxample shown in Fig. 1 is a decomposition of a pouring
back- ?EI case gb' ch)t _retreat (the ar mpt o task into sequence of APs. The APs provide the necessary
‘ts initial osJi tion), where the AP cannot tool to describe a task as a sequential combination singlar t
be decom oseorIJ further A'r uments raised in the fielgw natural language description. The proposed framework
of neuroscF;ence 5] rei.nforc?es that human actions ar|s capable of learning this grammar at different levels i.e.
composed of APs similar to human speech where utteran t%se action primitives are learned and inferred by observing
P P e hand-object interaction and their motion in the caatesi
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to ensure that all motions closely follow the demonstraer synthesized in [7], [8], [9], [2] are limited to basic
tions while ultimately reaching and stopping at the targefAPs such aglislocate, hit, approach, grasp, push, rotate or
The tasks learned by the SEDS were only of simple typmove from point-to-pointin this work we propose to use
such as moving an object from point-to-point. Dindo and probabilistic framework capable of representing an entir
Schillaci [8] proposed aGrowing Hierarchical Dynamic task by decomposing it into clusters of APs. Our approach is
Bayesian Network (GHDBNip recognise the skills being unique due to two main reasons, firstly we cluster the entire
observed and to reproduce them by exploiting the generatiteesk sequence into pool of different APs and secondly, we
power of the model. The model learned and reproduced threse a unified probabilistic framework that exploits spatial
actions i.e.Dislocate, Approachand Hit. Pastoret. al. [9] relationship to learn APs and time dependent relationship
used a Dynamic Movement Primitive (DMP) framework inbetween APs to predict the high level abstract task. The
which the recorded movement were represented using ndmierarchical nature of the model proves to be a strong tool
linear differential equations. The movement library cetesi  for both learn and synthesizing tasks and APs at both levels.
of actions such agrasping, placingand releasing Nemec

and Ude [10] in their recent work also used a DMP based!!!- HIERARCHICAL HIDDEN MARKOV MODEL

system to represent primitive movements. The DMP library (HHMM)
used in their experiment consisted of tasks lieaching,  Probabilistic models have been successfully used by the
pouring, wiping, shaking, cutting, power grasps.etc Al community in particular in order to represent complex

In our previous work,we proposed Rarametric Hidden systems with prominent uncertainty [16]. Models such as
Markov Model (PHMM)to represent various action prim- Hidden Markov Model (HMM), Dynamic Bayesian Network
itives [2]. The framework was trained in an unsupervised@DBN) and HHMM are popular techniques used for human
manner and represented and synthesized movement traje¢ttion modelling and a wide variety of other applications.
ries as a function of their desired effect on the object. ®te sThe endless list includes assistive robotics [15], sign lan
of actions learned werapproach, grasp, push forward, push guage and gesture modelling [17], robot assisted surg&ly [1
side, move side, rotatand remove Our previous work also and many more. These models have found its applicability
exploited the dependencies of the hand and object featurigsthe field of robotics due to its ability to handle data noise
to generate the structure of a Bayesian Network (BN) [11hnd capture both the spatial and temporal variability in the
[12]. The evolved structure is used to predict the task of movement and the change in variance along the movement.
user based on the type and object. However, the prediction @ we are dealing with noisy data from real scenarios,
these tasks are done based on grasp instances and not ontiteemodel gives us the flexibility to exploit the temporal
entire trajectory of motion followed by the arm to performand spatial dependencies between different APs and tasks at
a given task. different levels.

