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 Abstract - This paper provides a solution to the optimal 
trajectory planning problem in target localisation for multiple 
heterogeneous robots with bearing-only sensors.  The objective 
here is to find robot trajectories that maximise the accuracy of 
the locations of the targets at a prescribed terminal time.  The 
trajectory planning is formulated as an optimal control problem 
for a nonlinear system with a gradually identified model and then 
solved using nonlinear Model Predictive Control (MPC).  The 
solution to the MPC optimisation problem is computed through 
Exhaustive Expansion Tree Search (EETS) plus Sequential 
Quadratic Programming (SQP).  Simulations were conducted 
using the proposed methods.  Results show that EETS alone 
performs considerably faster than EETS+SQP with only minor 
differences in information gain, and that a centralised approach 
outperforms a decentralised one in terms of information gain.  
We show that a centralised EETS provides a near optimal 
solution.  We also demonstrate the significance of using a matrix 
to represent the information gathered.      
 
 Index Terms – bearing only target localisation, multi-robot 
optimal trajectory planning, Extended Information Filter, Model 
Predictive Control, Sequential Quadratic Programming 
 

I. INTRODUCTION 

 Cooperation among a team of distributed agents enables 
tasks such as target search, localisation, tracking, engagement, 
etc. [1]-[4], to be performed with greater efficiency than a 
single robot.  The accuracy of information available about the 
targets determines which task is to be performed.  If the 
targets are stationary and the locations of the targets are 
partially known, the primary task of the robots becomes target 
localisation or sometimes referred to as geolocation. 
 When the sensor on board the robot measures the relative 
bearing of the target without any range information, as in the 
case of a camera, the robot trajectory has a significant 
influence on the accuracy of the target location.  Bearing-only 
target localisation has a wide range of applications in both 
military and civilian areas [3][5]. 
 The optimal robot trajectory for bearing only localisation 
can be computed off-line when the exact locations or the 
trajectories of the targets are known, e.g. [6] and [7] for single 
robot/target.  However, in real applications, the location of the 
targets needs to be estimated and only the estimates are 
available for computing the robot trajectories.  With bearing-
only localisation, the initial estimates may be fairly inaccurate.  
Undoubtedly these estimates are gradually updated as more 
measurements are acquired.  Thus the development of optimal 

real time trajectory planning algorithms for multi-robot target 
localisation is an important research topic.  

Model Predictive Control (MPC) and Sequential 
Quadratic Programming (SQP), have previously been applied 
in trajectory planning for multi-agent formations [8][9], as 
well as target tracking and engagement [10][9], as they 
incorporate constraints in the planning process and have a 
capability of allowing feedback at each planning horizon.  In 
our other current work [11], MPC is applied to trajectory 
planning in Simultaneous Localisation and Mapping (SLAM). 
 In this paper, we consider the trajectory planning for 
target localisation using heterogeneous robots with bearing 
only sensors.  The objective of the trajectory planning is to 
maximise the estimation accuracy about the locations of the 
targets [5].  We assume that all the targets are stationary and 
the precise locations of the robots are known at any time.  It is 
also assumed that collision between the robots will not occur 
(for example a set of UAVs flying at different altitudes).  We 
first show that the trajectory planning problem is an optimal 
control problem for a gradually identified nonlinear system.  
Later on, the multi-step optimisation problem used in MPC is 
formulated and two optimisation strategies are proposed to 
solve it.  An efficient solution using one optimisation strategy, 
Exhaustive Expansion Tree Search (EETS) is provided.  Then 
we show another strategy using SQP which refines the 
solution from EETS by using the latter as an initial guess to a 
non-linear constrained optimisation problem.  It is 
demonstrated that EETS alone provides a near-optimal 
solution. 
 The paper is organised as follows.  In Section II, the 
information accumulation process in multi-robot target 
localisation is stated using Extended Information Filter (EIF).  
In Section III, the multi-step trajectory planning problem is 
formulated.  In Section IV, nonlinear MPC and the multi-step 
prediction methods are introduced.  In Section V two multi-
step optimisation strategies are presented.  In Section VI 
simulation results are provided to demonstrate the optimality 
and effectiveness of the proposed methods.  In Section VII the 
computational complexity of these methods are addressed.  
Finally Section VIII concludes the paper. 

