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The global financial crisis highlighted the fact that default and recovery rates

of multiple borrowers generally deteriorate jointly during economic downturns.

The vast majority of the literature, as well as many industry credit-portþlio risk

models, ignore this and analyze deþult probabilities and recoveries in the event

ofdefault separately. As a result, the ntodels project losses that dre loo low in eco-

ttomic downturns such as the recent financial crisis. Nèvertheless, alternatives

that incorporate the dependence betvveen probabilities of default and recovery

rates have been proposed, This paper is the first of its kind îo assess the per-

formance of these structurally diferent approaches. Four banks using dffirent
estirnation procedures are compared. We use root mean square errors ctncl relative

absolute errors to measure the predictive accuracy of each procedure. The resuLts

show that models accountingfor the correlation ofdefault and recovery do indeed
perform better than models ignoring it.

1 INTRODUCTION

Calculating an accurate measurement of the credit risk underlying defaultable obliga-
tions such as loans or bonds is probably one of the most challenging tasks involved in

The authors gratefully acknowledge the support of the Australian Centre for Financial Studies, the
frankfurt Institute f* nirt Management and Regulation, the Hong Kong Institute for Monetary
'rcsearch and the Thyssen Krupp Foundation.
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the risk management of a financial institution. The trade-off between complying with

the Basel capital requirements and the opportunity costs of tying up too much capital

makes this task even more challenging. Appropriate models for the probability of a

default event (PD), the exposure at the time of default (EAD) and the loss given a

default event (LGD) have to be defined and calibrated by empirical data. In particular,

the test of modeling PD and LGD deals with a high level of uncertainty'

Looking at the theoretical and empirical realization of this task in theory as well as

in practice, several gaps are identifiable. First ofall, there is a wide range ofliterature

on analyzing the drivers of either PD (see, for example, Leland (1994); Jarrow and

Turnbull (1995); Longstaff and Schwartz (1995); Madan and Unal (1995); Leland

and Toft (1996); Jarrow et aI (1991);Duffie and Singleton (1999); Shumway (2001);

McNeil andWendin (2007);and Duffie et qt (2007)) or LGD (see, for example, Carey

(1998);Citron et aI (2003);Dermine and de Carvalho (2006);Acharya et aI (2007);

Altman (2009); Qi and Yang (2009); Grunert and weber (2009); and calabrese and

Zenga(2o10)). Many industry credit-portfolio risk models are also based on isolated

modules for default probabilities and recoveries in the event of default. In contrast,

approaches to joint modeling and estimation are scarce (exceptions are, for example,

Pykhtin (2003); Rösch and Scheule (2005); Kupiec (2008); Bruche and Gonzâ\ez-

Aguado (2010); and Rösch and Scheule (2010)), although empirical data shows that

default and recovery rates jointly deteriorate during economic downturns' Figure I on

the facing page highlights this stylized fact for the recession years 1990 and 1991 (the

time of the Persian Gulf war), 2001 and 2oo2 (the period following the september

well as 2008 and 2009 (the global financial crisis)

Bade et al (2011) provide empirical evidence that default process and recovery

process are indeed highly correlated by applying US nonfinancial corPorate bond

to an econometric extension of the economic model introduced bY PYkhtin (2003)'

The second gap in the literature is performance comparisons among the

different approaches to PD and LGD forecasting' Besides the most recent

of Qi and Zhao (2011 ), one exception is Bastos (2010), who compares simple

least squ ares (OLS) estimation procedures of LGD with a nonparametnc

tree approach on the basl s of root mean squared errors (RMSEs) and reladve

enors (RAEs). Nevertheles s, the authors ofboth papers use data solely from

obligations, as do their predecessors from this strand of literature (see, for

Bellotti and Crook (2007) and Caselli et al (2008))'

This paper addresses these weaknesses by comparing predictions derived

model by Bade et al (2011) with a quick and dirty mean prediction' a

model and a model incorporating a perfect correlation between default

process as proposedbY Rösch and Scheule (2009).Following Bastos

by calculating RMSEs and RAEs for the recovery rate estimates of

FIGURE 1 Default rates and r
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Default rates and recovery rates of nonfinancial bond issues 1982-2009'
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In addition, we apply these measures to the portfolio level: namely, the difference

between portfolio default rate and PD as well as between portfolio loss rate and

the paper.

2 THEORETICAL FRAMEWORK

2.1 The general default and recovery process specificat¡on

Generally, we assume that the default process of a single borrower or bond issuer i in

timeperiodt(i:I,...,Nr,t:1,.'.,T)isdrivenbyanormallydistributedasset
valuereturntr/¡lasintroducedbyMerton(|914),Adefaulteventoccursiftheasset
value return, specified bY:

V¡, : þo + þ'xI + ZX Q.r)

crosses a threshold, generally assumed to be zero' x[: (x{,r'"''x!r*)t are K

observable and deterministic firm-speciflc, industry-specifrc or macroeconomic lisk

factors that influence the asset value return. þ : $t, "', þx)' are the sensitivities

g predictions derived from the
ean prediction, a simple OLS
between default and recovery
,wing Basros (2010) we do rhis
estimates of defaulted bonds.