Related to the theoretical framework used in this work, The HHMM framework used in our work is capable
HHMM has been applied to several different applicatiorof structuring stochastic processes at multiple levelse Th
areas. Nguyeret. al. [13] used a HHMM framework to HHMM is an extension of HMM that is designed to model
model and recognise complex human activities. The moddbmains with hierarchical structure including such with de
exploited both the natural hierarchical decomposition anpendencies at multiple length/time scales [19]. In an HHMM,
shared semantics embedded in the movement trajectoriéise states of the stochastic automaton can emit single -obser
The tasks inferred were based on location semantics. In thations or strings of observations. Those that emit single
area of ubiquitous computing, Liao [14] used an HHMMobservations are called “production states”, and those tha
framework to infer user's mode of transportation, desiorat emit strings are termed “abstract states” [20]. The strings
location and predict both short and long term movementsmitted by abstract states are themselves governed by sub-
The framework was also able to infer if the user was deviHMMSs, which can be called recursively. When the sub-HMM
ating from his normal activities as an indication to providds finished, control is returned to wherever it was called
guidance cues. With our work related to assistive robotiftom [20]. The hierarchical nature allows decomposition of
walker [15], we deployed a HHMM framework to infer the the problem at different levels of abstraction therebylifaci
non-navigational and navigational intentions of the uSBe  tating exploration (long term planning/tasks) and explbin
hierarchical nature of the framework allowed integratidn o(short term planning/APs) within the same framework.
the tasks required for learning activities of daily living. In the paradigm of learning long term task/activities from

It is important to note that most of the actions learned\Ps, the high-level activities call the more refined low-



Level 2 states corresponds to
users’ everyday task inferred
from APs

Level 1 states corresponds to
action primitives (APs) inferred
from observation

Observations of HHMM Framework
8 gaussian nodes and 1 discrete node
corresponds to hand-object
interaction data in cartesian space.

N\

Fig. 2: HHMM Model used to infer action primitives and longrteuser task using different hand and object features. The
latent variables of the GMM models used at the observativel lare not shown here for simplicity. Refer to Table | for
details of each observation node

TABLE I: Hand & object features used by the HHMM

level activities according to some distribution. A low-é&v
framework

activity will in turn call another lower-level activity, ahthis

process continues until the most primitive possible agtivi _ Feature  Dim. Description ,

. f d. Wh the | | | tivity t inat . hndMot Hand motion in Cartesian space
is performed. en the lower level activity terminates - in | qori Hand orientation (quaternion)

some state - the parent behaviour may also terminate as longprinto-P Pitch of knuckle joint for index, ring & middle finger

as the current state is in the set of destination states of the3""o-Y Yaw of knuckle joint for index, ring & middle finger
parent node. fgrint2 P Pitch of second finger joint for index, ring & middle finger
objMot Object motion in Cartesian space

A. PROBLEM SPECIFIC HHMM FRAMEWORK objori

The HHMM framework used to test our proposition is obel
shown in Fig. 2. User state/tasks are inferred at the tog leve

whereas the intermediate level represents the APs (shoWr'i‘iCh represents the interaction between the hand andtobjec
in Fig. 2). In everyday life a single object can be used t@nd its movement in cartesian space. Data features used in

perform many tasks (e.g. Mug can be used for drinkingg‘is experimgnt (Iisted_ in Table I) consists of 3D motion of
pouring or handing it over to another person), hence it i and_ and object, rotan_on of hand and object. The df_;ltz_;\ featur
difficult to predict the user task when he/she is approachilftls_o included the rotation movement of_each fm_gerjomt. 'I_'he
to grasp the object, but becomes more apparent after tHgiectory of hand and object provided information regagdi
object has been grasped. Similarly, after accomplishireg tthe motion of hand qnd object whereas the rota_uonall moyon
desired task, the action of retreating the hand after rieigas (Yaw, pan, til) provided the corresponding orientatior in
the object cannot be described as part of the task sequenf@mation in the space. The movement of each finger joint
Hence such action primitives (e.g. approaching to grasp afovided details regarding the grasping of objects. Alsthe
object APPRH), and retreating after the object is releasedata features were utilised to predict the APs at the lower
(RETRT) are not defined as a part of any long term taskéve! of the HHMM model.
listed in Table Il, but are described as APs independentyf an,
task. In our framework, such independent APs are inferred
at both levels of hierarchy. To better illustrate this cgtce A HHMM framework can be represented as a Hierarchical
consider the example in Fig. 1. The user first approach&ynamic Bayesian Network (H-DBN) as shown in Fig. 2.
to grasp the mug, which has the same AP defined at boli$ Structure comprises of three types of nod@g, 0O, i
the levels as the specific task cannot be inferred without tghered is the depth of the hierarchyl 2 in our case).
object being grasped. Once the object is grasped, the udgoes between nodes represent their dependencies on each
task can be inferred based on the type of grasp and tpEher. The detail of each node is specified as follows:
object, hence the HHMM model will infer the task at the « QY represents the state of the system at timand
higher level (2) and the action primitives at the lower level  level d. Note that at any given time the system will
(1). After releasing the object the AP of retreating being  be probabilistically represented by the state belief at all
independent from any task sequence will hence be inferred levels, and so will be the user goal state at the top level.
at both levels. « Observations nodd3; provide a probability of evidence