II. MULTI-ROBOT TARGETS LOCALISATION ALGORITHM 

In this section, we state how the information about the 
targets evolves in the multi-robot target localisation.  Here we 
make use of the Extended Information Filter (EIF) based 
multi-robot target localisation algorithm [5][12]. 



 Suppose there are n robots and m targets.  The target 
localisation problem is to estimate the locations of the m 
targets using the information obtained from a sequence of 
observations made by the n robots.  The sensors on the robots 
have limited viewing range, scope and precision.  Accuracy of 
the estimation is characterised by the information matrices.  
 Discrete-time models are used throughout this paper.  We 
assume that the observations are made at each time step and 
consider a finite time horizon [0, T] where T is a given integer.  

A. Notations 
k – k=0, 1,…,T    – observation and planning time step 
t  – t= k, k+1/∆,…, k+∆-1/∆     – robot motion time step, where ∆  

is a positive integer  
Τ= ))(),(),(()( ttytxt

iriririr
φx  i=1,…,n,  t=k,…,k+1  – location 

and heading of the n robots at time t  
Τ= ))(),(()( kkvk iii ωu ,  i=1,…,n – control vector (velocity v 

and turn-rate ω ) of the n robots at time k 
Τ= ),(

jfjfjf yxx
 
 j=1,…,m    – true locations of the m targets 

)(ˆ k
jfx     j=1,…,m      – estimated locations of the m targets at 

time k (after the observation and update made at time k) 
)(kjI ,   j = 1,…, m       – information matrix (2 × 2) about the 

location for the m targets at time k (after the observation 
and update made at time k), equivalent to the inverse of 

the covariance matrix 1)( −kjP  

)(kzij  – observation of the robot i observing target j at time k 

Ri,  i = 1, …, n – covariance of the observation of the n robots 
)(kijI ,   i = 1,…, n,  j = 1, …, m      – the information (matrix) 

obtained from the observation of the ith robot observing 
the jth target at time step k  

B. The Process and Observation Model 
Suppose the discrete-time process model of the ith robot is 

 

))(),(()( 1 ktt iiriir  uxfx =+ ∆      (1) 
 

where fi  is a nonlinear function which depends on the type and 
the dynamic model of the heterogeneous robots.  This process 
model, fi, is iteratively evaluated from k to 1+k , with the 
same control, ui(k), using the smaller time step, t, in 
increments of 1/∆ to generate a smoother trajectory. 

The observation model (at time 1+k ) of the ith robot 
(observing the jth target) is 

 

ijfiriij wkhkz ++=+ )),1(()1( xx    (2) 
 

where wi is a zero-mean Gaussian measurement noise with 
covariance matrix Ri and hi is a nonlinear function which 
depends on the model of the sensor equipped on the ith robot. 

C. Information Obtained from the Observations 
By the EIF approach [5][12][13], the information obtained 

from the observation )1( +kzij  is a matrix 
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T
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where Hijk is the Jacobian of hi, with respect to the feature state 

jfx , evaluated at ))(ˆ),1(( kk jfir xx + .  That is 
 

))(ˆ),1((| kjfkirijfijk h xxxH +∇= .     (4) 
 

 If target j is out of the sensor range of robot i at time 1+k  
then Iij would simply be a zero matrix.  This means that no 
new information about target j is obtained from the 
observation taken by robot i.  Since n independent 
observations (from the n robots) are made for target j at time 

1+k , the new information obtained about target j at time 
1+k  is (5).  The total information about target j at time 1+k  

(after the observations), )1( +kjI , can be calculated by (6), 

where )(kjI  is the total information obtained about the target 

j at time k. 
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D. Update of the Estimation 
At time k and 1+k , the estimation of the location of 

target j are )(ˆ k
jfx  and )1(ˆ +k

jfx , respectively.  The 

update of the estimation takes the form  
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where           )1()1( 1 +=+ −Τ kRk ijiijkij µHi ,                (8) 
 

here Hijk is given by (4) and )1( +kijµ  is the innovation 
defined by  
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These EIF equations are slightly different from the typical 
EIF equations using the information vector [12][13], but they 
are equivalent. 