/olume S/Number 2, Summer 2011 Research PaPer www.journalof riskmodelvalidation.com



-

28 B.Bade et al

with respect ro these factors and Bsis a constant. ZI is an idiosyncratic independent

and identically clistributed N - (0, 1) random variable driving the return of borrower

i's assets in time Period r.

Following Bade et at (2011) we specify the recovery process by:

Yit : To i y'x{, + opu Z!, + o | - (pu)'Z{, (2.2)

where I¡¡ is the logarithm of the recovery rate and is thus interpretable as (potential)

return on the debt amount outstanding' x{, : (xdv, "',x1,Ð' are I deterministic

observableriskfactorsdrivingtherecovery,|:(yt,"',yt)' representtheloadings

of these factors, and Y distributed

N - (0, 1) and ø is 1) and (2'2)'

the parameter pu is s well as the

conditional correlation between the asset return and the log-recovery process given

the observable covariates.

Besides the possible correlation of the default process and the fecovery process

introduced in the model presented above, the second feature we would like to introduce

is that, in general, the recovery rate of a debt obligation is only observable in the case of

default. In order to account for this fact, Bierens (2007) derives a maximum likelihood

procedure to simultaneously estimate the parameters for such a statistical model firstly

introduced by Heckman (1g'7g).The log-likelihood for a single observation i in period

/ takes the following form:

.Cit: Q-d¡,) ln@(Éo + þ'xX) * d¡tIn(l-A(þo+ þ'xX))

' Q(Y¡' - (Yo + Y'x{'\lo)
--r ulr lLL

o0-A(Bs+þ'xY,))

*d¡,tn(,-rl D e3)

@ (.) specifies the density function and @ (') the cumulative distribution function of the

standard normal distribution. d¡¡ indicates whether the observed obligation defaults

(d¡, : 1) or not (di, : 0). Thus, all parameters may be estimated without the

knowledge of values for V¡¡. Equation (2.3) is then maximized over n, observadons

per period and 7 periods

the observable risk factors,
the observed log-recovedes
the next page). The assumpl
tion of the parameters unde
to:

lfl"o''-(l-d¡¡ )lnøQ

The parameters of fffobì, are
likelihood (see, for example, (

and Hamerle et al (2003)):

Tnt

Due to the independence of thr
eters of {'r"r"o'"', need not ne
convenience, a simple OLS re

The second possible rest¡ictj
processes are perfectly positivr
as p - y /o.In other words, br
ables and each variable has the
the default barrier translates int
distribution equals a truncated ¡

the next page).

. The logJikelihood for a sing
Iog-likelihood of a Tobit model

{þbi¡ - e _ dï:ot1hø(!

note that many other tr.ansf<
(see, for. example, Dermine ar

resul ts al'e comparable to the unre
derivation of such a likelihoc

and recover.ies, see Rösch an<

n':Ll"c'it Q4)

t:l i:l

2.2 Model assumpt¡ons and consequences

For the general framework presented above

ular interest. The first one is the assumption
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observable risk factors, both processes are uncorrelated,ie, pu 0. In this case

observed log-recoveries are normally distributed (see the dark bars in Figure 2 on

nextPage)' The assumption of uncorrelated error terms allows a separate estima-

of the Parameters underlying both processes in the model, since l¡¡ simplifies

, uncofr
Lit = (1 - d'¡)ln @(þo + þ' ,X) + d¡¡ \n(r - a(þo + þ'xy))

,probil{it

I d¡tln Q(0¡,-(ro+Y'x Y Dlo) (2.s)
o

I - lpu¡z7r ç2.2)
to:

; thus interpretable as (potential)

,..., r{,")' are Z deterministic

, . . ., yL), represent the loadings
rdent and identically distributed
e Z'!l is parr of (2.1) and (2.2),
'm-specific er¡ors as well as the
the log-recovery process given

ocess and the recovery process
:ature we would like to introduce
is only observable in the case of
) derives a maximum likelihood
¡r such a statistical model firstly
: a single observation i in period

?o + þ'x'!))

+fgr B'"íll1 
(2.3)'u), I )

:ive distribution function of the
: observed obligation defaults
nay be estimated without the
rximized oyal n¡ observations

(2.4)

tve assumptions are of partic_
ional on given realizations of

r;io""t

The parameters of fffobi' are estimated by a standard probit procedure via maximum

líkelihood (see, for example, Gordy and Heitfield (2000); Gordy and Heitfield (2002);

and Hamerle et aI (2003)):

Tnt
(plobu - t|Jf;"b', (2.6)

t:1 i:l

Due to the independence of the recovery process fi'om the default plocess' the param-

eters of l]',"o'"" need not necessarily be estimated via maximum likelihood. For

convenience, a simple OLS regression of the observed log-recoveries may be run.l

The second possible restrictive assumption to the model is that default and recovery

processes are perfectly positively correlated, ie, pu - 1, and that þo : yolo as well

as þ - y lo.In other words, both processes are driven by the same explanatory vari-

ables and each variable has the same standardized exposure in both processes. Thus,

the default barrier translates into a cutoffpoint for the observed log-recoveries. Their

distribution equals a truncated normal distribution (see the lighter bars in Figure 2 on

the next page).