At the observation level, features extracted using a hand- as a function of a hiden state. In this work these
object tracking (details given in Section IV) algorithm seal are modelled as Gaussian Mixture Models (GMMs)

Object orientation (quaternion)

3
4
1
1
grintl P 1 Pitch of first finger joint for index, ring & middle finger
1
3
4
6 Object class

Representation



(represented by(u,%)) or discrete nodesP(QF|Or)
node. As in [11], the nodes with GMM distribution are
modelled by a discrete latent parent to store the mixture
coefficients.

. R4 is the terminating state which specifies the natural
completion of a sub-HMM and return the control back
to the higher level/parent states.

Given the parameterf , O, FY), the H-DBN defines the
joint distribution over the set of variables that represent
the evolution of the stochastic process over time. These _ _ )
distributions are in the form of prior distributions (iraiti Fig. 3: Objects used to perform manipulation tasks
probabilities), the transition probabilities and the otae
tion probability distribution. The prior distribution artthe

o - P(OQf =) = N(mi, %)
transition probabilities are defined at every lew). ( P(OHQE = i) = C(1) %)
C. Prior Model _
The prior provides the initial probabilities of the mostG' Learning and Inference
likely initial state of the user. The initial probabilities both ~ Expectation Maximisation (EM) and its variants are pop-
the levels are defined by ular statistical technique used for learning. We use a semi-
) , supervised mode of learning where the observation model to

P(Q%) = "i(J_) (1) infer APs is learned in a supervised manner whereas the high
P(Qp) =75 (J) level abstract states are learned without supervision. §&e u

where T represent the initial probabilities at level 2 anl  EM to learn the model and maximum likelihood estimator
represents the same at level 1, given the state at levek2 isfor predicting the users’ activities. The algorithm itest
D. Transition Model between_ an Expe<:htatir?2dstep (I_E-sltep) V\'IhiChh estti)mates.the
. " expectations over the hidden variables using the obsensati
Each node in the HHMM represents a conditional prob- : o o ;
ability distribution (CPD) or table (CPT). The state of thex 09 With the conditional probability density (CPD) of the
highest level (level 2 in Fig 2) at timg depends upon the
. S p
previous state at the same level and the termination flag 3?

time t — 1. Probabilities at the highest level are defined by

model, and a Maximization step (M-step) in which the model
rameters (i.e. the CPDs) are updated using the expetgatio
the hidden variables obtained in the E-step.

IV. DATA ACQUISITION
A%(ij) ifR2,;=0

P(Q¢ = j\Qt{l:i,Ft{l: f) :{ 20 L1 (2) Common tasks, like the ones described so far, demon-
() iR =1 strated by human subjects have been acquired by means of a
Similarly, the states at the intermediate level (leVel 1 |rRGB_D sensor. From these image sequences the parameters
Fig. 2) at timet, depends upon the previous state at the samgat regard the configuration of the subject's hand and the
level and the termination flag at time step 1 and the state ¢onfiguration of the object need to be extracted, so that they
at the higher level in the same time stethe probabilities are provided for learning or inference. In order to extract
of which are defined in (3). such information we combine the methods in [21], [22]
o towards a system that can track an object and a hand, while
P(Q = Q=i F2, = f,Q¢ =K) :{ Aii(ljj) if th—lio (3) in close interaction, in 3D, from RGB-D input. Tracking is
A() RS, =1 performed as in [22], i.e. through the optimization of an
In (2), A? represents the transition probabilities from stat@pjective function that quantifies the discrepancy betwaen
i to j at level 2 whereas in (3\: corresponds to transition hypothesis over the scene state and the actual observations
probabilities at level 1 given the state at level Xis Whereas in [22] the scene amounted to a single hand, in
E. Termination Model this work, the scene comprises a hand and a rigid object,

The termination staté at timet depends upon the level 2 _thus increasing the problem dimensionality to 32 DoFs, as

state and level 1 state in the same time $t8fhe distribution in [21]. At each new tracking frame a new optimization is
of the termination state is defined by (4).