III. THE TRAJECTORY PLANNING PROBLEM 

A. Problem Statement 
For bearing only target localisation it is critical for the 

robots to observe the targets from different angles, so the robot 
trajectories play an important role in the information 
gathering.  In this paper, we consider the trajectory planning 
problem on a finite time horizon [0, T].  The objective is to 
maximise the total information (estimation accuracy) at time 
step T by choosing suitable control actions for the n robots.  
The trajectory planning problem can be stated as follows. 
 Problem: Suppose at time step 0, the positions of the 
robots are )0(

ir
x , the initial estimate of the positions of the m 

targets are )0(ˆ
jfx  and the information on the targets 

are )0(jI .  Decide how to choose the control actions, ui, for 
the n robots from time k=0 to time k=T – 1, 
 
 

ui (0), ui (1), …, ui (T – 1),   i = 1, …, n,  (10) 
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is maximised, where Ij (T) is the information matrix of the jth 
target at time T which is obtained by (12) 
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and )1( +kijI  is given by (3). 
 We use the scalar from (11) as an indication of the inverse 
of the maximum uncertainty of the m targets.  Uncertainty can 
be represented as an ellipse and the longest axis of the ellipse 
represents the greatest uncertainty.  If we maximise (11), the 
maximal axis of the uncertainty ellipses is minimised. 
 Generally speaking, the initial target locations can be 
obtained from other available sources of information before 
the target localisation starts, if not, methods such as particle 
filters or nonlinear least squares can be applied to obtain an 
initial estimation of the targets. 

B. An Optimal Control Problem for System with Gradually 
Identified Model 

 At first glance, the trajectory planning problem is a finite 
horizon optimal control problem for a nonlinear control 
system.  The model of the “control system” is the compilation 
of equations (1), (3), (4), (6), (7), (8), and (9). 
 The objective is to choose the control (10) in order to 
maximise the performance measure (11). 
 Notice that in (3) and (6), Hijk is needed to calculate 

)1( +kjI , and in (4) )(ˆ k
jfx  is needed to calculate Hijk, but 

when we update )1(ˆ +k
jfx  in (7), (8), and (9), the observation 

)1( +kzij  is required.  Because the observation )1( +kzij  is 
not available until time k + 1, at time 0, we can not obtain a 
clear relationship between the control actions (10) and the 
performance measure (11).  Hence the above model is a 
nonlinear control system with a gradually identified 
model.   

IV. NONLINEAR MODEL PREDICTIVE CONTROL 

Seeing as the model is gradually identified, Nonlinear 
Model Predictive Control (MPC) is a natural and optimal 
strategy [11] to solve the trajectory planning problem (MPC is 
a strategy where N-steps are predicted ahead of time to obtain 
N control actions for N-steps and only the first control action 
is applied).  This strategy is repeated at each time step k until 

Tk = .   
An important step for MPC is to predict the maximal 

information gain after N-steps. 

A. Prediction in N-step Optimisation 
 At step 0, )0(

ir
x , )0(ˆ

jfx and )0(jI  are known. By (1), 

(3), and (4), )1(
ir

x  are functions of the control input at time 
0 – ui(0), and hence Hij0 are functions of ui(0). So Ij(1) are 
functions of ui(0). (Notice that )1(jI  does not depend on the 
observations zij(1) though )1(ˆ

jfx does). 