The log-likelihood for a single observation under this restriction simplifies to the

log-likelihood of a Tobit model:2

rlo,, : (r - d;"0,,) ^-(*#) * r*o', ntffv" - O') v'-nø
(2.7)

lplease note that many other transformations of the recovery rates, such as logit or probit, are

possible (see, for example, Dermine and de Carvalho (2006) ol Bastos (2010)), but in order to ensure

that results are comparable to the unrestricted model we focus on the logarithmic tlansformation'

2 For the derivation of such a likelihood, see Bierens (2004). For an empirical application for bond

defaults and recoveries, see Rösch and Scheule (2009).
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FIGURE 2 Distributions of observable log-recoveries for a sample portfolio of 100000

obligors and differently correlated error terms.
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ELqeneral=orl -@o+¡
L

_ exp(yo + )

,ørl -
L

ERGDS

Y],1 
,n: paramerers derived undobtain EL by:

-5.0 -4.2 -3.4 -2.6 -1.8
ln(RR)

-1 .0 -0.2 0.6

This figure presents distributions ot log-recoveries for defaulted obligors in a sample porttolio of 100000 obligors

underdiflerent assumptions concerning the correlat¡on between default and recovery process.The underlying param'

eters of the simulation for unconelated error terms (dark bars), ie, pu : o' are p6: 1 6449 (which conesponds to

a pD of bolo), yo : -2.3551and o = 1. Thê undorlying parameters of the simulation for perfectly correlated eror

teÍms(lightbars),ie,pu:l,areþo:'1.6449(whichcorrespondstoaPDol ïf:Q,ye:2.46735ando:15.

Since the default barrier is generally assumed to be zero, the truncation of the log-

recoveries is made at zero too. Nevertheless, real data may contain recovery rates

greater than 1, ie,.log-recoveries greater than 0. These observations should be

asnondefaults,suchthatdlobtt ¡ d¡¡inthesecases.Themaximumlikelihoodfuncdon

is:
(

o
=@ loiyt Y

Tnt
¿robic _ II¿,To', note that in the Tobit case r

PDþui'

II4ETHODOLO(

It and recovery dal
sarnple underl ylng the en

and is the same as tl

t:l i:l

2.3 Calculation of risk measures

In order to predict the risk of a debt obligation, the parameters derived bY the

presented above are only of secondary interest. The primary risk measures of

tance are the PD, the EL and the recovery rate in the case where such an

defaults (expected recovery given default (ERGD)). Generally, these three

linked by:

ERGD¡¡ :1-EL¡t
PD¡r

A

I ri.tll
, IÉ.I

ü I III
I ¡!! fi I--.ll
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Since we assume an asset value process for the default event, the PD is given as

¡e probability that V¡¡ falls below zero (given the observable covariates). Under the

îorrîali|Y assumption, we obtain:

PD¡¿: l-øGo+ þ'xX) (2.10)

For EL and ERGD, respectively, the assumptions concerning the link between

default and recovery process have to be considered' In the general case the parameter

esdmates of (2.4) are used to calculate the expected loss by:

YolY'

-1 .0 -0.2

ELll""'uI : p, - ffo + þ'*X),- U
,P

U

0.6

- exp()ro + y'x{, + lo')

'*'l- $o + þ'*X) - o'u '-ro-tJ'x{' - "' '"1 Q'rt)

ezl.,., .frepresents the distribution function of the bivariate normal distribution. For

the more restrictive case of uncorrelated error terms it is most convenient to calculate

the expected recovery given default first and the expected loss afterward by applying

the parameter estimates of (2.6) to the PD and rearrangíng Q.9).If the parameters

ofthe recovery process with log-recoveries as a dependent variable are estimated by

simple OLS, ERGD is calculated bY:

ERGDP¡S : exp(/o + Y'x{, + 0'5) Q'12)

with the parameters derived under the assumptions of the Tobit approach in (2.7) we

obtain EL by:

a sample portfolio ol 100000 obligors
ecovery process.The underlying param-

are þo : 1.6449 (which corresponds to

simulation for perfectly correlated error
I ol 5o/o), yo:2.46735 and o : 1.5.

ro, the truncation of the log-

may contain recovery l'ates

bservations should be treated

naximum likelihood function ) - "*n,ro 
+ y' xl, + *æ)Q|*ty:)Ellbit : p To Í Ytx

Y

o

(2.8) Please note that in the Tobit case the PD is computed as

PDlbit : p ( (2.r4)

leters derived by the methods

nary risk measures of impor-

rse where such an obligation

nerally, these three ratios are

(2.e)

3 DATA AND METHODOLOGY OFTHE PERFORMANCE

COMPARISON

3.1 Default and recovery data

The data sample underlying the empirical analysis is provided by Moody's credit

rating agency and is the same as the one used by Bade et aI (2011). The data set

'olume 5/Number 2, Summer 2011 Research Paper www.journalof riskmodelvalidation.com
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TABLE 1 Number of observations, default rate and mean recovery'

Rating Nob.

Percentage
of all

observations

78.120
8.134

10.729
3.018

100.000

IG

Ba

B

c
Tota

146582
15262
20 132

5 662

1 87 638

51

87

530

991

1 659

3.074
5,244

31.947

59.735

100.000

0.035

0.570
2.633

17.503

0.884

46.823
48.607

39.890

34.836

37.541

Percentage
of all

default
N¿"r observations DR RRGD6

the data set, we include rat
shift as explanatory variabl,

In order to account for tht
in Figure I on page 27 , we ir.
variable in the study.