P(F2 = 1/Q? = k,Q = i) = AZ(i,end) (4) TABLE II: Users’ everyday tasks
F. Observation Model -II‘-—'Ecl)SukrS /I;?DerJ?;/ E:sicglf)t:)%rlring from a mug or bottle
The observation model signifies the probability of seeing ?aqdove(rH ) HﬁES;/E Tgsk of handing over an object to anothesqrer

. . .. . . ooluse ammer, ammering a nal

a specific observation conditioned on a discrete hiddengpay SPRAY  Spraying frgm a spray bottle

state. For our application, observations are modelled #s bo Dif:lgvash DSHuvSH Dt?]zdf'r"% o ;biecg 'igin«’?emug in a dishwasher
. . . . I I 0 u r

Gaussian and discrete. The CPDs for Gaussian and dlscreém SHIFT  Shift object forag one location to another

nodes is given by Sprinkle Salt SPRINKLE  Sprinkle salt using a salt sprinkler




TABLE l1I: Action Primitives to perform various tasks = TABLE IV: Inference accuracy of HHMM model to infer

Action Primitive Abbrev.  Description long term intentions using APs (Percentage)

Approach APPRH  Approach to grasp objects in a given space i

Approach with twisted hand APTWH  Approach to grasp objedts inverted hand Conf. Matrix | POUR | HNDOVER | TLUSE | SPRAY | DSHWSH [ DRINK | SHIFT | SPRINKLE
Retreat RETRT  Retreat hand into original position POUR | 52.59 0.00 000 | 1.00 000 | 37.23 | 9.02 0.00

Putback PUTBK  Place back the grasped object H'#ESL\J/ER g'gg 9086%3 550102 g'gg g'gg g'gg g'gg g'gg

Grasp from top GRTOP  Grasp object fromtop SPRAY | 0.00 0.00 0.00 | 99.82 | 0.0 0.00 | 0.00 0.00

Grasp from handle GRHDL  Grasp object from handle (if any) DSHWSH | 0.00 0.00 0.00 0.00 99.58 0.00 | 0.00 0.00

Grasp from middle GRMID  Grasp object from middle DRINK 7.10 0.00 0.00 0.00 0.00 91.54 | 0.40 0.88

Grasp from tool use end GRTUE  Grasp object from tool use end SHIFT 0.00 5.33 0.42 0.00 0.00 0.00 | 92.16 1.62

Lift object LIFT Lift grasped object SPRINKLE | 0.00 0.00 0.00 0.00 0.00 0.00 | 24.90 75.10

Tilt object TILT Tilt grasped object

Un-tilt object UNTLT  Un-tilt grasped object

Lower object (tool) LWRTL  Lower object for usage 2) of the HHMM model th_e long term tasks were learned
Raise object (tool) RAITL ~ Raise object for usage from APs in an unsupervised manner. The features used
Move object towards You MVTOU  Move object towards you b h f K di di di .
Release RELSE  Release the grasped object y the HHMM framework and its corresponding dimension
Grasp from bottom GRBOT  Grasp object from bottom size are listed in Table I. The dataset was divided in two
Invert object INVRT Invert the grasped object by 180 degrees .. . .
Press and release trigger PERLTGR Press and release tdfygpray bottle equa| halves for training and testing purposes. Expeciatio
Shake salt sprinkler SHAKE  Shake salt sprinkler to sprirddé

Maximization was used to learn user task, and the Maximum
Likelihood Estimator was used for inference.

The APs were inferred with an overall accuracy of 88% at
e lower level of the HHMM model whereas the long term

performed that is initialized in the vicinity of the solutio
for the previous frame. The reference 3D coordinate systei'ﬁ
is conveniently defined to reside on the demonstration tab €1 was inferred with 919% accuracy (at the higher level)

(Fig. 1). This is achieved through a chessboard calibrati%e inference accuracy to predict each APs and the high

pat_tern. Al 9bj8CtS used were painted blue so as_t_o rely UP9&\el tasks are listed in Table V and Table IV respectively.
a single, uniform appearance model and thus facilitateiget- Out of 18 meaningful APs most of them were inferred