 Since the observation zij(1)  is not available at time 0, it 
seems impossible to predict more than one-step ahead.  
However, before the observation zij(1) is made, we can assume 
that the innovation, ))0(ˆ),1(()1()1(

jfiriijij hz xx−=µ , is a 

random variable with zero mean (because in the EIF 
implementation, we always assume that the distribution of the 
true target location, 

jfx , is Gaussian with mean )0(ˆ
jfx ). 

 Actually, at time 0, this is the only possible assumption if 
we want to look multi-steps ahead because we have no idea 
how much the estimated target location deviates from the true 
target location.  The assumption needed for the N-step 
optimisation is the following: 
 Assumption I.  The innovations at any time are zero. i.e. 
 

0))(ˆ),1(()1()1( =+−+=+ kkhkzk
jfiriijij xxµ    (13)  

 

for all i = 1, …, n, j = 1, …, m, k = 0, …, N – 1. 

B. N-step Optimisation Problem 
 Under the above assumption, the N-step optimisation 
problem becomes the following  
 N-step optimisation problem.  Given )0(

ir
x , )0(ˆ

jfx  

and )0(jI , choose control (10) to maximise measure (11) 
where )(NjI  is given by 
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for i=1,…, n, j=1,…, m, k=0, 1,…, N–1, t= k, k+1/∆,…, k+∆-1/∆. 
 

 The above system is a deterministic system and the 
optimisation problem can be solved by different optimisation 
techniques.  Two of those are described below. 
 

V. OPTIMISATION TECHNIQUES 

A. Exhaustive Expansion Tree Search (EETS) 
 One solution to this optimisation problem is to apply 
EETS to conduct a coarse exhaustive search.  In an EETS, the 
system is fed Nω discrete control actions, this is the number of 
possible options the robot can take at each time step k.  Using 
(14), each robot i can move to Nω different positions 

)1( +k
ir

x at time 1+k  if they were to apply Nω separate 

controls )1( +kiu  over the period kt =  to 1+= kt .  At the 
Nω different positions )1( +k

ir
x , Nω different )1( +kijI  

matrices are evaluated using (14).  
 To predict for time 2+k , the robots can move to Nω 
positions from each of the Nω positions at time 1+k  in a tree 
spanning pattern.  This means that each robot can be at Nω × 
Nω different positions at time 2+k  if they had Nω control 
choices at each time step k.  Consequently at time 2+k  each 



robot would also have Nω × Nω different )2( +kijI  matrices. 
 At the Nth prediction step, each robot would have (Nω)N 
different )( Nkij +I matrices.  Using (14), nN

ωN )(  
combinations of )( Nkij +I  are available to evaluate 

)( Nkj +I .  The control  
 

      ),(,),2(),1( Nkkk iii +++ uuu …   i = 1,…, n      (15) 
 

is chosen to maximise measure  
 

)))((min(min
1

Nkeig jmj
+

≤≤
I    (16) 

 

Evidently computation for considering all combinations is 
exponential, ))(( nNNmO ω× . 

Constraints of no-go-zones can be enforced by an explicit 
condition based on predicted target and robot locations.  

Since no information is obtained when the targets are out 
of the robot’s sensor range (as described in Section II C), it is 
possible that robot i cannot gain any information even after 
looking at all possible trajectories in N steps.  Thus, it would 
not be able to determine which trajectory is optimal because 
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In the event of this, EETS is repeated using longer step, 
i.e. N remains the same but at every prediction step, 
information ijI  is evaluated at every c × k (where c is the 

number of times the algorithm has cycled).  Thus the robots 
are predicted to travel longer in a time step of c × k with a 
single control for each step c × k.  As previously the control 
for only one step 1+k  is applied.  

Although this is a coarser search, it allows the robot to 
look further ahead providing it an idea of the direction to head 
at the next step 1+k .  This strategy is preferred than to 
increasing N at every repetition because doing so would 
severely burden the computation.  