Since all explanatory varii
quantities when predicting I

3.2 Modelvalidation fr
In the empirical study we c
projection of future defaults

o Bank 1 simply estimat
probably the mosr conv
predicting future defau

o Bank 2 follows the res
the probit approach of
industry-specific and n
marginal effect of each t

regard to LGD forecasts
arithm ofthe recovery ri

o Bank 3 uses the Tobit ap
the historical data.

o Bank 4 uses the general
simultaneously.

In detail, the model validatior
five steps, which are repeate(

o Step 1: we select 90Vo of
70Vo of the data as out_of.

containstheannualratingsofregularUSbondissues'aswellasdefaultdatesand
recovery rates given ¿efaott. Moãdy's records a default event if interest or principal

payments are missed or delayed, Chapter 11 or Chapter 7 bankruptcy is filed or a

distressed exchange, such as areduction in a financial obligation, occurs' The recovery

rate is equal to the price of a defaulted bond measured thirty days after a default event

in relation to the face value of the bond'

Table I summarizes important descriptive statistics for the data set, which consists

of 187 638 observations får regular US bond issues of nonfinancial institutions from

1gg2 to 2009. coincident with a change in Moody's rating methodology in 1982 and

the role of ratings in the subsequent analysis, earlier observations are excluded from

this empirical studY'

During the observation period, a total of 1659 defaults occurred, which yields

a default rate (DR) of o.8847o.The mean recovery rate for all defaulted bonds is

This table rePorts descriPtive statistics on defaults and recoveries ol nonfinancial bonds from 1 982 to 2009'The data

set provided bY l\/oody's is sPlit uP into four rating categor¡es: ¡nvestment grade (lG)' which conlains all observatlons

w¡th a Moody's ratlng higher than Ba; those with a rating of Bai a rating of B; and a rating of C, which contains all

observations with a Moody's rating lower than B. N"u' is the number of observations' N¿"r is the number ol defaults.

DR (delault rate) is the ratio of the number of defaults to the number oî observations in each rat¡ng grade. RRGDø

is the mean recovery rate of thê defaulted bonds in each rating grade. The recovery rate is the ratio of the Price of

defaulted debt obligations thirty days after the occurrence of a default event to Par value'

37 .54I7o; the median recovery tate is 327o

Table 1 also shows the descriptive statistics per rating category: all bond

with a rating higher than Ba are aggregated to an investment grade (IG) rating'

bond issues with a rating lower than B are aggregated to rating C. This c

addresses the limited number of default events in the subcategories. The table

that, as one may expect' the default rate increases from rating IG to C. The

recovery rate decreases from rating IG to C, excePt for grades Ba (48.60'17ù and

(46.823Vo), which maY be due to the small number of defaults, and hence the

number of recovery events in both grades

Since the rating grade as well as the rating shift in the Year Prior to the o

rating status (rating¡, - rating;,-t) are statistically and economicallY significan[

The Journal of Risk Model Validation Volume S/Number 2, Sumnøt Paper
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the data set, we include rating dummies as well as an ordinal variable for the rating
shift as explanatory variables in the empirical study.3

In order to account for the time series variation of default and recovery rates shown
in Figure I on page 2'7 , we include the lagged change of GpDI as a further explanatory
variable in the study.

Since all explanatory variables are lagged by one year, they can be treated as known
quantities when predicting pD, EL and ERGD.

3.2 Model val¡dat¡on framework

In the empirical study we compare four banks with competing approaches to the
projection offuture defaults and losses:

e Bank 1 simply estimates pD, EL and ERGD by historical averages, which is
probably the most convenient but most likely also the least accurate method for. predicting future default or recovery rates.

o Bank 2 follows the restrictive approach of (2.5), ie, it estimates the pD with
the probit approach of (2.6), which allows an incorporation of firm-specific,
industry-specific and macroeconomic covariates and an explanation of the
marginal effect of each considered variable on the likelihood of a default. With
regard to LGD forecasts, Bank2 uses an oLS regression with the natural log_
arithm ofthe recovery rate of defaulted bonds as dependent variable.

o Bank 3 uses the Tobit approach of (2.i) to obtain the relevant parameters from
the historical data.

o Bank 4 uses the general Heckman approach of (2.3) to forecast pD and LGD
simultaneously.

In detail, the model validation framework for our performance comparison consists
of five steps, which are repeated 10 000 times in order to exclude sample effects:

. step 1: we select 90vo of the data as a random sample and treat the remaining
l)Vo of the data as out-of-sample.