Additionally and with respect to [21], [22], in this work, . .
1 L L 0
we deal with the hand-object initialization problem. WithWlth an accuracy higher than 90%. APS such as putback
. . " PUTBK), grasp from handleGRHDL), tilt (TILT ), un-

the hand, we always expect it at a given position befor; ,

. . Tilt (UNTLT ) and grasp from botton3RBOT) are inferred
tracking starts. In order to tackle the more unconstrained. .
L ) . with an accuracy lower than 80%BUTBK is often confused
problem of initializing the pose of the object, we integrate

) : . with LIFT , this is due to the high level of confusion in the
the registration method of [23] that works over RGB-D InIOUt'data, where both the actions follow almost the same trajec-

tory in the cartesian space. A very high level of confusion
V- RESULTS & DISCUSSION is observed between action stald§T & UNTLT . This is
For testing our hypothesis we selected objects from difot surprising as in a continuous space both these actions
ferent classes used for a collection of everyday activitieare performed one after another and hence the framework
We intentionally selected objects that can be used in the unable to clearly discriminate between the two action
context of more than one activity. As an example, a mugpace. Confusion existed between action clGRBOT &
and a bottle can be used both for drinking and pouring. WERMID due to minimum resolution between the grasp
selected six object (see Fig. 3) to perform tasks as listed fjosition between the middle and bottom of the object.
Table II. Data was collected with a single user, who repeated At a higher level, apart from task 6fOUR and DRINK ,
the same task 4 times (to capture variations in performiag thall other tasks were inferred with fairly high accuracy. €on
same task). The user was asked to perform each task sdabion occurs between these two tasks due to two reasons:
that its a natural resemblance if the task was performed infastly there is only a minimal difference in the sequence
natural environment. The videos and depth data was callectef APs followed to perform both drinking and pouring and
at a rate of 30 frames per seconfpy. The motion of secondly both these tasks are performed with the object
hand and object was extracted offline using the hand-objesélonging to the same clagsiug and bottle)
tracking algorithm as described in section 1V.The output In the experiment, the observation space was restricted to
of the tracking algorithm provided data of hand and objeaiise only finger joints of index, middle and ring fingers. This
motion in the cartesian space and its orientation. The érackwas mainly because they provided sufficient information to
also extracted data feature of each finger joint. Based anfer most of the APs and inclusion of pinky and thumb joint
visual inspection the tasks were decomposed into a total ffatures did not add any more information and hence were
18 meaningful APs listed in Table Ill. It should be noted thatieemed redundant. Also at various occasions the data of the
each APs represents a cluster of continuous motion/featuttumb added a lot of noise as it was severely occluded by
trajectories and not a single instance. the object and was not observed by the tracking algorithm.
The HHMM model (shown in Fig. 2) was trained and
tested using the hand and object motion data captured as VI. CONCLUSION & FUTURE WORK
described in section IV. The data set was manually labelled In this paper we evaluated our approach of inferring
for both APs and long term tasks for cross validating thesers’ long term task from different APs using a HHMM
inference accuracy. The labels of APs were used at the loweased probabilistic model. The HHMM framework allows
level to perform supervised learning from the raw stream db flexibly divide a task into a hierarchy. The long term
observation data listed in Table I. At the higher level (Uevetasks were considered sequential combination of APs. The



TABLE V: Inference accuracy of APs (Percentage)

Conf. Matrix | APPRH | APTWH | RETRT | PUTBK | GRTOP | GRHDL | GRMID | GRTUE | LIFT | TILT | UNTLT | LWRTL | RAITL | MVTOU | RELSE | GRBOT | INVRT | PERLTGR | SHAKE
APPRH 99.37 0.00 0.10 0.00 0.00 0.00 0.53 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
APPWH 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RETRT 0.00 0.00 95.20 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 4.80 0.00 0.00 0.00 0.00
PUTBK 0.00 0.00 0.00 72.38 0.41 231 1.84 0.00 8.57 | 0.20 4.56 3.27 0.41 0.00 0.27 0.00 0.34 5.44 0.00
GRTOP 0.00 0.00 0.00 0.00 95.25 0.00 0.00 0.00 4.75 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRHDL 157 0.00 0.00 0.79 0.00 77.17 8.66 0.00 0.00 | 0.00 0.00 9.45 157 0.00 0.79 0.00 0.00 0.00 0.00
GRMID 0.32 0.00 0.00 0.00 0.00 0.80 95.38 0.00 2.71 | 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00
GRTUE 0.00 0.00 0.00 0.00 0.00 0.00 7.94 92.06 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LIFT 0.04 0.00 0.00 5.00 1.59 0.08 5.65 0.61 | 83.82| 0.16 0.20 0.00 0.00 0.04 0.08 0.45 0.00 2.24 0.04