B. EETS + Sequential Quadratic Programming (SQP)  
 The benefit of an exhaustive search is that it finds the 
global optimum among the finite control options.  However, it 
can be argued that a coarse exhaustive search would not obtain 
the optimal solution because only a few discrete options are 
available.  We present an alternative method for the N-step 
optimisation.  This method is also used to evaluate our results 
from EETS.  We combine EETS with SQP because unlike 
EETS, SQP is continuous and has infinite solutions.  In 
general, SQP finds the local optimum solution.  Hence feeding 
SQP with a random guess would not result in a good 
performance.  Instead the system is fed the control sequence 
(15) for each robot that was obtained from EETS.  This way 
the SQP method is given an initial condition that is 
substantially close to the global optimum solution so that the 
coarseness of EETS can be refined. 
 The constraints on control actions including no-go-zones 
can be easily incorporated into the SQP algorithm.   

VI. SIMULATION RESULTS  

Simulations of the complete system are conducted using 2 
robots and 2 targets.  Initial conditions )0(

ir
x , )0(ˆ

jfx  and  

)0(jI  are set and )(kiu  is selected from a 3-step look-ahead 

( 3=N ).  The velocity is kept constant and the turn-rate 
)(kiω  varied at each step k, depending on the result of the 

optimisation algorithm.  The process model for the robot 
motion was iterated ∆ =10 times for every step k.  There is a 
constraint that no robots can enter the circular no-go zones 
centred by the two targets with radius 2.  Sensors on the robots 
are limited to a view of -90 to 90 degrees across the front of 
the robot with a range of 20.    

A. Evaluation of the EETS 
Many trials were conducted to compare the computation 

times and information gain using EETS with N =3, and the 
result after passing it to the SQP algorithm for refinement.  
The results for 10 trials are presented in Table I.  
 

TABLE I 
SIMULATION RESULTS 
– Optimal Control Strategy – 

 Information Gain (Computation Time (s)) 
 
 

Trial
EETS Nω=3 EETS (Nω=3) 

+ SQP EETS Nω=9 EETS (Nω=3) 
Decentralised 

1 3.5947 (0.12) 3.5947 (0.26) 3.5947 (39.72) 2.0748 (0.07) 
2 2.2478 (0.13) 2.2478 (0.27) 2.2478 (39.76) 1.4044 (0.08) 
3 7.1881 (0.07) 7.1881 (0.22) 7.1881   (8.95) 6.8754 (0.05) 
4 5.2361 (0.09) 5.2361 (0.24) 5.2361 (25.16) 4.2059 (0.06) 
5 0.3866 (0.12) 0.3869 (3.06) 0.3868 (36.96) 0.2681 (0.07) 
6 1.3465 (0.12) 1.3696 (5.53) 1.3680 (36.88) 0.2652 (0.07) 
7 1.4133 (0.11) 1.4569 (4.50) 1.4530 (29.42) 0.9449 (0.07) 
8 0.9559 (0.08) 1.0025 (4.63) 0.9929 (11.89) 0.5803 (0.05) 
9 1.3003 (0.20) 1.3109 (4.95) 1.3082 (74.59) 0.7745 (0.08) 

10 2.0831 (0.08) 2.1418 (0.37) 2.1405 (21.10) 1.5059 (0.06) 
 
 From Table I the combination EETS+SQP performs 
slightly better in terms of information gain than EETS alone, 
as shown in Trials 5-10.  There are also instances where the 
information gains are equivalent, as seen in Trials 1-4.  There 
are two main explanations for this occurrence.  1) From Trial 
1, the difference in turn-rate for one of the time steps after 
executing EETS+SQP is only 0.001rad/s less than EETS 
alone. The differences in information gain from bearing-only 
observations from very similar positions are not discernable.  
2) In Trial 3, SQP did not make any adjustments to the control 
actions from EETS.  They were all set to the maximum turn-
rate.  In the case of bearing-only localisation, often the highest 
information gain is when the observation is taken at an angle 
that is perpendicular to the previous observation.  So to 
maximise the information gain, the robots would often be 
driven at the maximum turn-rate to go around the targets.  In 
200 trials, control actions were evaluated to be the maximum 
turn-rate 70 percent of the time. 
 Although EETS+SQP has the best information gain (on 
average 1.3% better than EETS Nω=3), it has a significantly 
longer computation time.  The time increases depending on 