Research Paper www.journalof riskmodelvalidation.com
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TABLE 2 Results for RMSE on the recovery rate level

(a)RMSEHfampre

. Step 4; on the sin¡
and compare the rj : 7,. ..,n!.r, ir

Specification Bank 1 Bank 2 Bank 3 Bank 4

0.28623
(0.00060)

0.28623
(0.0005e)

0.28623
(0.00060)

0.28623
(0.00060)

0.27280
(0.00130)

0.27281
(0.00130)

0.27231
(0,00133)

0.27224
(0.00134)

0.26855
(0.00126)

0.26821
(0.00123)

0.26864
(0.00127)

0.26833
(0.00126)

0.26632
(0.00134)

0.26592
(0.00133)

0.26553
(0.00137)

0.26520
(0.00138)

RMSEpp

2

3

4

and RAE

RAE¡1I

RMSE measures the
measures the accurac
use the arithmedc me
the corresponding rat;

. Step 5: on the portfoli
in both subsamples to

(b) RMSEåu;-or-samPle

Specification Bank 1 Bank2 Bank 3 Bank 4

2

3

4

0.28633
(0.01386)

0.28631
(0.013e4)

0.28629
(0.01406)

0.28630
(0.01413)

0.27380
(0.01 1e5)

0.27402
(0.01 152)

0.27373
(0.o1202)

0.27388
(0.01218)

0.26842
(0,01 167)

0.26808
(0.01 141)

0.26851
(0.01 171)

0.26823
(0.01 167)

0.26665
(0.01258)

0.26636
(o.01241)

0.26617
(0.01281)

0.26598
(0.0127e)

F

RMSE is calcu¡ated by (9.1). Standard deviations are reported in parentheses.

o step 2: withthe in-sample data we estimate the relevant parameters of the mod-
els underlying the banks'prediction techniques. For each model, we investigate
four different specif,cations containing the following explanatory variables.

- Specification l: ratings.

- Speciflcation 2: ratings and lagged GpDI change.

- Specification 3: ratings and rating shift.

- Specification 4: ratings, raring shift and lagged GpDI change.

. step 3: these parameters are incorporated to estimate pD, ERGD andF,Lfor

and:

E]

4 RESULTS

1 Single borrower level
2 on the facing page showspecificati

on. On average, thr
mean of observec

as well as out_of_samp

servation of the in-sample data set as well as for the out-of-sarnple arithmeticeach ob

data set.
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o Step 4: on the single borrower level we follow the approach by Bastos (2010)

and compare the realized recovery rates of the defaulted bonds RR;r, where

j : 7, . . . , rl'Î , in each data subset with theil estimates via RMSE:

lnk 3 Bank 4 T -f f n1''

RMSERR: L'1"' I f rnVr - ERGDr.oa"t;z (3.1)( )16855

)0126)

26821

)0123)

¿6864
)0127)

26833
101 26)

o.26632
(0.00134)

0,26592
(0.00133)

0.26553
(0.00137)

0.26520
(0.001s8)

t:7 t:r j :r

and RAE:

RAEzuì:
\-r \-'rl-t:l /' i i', l**r, - ERGDï"d"r 

I

DT:rL;i-',rlRR7, - ERGD;';'P'" 
I

RMSE measures the accuracy of the estimates in absolute terms while RAE

measures the accuracy relative to a benchmark estimator. For convenience we

use the arithmetic mean of the tealized recovery rales calculated by Bank I for

the corresponding rating grade of each observation as a simple predictor.

o Step 5: on the portfolio level we aggtegate the PDs and ELs of the borrowers

in both subsamples to portfolio PDs and ELs by:

100 (3.2)

ank 3 Bank 4

26842
01 1 67)

26808
01141)

26851
01171)

26823
01 1 67)

0.26665
(0.01258)

0.26636
(0.01241)

0.26617
(0.01 281)

0.26598
(0.0127e)

T

t:1

-lTnl
PDPF

ELPF

Dn, IIto"

T

)

(3.3)

(3.4)

and:
-tT nt

¡:1i:1

t:I i :l
elevant parameters of the mod-

For each model, we investigate

rwing explanatorY variables.

change.

rgged GPDI change.

;timate PD, ERGD and EL for

well as for the out-of-samPle

Since we only get one value per risk measure and portfolio that is compared with the

realizedportfolio default rate and portfolio loss rate, respectively, we have to calculate

RMSE and RAE over the 10 000 iterations of this random sampling procedure. We

do this for the out-of-sample portfolio.

4 RESULTS

4.1 Single borrower level

Table 2 on the facing page shows the RMSEs in-sample and out-of-sample by bank

and specif,cation. On average, the least accurate predictive power is reached by using

the arithmetic mean of observed recovery rates (Bank l) as a forecast for ERGD

in-sample as well as out-of-sample. Despite the highest average RMSE, the standard

Dn, Iltt',
t:l
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TABLE 3 Results for RAE on the recovery rate level

(a) nAe'flfampre

Specification Bank 1 Bank2 Bank 3 Bank 4

TABLE 4 Robustness check rr

Specification B

0.;

(o.l

0.1

(0.(

o.2
(0.c

0.2
(0.0

Specification Bal

2

3

4

100

100

100

100

99.067
(0.417)

99.1 21

(0.413)

98.367
(0.418)

98.376
(0.420)

97.275
(0.433)

97.121
(0.424)

96.856
(0.437)

96.841
(0.437)

95.026
(0.5e0)

94.897
(0.571)

94.271
(0.605)

94.240
(0.621)

2

3

4

(b) RAEåü-oËsamPle

Specification Bank 1 Bank 2 Bank 3 Bank 4

100

100

100

100
(6.523) (5.61 1)

parentheses.