TILT 0.00 0.00 0.00 0.20 0.00 0.00 0.98 0.00 413 | 7461] 1811 0.00 0.00 0.98 0.20 0.00 0.00 0.00 0.79
UNTLT 0.00 0.00 0.00 4.23 0.40 0.00 0.00 0.00 0.40 | 33.27| 57.26 0.00 0.00 0.00 0.20 0.00 0.00 0.00 4.23
LWRTL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 98.51 1.49 0.00 0.00 0.00 0.00 0.00 0.00
RAITL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
MVTOU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 1.16 0.00 0.00 0.00 98.84 0.00 0.00 0.00 0.00 0.00
RELSE 0.00 0.00 4.23 2.77 0.00 0.00 0.15 0.00 1.02 | 0.00 0.00 0.00 0.00 0.00 91.84 0.00 0.00 0.00 0.00
GRBOT 0.00 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.91 | 0.00 0.00 0.00 0.00 0.00 0.00 79.09 0.00 0.00 0.00
INVRT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
PERTGR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
SHAKE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

framework was tested on a set of task sequences collectgél 0. C. Jenkins and M. J. Mataric. Performance-derivedalsighn vo-
for different objects used in everyday life. The hierarahic cabularies: Data driven acqusition of skills from motidmternational

. Journal of Humanoid Roboticd(2):237-288, 2004.
framework proved to be a powerful tQO! to dN'qe tasks bOth[7] S.M. Khansari-Zadeh and A. Billard. Imitation learnireg globally
vertically for natural language description of differeatks

stable non-linear point-to-point robot motions using muedr pro-
as APs and horizontaIIy where the continuous observations 9ramming. INEEE/RSJ International conference on Intelligent Robots
are clustered into different APs. g

and Systemspages 2676 —2683, oct. 2010.
. . [8] H. Dindo and G. Schillaci. An adaptive probabilistic apach to
The HHMM framework has been tested with 6 objects = goal-level imitation learning. IHEEE/RSJ International Conference
belonging to different classes to perform tasks listed in Ta__ on Intelligent Robots and Systenpages 4452-4457, Oct. 2010.
ble 1. Our future goals are mainly aimed in three directions[ | P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. 'Leaynind
: g_ y : . generalization of motor skills by learning from demonstnat In
(data set, observation model & learningdjirstly, we plan to IEEE/RSJ International Conference on Robotics and Autimmat
add new object classes such kzswl, remote control, plate, pages 1293-1298, 2009. o _
ball and also add more obiects belonging to same Ob'eg'[o] B. Nemec and A. Ude. Action sequencing using dynamic enoent
a . | ) 9 _g .J primitives. Robotica 30(5):837-846, 2012.
class (for e.g. adding mugs of different sizes to the obje¢t1] D. Song, K. Huebner, V. Kyrki, and D. Kragic. Learningska
class mug, adding tools such asrewdriver, plier, knif)a constrai_nts for robot grasping usin_g graphical models.|BREE/RSJ
- . . . International Conference on Intelligent Robots and Systgmages
With the observation data, in the existing work we used the 1579 1585 oct 2010,
raw data features extracted by the tracking algorithm. Wonk2] p. Song, C. H. Ek, K. Huebner, and D. Kragic. Multivagatiis-
is in progress to apply discretisation and feature exiacti
techniques such as the Gaussian Process Latent Variable
Model proposed in [12] with the raw data to enhance tha3]
inference accuracy of APs. Finally, we we hope to be able
to learn the entire HHMM model in an unsupervised manner.

cretization for bayesian network structure learning inatograsping.
In IEEE/RSJ International Conference on Robotics and Autmmat
We also plan to release the dataset to the research community
[14]
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