how far the initial condition is from the optimal.  Hence it may 
require more iterations to find the solution, as in Trials 5-10. 
 We also conducted trials to compare EETS with nine 
options (i.e. Nω=9) instead of Nω=3.  This results in a finer 
search.  As seen in Table I, the computation time has increased 
significantly (approx. 300 times greater) without gaining much 
in terms of information. 

B. Decentralised vs. Centralised  
 The algorithms considered so far are all centralised.  We 
were interested to see how a decentralised approach compares 
to a centralised one.  The last column of Table I contains the 
results for a decentralised approach where the information 
about the targets are shared but the possible trajectory or 
positions of the other robot are not taken into account in the 
planning.  It can be seen that the computation time for the 
decentralised approach is the fastest of all the approaches.  
However as seen in Table I, the performance by combining 
individual optimal controllers results in inferior global 
performance.  The information gain is consistently the lowest, 
on average 35% less information than centralised EETS.   

C. Significance of Information Represented as a Matrix 
To demonstrate the significance of information 

represented as a matrix, we simulate EETS given three sets of 
initial information matrices )0(jI all with the same 

eigenvalues (eig(I1(0))=0.4384, 4.5616; eig(I2(0))=0.6972, 
4.3028) and determinants (det(I1(0))=2, det(I2(0))=3). 

Simulations are conducted with a terminal time of T = 10.  
Fig. 1 shows the different trajectories resulting from different 
initial information matrices. 
 

 
(a) I1 = diag[0.4384, 4.5616]  (b) I1 = [3 2; 2 2]  (c) I1 = diag[4.5616, 0.4384] 
      I2 = diag[4.3028, 0.6972]        I2 = [1 1; 1 4]       I2 = diag[0.6972, 4.3028] 

Fig. 1 Trajectories of the two robots, with different Ij (0). 
 

Given the dimension of one information matrix is a 2 × 2 
symmetric matrix instead of a scalar representation of 
information, trajectories can be planned based on detailed 
knowledge of the uncertainty. 

D. Following the Constraints 
With a 3-step look-ahead, the robots are prevented from 

moving to a position where violating a constraint is 
unavoidable in the next step.  This may occur with a one-step 
look-ahead where the robots move close to the target to gain 
more information but not considering they might be trapped in 
the following step.  However this is subject to the accuracy of 
the estimations of the target location.  In Fig. 2 the no-go-
zones are depicted by the circles around the targets.  
 

 
Fig. 2  Trajectories outside the no-go-zone after k=80 time steps 

 

VII. ONLINE COMPUTATION  

In this section, we justify the necessity of the proposed 
method and show how the special features of the target 
localisation problem make the near optimal solution tractable. 

A. N-step look-ahead and MPC 
 By planning a few steps ahead, the near optimal route can 
be chosen by assessing the maximum predicted future reward.  
Use of the MPC strategy allows for continual feedback of new 
target information to be incorporated into the planning system.  
Increasing the number of steps look-ahead, N, provides a 
solution closer to the global optimum, but the computational 
complexity increases exponentially with respect to N.  Using a 
small N maintains reasonably fast computation times.  
 In the target localisation problem, the frequency of the 
observations may not be very high.  Especially, when the 
velocities of the robots are large (such as UAVs) and/or the 
processing of the sensor data of the observations is time 
consuming (e.g. when the observations are made by cameras), 
thus only a few time steps N look-ahead are needed. 
 Furthermore, the assumption in N-step optimisation may 
not always hold. When the innovations are far from zero, (see 
Assumption I in Section IV A), the control action obtained by 
the N-step optimisation strategy may be far from optimal.  
Thus using a large N may not provide any guaranteed rewards.  