most insecure method

Using a simPle OLS regres sion and calculating ERGDs on the basis of the

sion results yields improved results compared with Bank 1's approach' The

are reduced on average and for the out-of-sample data in standard deviation' too'

more elaborate the model specification, the lower the average RMSE[i4amele

sample, adding GPDI to the regression model, ie, switching from Specification

or from 3 to 4, reduces the predictive accuracy. With the excePtion of switching

Specification I to 2 for the out-of-sample data, the standard deviation of the

increases with the number of variables taken into account in both subsamPles'

Volume S/Number 2' Sumne(

1 99.657
(7.272)

99.785
(7.142)

99.114
(7.236)

99.214
(7.385)

97.477
(6.525)

97.322
(6.3ee)

97.070
(6.451)

97.065

95.323
(5.712)

95.217
(5.600)

94.654
(5.537)

94.664

o.2f.
(0.01

0.28
(0.01

0.28
(0.01,

0.281
(0.01{ _

1

2

3

4

2

3

4

RAE s ca cu ated by (3 2) Standard dev at ons are reported n
RMSE ¡s calculated by (3.1). Standard deviat

The Tobit procedure used bvI
compared with Banks 1 and2. Nev

contrast to Bank 2, the rncor?o
;RMSE decreases on ave

Heckman model implement,
The predictive powerrises I

The standard deviatir
Predictions in-sample and hi¡

deviation for the in-sample RMSEs of Ba

in each specification. In cÓntrast, the out

RMSEs is the highest. Thus, Bank 1 not o

future (ie, out-of-sample) recovery rates
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qABLE 4 Robustness check results for RMSE on the recovery rate level.

(a) RMSEHfampre

Specification Bank 1 Bank2 Bank 3 Bank 4

275
433)

121
424)

856
437)

.841

.437)

95.026
(o.5eo)

94.897
(0.571)

94.271
(0.605)

94.240
(0.621)

2

3

4

o.28625
(0.00066)

o.28625
(0.00065)

0.28625
(0.00066)

o.28625
(0.00066)

0.27267
(0.00145)

0,27251
(0.00144)

o.27167
(0.00145)

0.27152
(0.00145)

0.26810
(0.00143)

0.26761
(0.00142)

0.26700
(0.00145)

0.26674
(0.00143)

0.26618
(0.00151)

0.26596
(0.00151)

o.26482
(0.00152)

0.26487
(0.00153)

(b) RMSEåuJ 
of-sample

nk 3 Bank 4 Specification Bank 1 Bank 2 Bank 3 Bank 4

1 0.28638
(0.0157e)

0.28638
(0.01566)

0.28638
(0.01582)

o.28637
(0.01553)

0.27407
(0.01324)

0.27421
(0.0132e)

0.27335
(0.0135e)

0.27351
(0.01355)

0.26793
(0.01318)

0.26746
(0.01315)

0.26685
(0.0133e)

0.26658
(0.01328)

0.26649
(0.01400)

0,26639
(0.013e0)

0.26527
(0.01416)

0.26543
(0.01396)

.477

.525)

.322

.3ee)

.o70

.451)

.065

.523)

95.323
(5.712)

95.217
(5.600)

94.654
(5.537)

94.664
(5.61 1)

2

3

4

ls.

r is the lowest of all four banks

landard deviation of Bank 1's

ast accurate method to Predict
bonds on average, but also the

iDs on the basis of the regres-

rnk 1's approach. The RMSEs

in standard deviation, too. The

.verage RMSEIJ"Pt". out-of-
:hing from Specification 1 to 2

re exception of switching from

ndard deviation of the RMSEs

runt in both subsamples.

RIV1SE is calculated by (3.1). Standard deviations are reported in parentheses.

The Tobit procedure used by Bank 3 yields a further improvement of the results

compared with Banks 7 and,2. Nevertheless, some qualitative differences are apparent'

In contrast to Bank 2, the incorporation of GPDI yields more accurate recovery rate

forecasts; RMSE decreases on average as well as its standard deviation. On the other

hand, incorporating the rating shift increases RMSE as well as its standard deviation

and thus lowers the predictive power of the Tobit model for recoveryrates. Unusually,

the average nfr4Se["t''r-'amPle ', lower than the average RMSEIi]a'PI" for each model

specif,cation.

The Heckman model implemented by Bank 4 yields the best results for the average

RMSE, The predictive power rises by adding more explanatory variables to the model

specification. The standard deviation of RMSE, though, is higher than for the other

banks'predictions in-sample and higher than Bank 2's predictions out-of-sample. Due

Volume 5/Number 2, Summer 201 '1 Research Paper www.jou rnalof riskmodelvalidat¡on.com
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TABLE 5 Robustness check results for RAE on the recovery rate level.

Specification Bank 1 Bank 2 Bank 3 Bank 4

TABLE 6 Results for RMSE

Specification

Specification

In order to check whether r

that have a missing valrc (62
the study. Table 4 on page 3

this robustness check for RM
unchanged. In absolute termr
for Bank I rises on average,
three banks. Relative to Banl
for the whole data set, as Tab

4.2 Portfolio level
The results of the performanr
in Table 6.4 The probit appro
Yield almost identical RMSEs
Tobit approach yields the worr
sPecifi cations. Specifi cation 4
between Bank 2 and Bank 4

a Note that the por.tfolio loss l.ate m
considered 

.in rhis paper. This woulr
to captul'e the comovement of defa
¡nodels.

(a) RAE[Älampre

2

3

100

100

100

100

98.641
(0.470)

98,575
(0.46e)

97.864
(0.474)

97.826
(0.473)

96.450
(o.4eo)

96.225
(0.4e4)

95.648
(0.4e4)

95.576
(0.500)

94.778
(0.617)

94.611
(0.612)

93.879
(0.606)

93.984
(0.618)

1

2

3

4

4

(b) RAEåü or-sample
1

2

3
4Specification Bank 1 Bank 2 Bank 3 Bank 4

2

100

100

100

100

99.440
(8.342)

99.483
(8.381)

98.778
(8.516)

98.830
(8.407)

96.700
(7.253)

96.485
(7.310)

95.916
(7.365)

95.838
(7.zeo)

95.121
(6.517)

94.989
(6.615)

94.264
(6.573)

94.389
(6.577)

3

4

RAE is calculated by (3.2). Standard deviations are reported in parentheses.

to the computational complexity of the likelihood function, too little recovery data in

the sample might be an explanation for a higher number of outliers for the recovery

rate estimates compared with the other models. Since such outliers have a higher

loading in a quadratic measure like RMSE than for a measure based on the absolute

value like RAE, the distribution of RMSE itself is more sensitive to these. Thus, a

higher standard deviation of RMSEs, which itself is the square root of a quadratic

measure, is likely to be caused by this connection.

The results for nenfij"Pi' and RAE¡ot-ot-'o'pl" presented in Table 3 on page 36

broadly confirm the results above. Relative to the results of Bank 1, the Heckman

model performs best, followed by the Tobit approach and the OLS approach, which

only performs a little better than the historical average. It is notable that in-sample

the standard deviation of the RAEs increases with decreasing average RAE, while

out-of-sample the result is the opposite.

The Journal of Risk Model Validation Volume S/Number 2, Summer 2011 Research paper
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Results for RMSE and RAE of the portfolio default rate'

(a) RMSE¡¡

Specification Bank 1 Bank 2 Bank 3 Bank 4

0.000669
0.000675
0,000677
0.000676

(b) RAEep

Specification Bank 1 Bank2 Bank 3 Bank 4

99.941

99.1 92

99.227
98.746

¡nk 3 Bank 4

).4s0
).4e0)

).225
).4e4)

t.648
).494)

i.576
).500)

94.778
(0.617)

94.611
(0.612)

93.879
(0.606)

93.984
(0.618)

0.000668
0.000679
0.000681

0.000684

0.000668

0.000675
0.000676
0.000675

0.000674
0.000680
0.000684

0.000683

1

2

3

4

lnk 3 Bank 4

1

2

3
4

100

100

100

100

100.000
99.256
99.099
98.668

100.591

99.837
100.207
99.652

ì.700
'.253)

ì.485
'.310)

;.916
'.365)

i.838
'.290)

95,1 21

(6.517)

94.989
(6.615)

94.264
(6.573)

94,389
(6.577)

In order to check whether the results are data specific, we excluded all observations

that have a missing value (62 990 observations) for rating¡, - rating¡r-1 and repeated

the study. Table 4 on page 37 andTable 5 on the facing page present the results of

this robustness check forRMSE and RAE. Qualitatively, the previous results remain

unchanged. In absolute terms the data reduction has contrary effects' while RMSE

for Bank I rises on average, it decreases for almost every specification of the other

three banks. Relative to Bank 1, each of the other three banks performs better than

for the whole data set, as Table 5 on the facing page shows'

4.2 Portfolio level

The results of the performance analysis for the portfolio default rate are presented

in Table 6.4 The probit approach of Bank2 and the Heckman approach of Bank 4

yield almost identical RlvISEs, which are lower than for Bank I and Bank 3' Bank 3's

Tobit approach yields the worst predictions of all four banks for the first three model

specitcations. Specification 4 shows a slightly higher RMSEon for Bank 1' The draw

between Bank 2 and Bank 4 is confirmed by RAEpB. For Specifications 1 and 2

es

:tion, too little recovery data in
ler of outliers for the recovery
:e such outliers have a higher

measure based on the absolute

ore sensitive to these. Thus, a

the square root of a quadratic

:sented in Table 3 on page 36

;ults of Bank 1, the Heckman
and the OLS approach, which

;e. It is notable that in-sample
:creasing avelage RAE, while

a Note that

considered

to capture

models.

thepor.tfoliolossratemayalsobecompatedwiththevalue-at-riskoftheLGDmodels
inthispaper.Thiswouldrequireaccountingforanunobset.vablesyst'ematicliskfactor
the comovement of default and ,.cou"ry plocesses. Bade et aI (2011) introduce such
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TABLE 7 Results for RMSE and RAE of the portfolio loss rate.