B. Searching Possible Control Options   
 Search algorithms are necessary to systematically select 
possible control actions that are within the constraints to 
obtain the optimal solution.  Since there is no perfect nonlinear 
optimization algorithm available to obtain a global optimal 
solution, EETS and EETS+SQP are proposed to choose the 
control actions.   
 Although the computational complexity of EETS grows 
exponentially with respect to the number of options Nω, 
keeping Nω small reduces the computational cost while having 
only a minor tradeoff in information gain, as seen from Table 
I.  This is due to the nature of the target localisation problem; 
if two observations are made at points very close to each 
other, then the information obtained from the observations will 
be similar.   
 Fig. 3 shows the information gain as a function of the 
control actions (turning-rates) is relatively smooth, (the steep 
drop is due to the control actions moving the robots so that the 
targets are out of the sensor’s field of view).  
 



 
Fig. 3  Graph of Information gain vs. Turn-rates 

 
 We also conducted 34 trials with one robot, one target and 
N=2, to compare Nω=129 and Nω=3, samples of the results are 
shown in Table II.  There was only a 4% improvement in 
information gain with Nω=129.  Hence, in the trajectory 
planning problem, it is not necessary to consider all possible 
control actions, it is appropriate to select only a small number 
of possible control actions which result in significantly 
different observing points in the next time step. 
 

TABLE II 
EETS 

Nω Information Gain 

3 0.2346 1.3621 0.8192 1.5429 1.1056 1.7024 1.7184 
129 0.2596 1.3621 0.8192 1.5435 1.1056 1.7178 1.7425 

 

C. Centralised Control 
 Despite that the computational complexity for centralised 
control increases exponentially with respect to the number of 
robots n, decentralised control without coordination may 
perform poorly compared to centralised control.  An extreme 
case is when the two robots start from similar positions, 
trajectories obtained from optimal decentralised control will 
intuitively result in similar trajectories for each robot, which is 
far from the global optimal, where the robots will separate.  
Better performance may be achieved by decentralised control 
combined with negotiation of robots (e.g. [5]) but the 
negotiation process is more complicated.  Hence, if centralised 
control is not used in the trajectory planning there is no 
guarantee that the near optimal solution can be achieved.  
 In the target localisation problem, the number of actively 
cooperating robots may be small in general.  The cooperative 
control problem for a large number of robots can often be 
decoupled into two sub-problems; a task assignment problem 
and an actively cooperative control problem for only a small 
group of robots.  

VIII. CONCLUSION AND FURTHER WORK 

In this paper, trajectory planning problem with 
heterogeneous robots and bearing only target localisation has 
been investigated.  It has been shown that this is an optimal 
control problem for a nonlinear system with a gradually 
identified model and a nonlinear MPC strategy is proposed.   

Simulations were presented comparing the information 
gain and computation times of different optimisation 
strategies, using two robots and two targets with 3-step look-
ahead MPC.  The results show that on average EETS 
( 3ω =N ) is 20 times faster than EETS+SQP with similar 

gains in information.  Simulation results also demonstrated 
that centralised control obtained, on average, 35% higher 
information gain than decentralised control. 
 According our analysis and simulation results, we make 
the following suggestions to obtain a solution for high 
performance:  1) Information matrices and EETS should be 
used to plan the trajectory to give a near optimal performance 
in terms of time and information gain.  2) Only a small 
number of possible control actions are needed to be considered 
to reduce the computational complexity.  3) Keep the planning 
horizon N relatively short to reduce the computation.  4) Use 
centralised control for optimal robot coordination.  

Further research work includes how to quantitatively 
decide the number of possible control actions, the number of 
prediction steps and the limit of the number of robots that can 
be accommodated within a given computational capacity.  The 
extension of the proposed techniques with the possibility of 
robot collision and time-delays in the robot communications 
[2] can be taken into account.   
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