(a) RMSE¡g

TABLE 8 Robustness che

Specification

Specification

Specification

Specification B

CONCLUSION

work in the literature on
suggesting a joint mo

quantiúes and the challe
hany previous contributio

Specification Bank 1 Bank 2 Bank 3 Bank 4

1

2

3

4

0,000462

0.000466

0.000463

0.000470

0.000616

0.000618

0.000626

0.000629

0.000550

0.000554

0.000557

0.000560

0.000463

0.000466

0.000465

0.000469

1

2

3

4

(b) RAErn

Specification Bank 1 Bank 2 Bank 3 Bank 4

1

2

3

4

1

2

3

4

100
'100

100

100

136.607

135.682

137.819

137.341

120.479

120.010

121.082

120.604

100.912

99.967

100.214

1 00.1 97

the Heckman approach yields a lower value for RAE¡p and for the remaining two

specifications the probit approach is advantageous.

The results for the portfolio loss rate shown in Table 7 are much more widespread.

Here, the simple prediction by historical average is the best predictor for future port-

folio loss rates, followed closely by the Heckman approach of Bank 4. The Tobit

approach performs rather poorly with a20Eo worse loss estimation against the histor-

ical average, indicating that default and recovery process are not perfectly correlated,

The worst performance is reached by Bank 2, with more than 35Vo fewer acctffate

loss rate predictions. Thus, an estimation of two separate models for PD and LGD

followed by a calculation of the expected loss based on the parameters derived from .

both models is not suitable. It results in a high degree of misspecification, since the

possible correlation between the processes is ignored.

We provide the same robustness check on the portfolio level as on the single
rower level. Table 8 on the facing page shows the results. Due to the data

RMSE¡p and RMSE¡p deteriorate for all four banks. The draw between Bank2
Bank 4 concerning the default rate forecast switches to a marginal advantage for
probit approach. The portfolio loss rate predictions of Banks 24 relative þ Bank

improve compared with the primary results. Yet the Heckman approach yields

best predictions if more explanatory variables than the rating grade are taken

consideration.

1

2

3

4

0

0

0.

0.

1

2

3

4
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1ABLE I Robustness check results for RMSE and RAE on the portfolio level.

(a) RMSE¡¡

Specification Bank 1 Bank 2 Bank 3 Bank 4Bank 3 Bank 4

000550

000554

000557

000560

0.000463

0.000466

0.000465

0.000469

0.000874

0.000862

0.000875

0.000876

0.000874

0.000859

0.000868

0.000867

0.000878

0,000863

0.000874

0.000872

0.000874

0.000859

0.000870

0.000868

1

2

3

4

(b) RAEDR

Bank 3 Bank 4 Specification Bank 1 Bank 2 Bank 3 Bank 4

120.479

t20.010
t21.082
120.604

100.912

99.967

100,214

100.197

1 00 000

99 628

99 263

98 882

1 00 306

99 988

99 804

99 366

99 966

99 631

99374
98 975

1

2

3

4

100

100

100

100

(c) RMSE¡s

Epp and for the remaining two

e7 are much more widespread.

re best predictor for future port-

Lpproach of Bank 4. The Tobit

ss estimation against the histor-

ess are not perfectly correlated.

more than 35Vo fewer accurate

,arate models for PD and LGD

cn the parameters derived from

e of misspecification, since the

Folio level as on the single bor-

ults. Due to the data reduction,

The draw between Bank2 and

to a marginal advantage for the

f Banks 24 relative to Bank 1

Heckman approach yields the

the rating grade are taken into

Specification Bank 1 Bank 2 Bank 3 Bank 4

1

2

3

4

0.000595

0.000587

0.000600

0.000591

0.000777

0.000766

0.000782
0.000773

0.000664

0.000652

0.000666

0.000658

0.000599

0.000586

0.000595

0.000587

(d) RAELR

Specification Bank 1 Bank 2 Bank 3 Bank 4

'l

2

3

4

100

100

100

100

1 31 485

131 982

132489
133427

110730
110707

111 229

11 1 760

100292
99 698

99 334

99252

5 CONCLUSION

Various work in the literature on default rates and recovery rates, as well as recent con-
tributions suggesting a joint modeling of both variables, shows the high complexity
of these quantities and the challenge involved in obtaining an accurate measurement.

While many previous contributions focused on the qualitative and quantitative drivers
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of both variables, this paper compares the predictive performance of several modeling

approaches. RMSEs and RAEs are calculated for four banks, with each bank using a

different approach to forecast future defaults and losses. In order to check their con-

tribution to the predictive power of each bank's approach, four different combinations

of explanatory variables are investigated.

The results show that a disjunct consideration of default and recovery ignoring the

high correlation between both quantities yields not only biased parameter estimates,

but also a worse predictive power for future losses than the general approach applied

by Bade et al (2071). Especially on the portfolio loss level, the relative inaccuracy is

severe.

While the portfolio default rate estimates may not be considered as significantly

differing among the four banks, the portfolio loss rate and the recovery rate of a single

borrower are predicted best with the general model allowing default and recovery to be

conelated. Nevertheless, the quick and dirty solution also yields a relatively accurate

measure of the future portfolio loss rate.

Thus, accounting for the high correlation of default and recovery rates highlighted

during past economic downturns - most recently by the global financial crisis - is

a necessary condition for a suitable credit risk model. This paper provides further

evidence that the model suggested by Pykhtin (2003) and adopted by Bade et al

(2011) is a suitable model fulfilling this requirement.
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