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The global financial crisis highlighted the fact that default and recovery rates
of multiple borrowers generally deteriorate jointly during economic downturns.
The vast majority of the literature, as well as many industry credit-portfolio risk
models, ignore this and analyze default probabilities and recoveries in the event
of default separately. As a result, the models project losses that are too low in eco-
nomic downturns such as the recent financial crisis. Nevertheless, alternatives
that incorporate the dependence between probabilities of default and recovery
rates have been proposed. This paper is the first of its kind to assess the per-
formance of these structurally different approaches. Four banks using different
estimation procedures are compared. We use root mean square errors and relative
absolute errors to measure the predictive accuracy of each procedure. The results
show that models accounting for the correlation of default and recovery do indeed
perform better than models ignoring it.

1 INTRODUCTION

C.alculating an accurate measurement of the credit risk underlying defaultable obliga-

tions such as loans or bonds is probably one of the most challenging tasks involved in
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the risk management of a financial institution. The trade-off between complying with
the Basel capital requirements and the opportunity costs of tying up too much capital
makes this task even more challenging. Appropriate models for the probability of a
default event (PD), the exposure at the time of default (EAD) and the loss given a
default event (LGD) have to be defined and calibrated by empirical data. In particular,
the test of modeling PD and LGD deals with a high level of uncertainty.

Looking at the theoretical and empirical realization of this task in theory as well as
in practice, several gaps are identifiable. First of all, there is a wide range of literature
on analyzing the drivers of either PD (see, for example, Leland (1994); Jarrow and
Turnbull (1995); Longstaff and Schwartz (1995); Madan and Unal (1995); Leland
and Toft (1996); Jarrow et al (1997); Duffie and Singleton (1999); Shumway (2001);
McNeil and Wendin (2007); and Duffie et al (2007)) or LGD (see, for example, Carey
(1998); Citron et al (2003); Dermine and de Carvalho (2006); Acharya et al (2007);
Altman (2009); Qi and Yang (2009); Grunert and Weber (2009); and Calabrese and
Zenga (2010)). Many industry credit-portfolio risk models are also based on isolated
modules for default probabilities and recoveries in the event of default. In contrast,
approaches to joint modeling and estimation are scarce (exceptions are, for example,
Pykhtin (2003); Rosch and Scheule (2005); Kupiec (2008); Bruche and Gonzélez-
Aguado (2010); and Rosch and Scheule (2010)), although empirical data shows that
default and recovery rates jointly deteriorate during economic downturns. Figure 1 on
the facing page highlights this stylized fact for the recession years 1990 and 1991 (the
time of the Persian Gulf War), 2001 and 2002 (the period following the September
11, 2001 terrorist attacks and the general downturn in the US technology industry) as

well as 2008 and 2009 (the global financial crisis).
Bade et al (2011) provide empirical evidence that default process and recovery

to an econometric extension of the economic model introduced by Pykhtin (2003).
The second gap in the literature is performance comparisons among the severdl

different approaches to PD and LGD forecasting. Besides the most recent contribution

of Qi and Zhao (2011), one exception is Bastos (2010), who compares simpl

i

process are indeed highly correlated by applying US nonfinancial corporate bond data™ "}

eordinary |

least squares (OLS) estimation procedures of LGD with a nonparametric rcgressiﬂff |
tree approach on the basis of root mean squared errors (RMSEs) and relative absoluté =
errors (RAEs). Nevertheless, the authors of both papers use data solely from defauild.!l' :
obligations, as do their predecessors from this strand of literature (see, for exampl®
Bellotti and Crook (2007) and Caselli et al (2003)).

This paper addresses these weaknesses by comparing predictions derived f
model by Bade et al (2011) with a quick and dirty mean prediction, 2 simplé
model and a model incorporating a perfect correlation between default and Fe"o‘_'r
process as proposed by Rosch and Scheule (2009). Following Bastos (2010) we dog
by calculating RMSEs and RAE:s for the recovery rate estimates of defaulted bas

rom '
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1 Default rates and recovery rates of nonfinancial bond issues 1982-2009.
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This figure shows that default and recovery rates vary over time and are negatively correlated. The default rate is the
ratio of defautted bond issues to total bond lssues per year. The recovery rate is the ratio of the price of defaulted
debt obligations thirty days after the occurience aof a default event to the par value. Source: Moody's. For a more

detalled description of the data, see Section 3. .

In addition, we apply these measures to the portfolio level: namely, the difference
between portfolio default rate and PD as well as between portfolio loss rate and
expected loss (EL).

The paper proceeds as follows. Section 2 briefly introduces the models used, includ-
ing their estimation and the calculation procedures of the required risk measures based
on the derived parameter estimates. In Section 3 we describe the empirical data and the
framework of our analysis. The results are presented in Section 4. Section 5 concludes

the paper.

2 THEORETICAL FRAMEWORK

2.1 The general default and recovery process specification

Generally, we assume that the default process of a single borrower or bond issuer i in
time period ¢ (i = 1,..., N;,t =1,...,T)isdriven by a normally distributed asset
value return Vj, as introduced by Merton (1974). A default event occurs if the asset

value return, specified by:

Vie = Bo+ B'x), + 21, 2.1)

crosses a threshold, generally assumed to be zero. X/ = (e x)g) are K
observable and deterministic firm-specific, industry-specific or macroeconomic risk

factors that influence the asset value return. 8 = (B1, ..., Bk)’ are the sensitivities
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with respect to these factors and By is a constant. Z i‘; is an idiosyncratic independent
and identically distributed N ~ (0, 1) random variable driving the return of borrower

i’s assets in time period £.
Following Bade et al (2011) we specify the recovery process by:

Y = yo + ¥'x5 +0pU Z) + aJ1 - (V)2 Z];

where Y;; is the logarithm of the recovery rate and is thus interpretable as (potential)
return on the debt amount outstanding. xi}; e (xthl, . ,xil; L)’ are L deterministic
observable risk factors driving the recovery, y = (1, - -, yL)' represent the loadings
of these factors, and yg is a constant. Z}: is independent and identically distributed
N ~ (0,1) and o is a constant parameter. Yet, since Zf‘; is part of (2.1) and (2.2),
the parameter pU is the correlation between both firm-specific errors as well as the
conditional correlation between the asset return and the log-recovery process given
the observable covariates.

Besides the possible correlation of the default process and the recovery process
introduced in the model presented above, the second feature we would like tointroduce
is that, in general, the recovery rate of a debt obligation is only observable in the case of
default. In order to account for this fact, Bierens (2007) derives a maximum likelihood
procedure to simultaneously estimate the parameters for such a statistical model firstly
introduced by Heckman (1979). The log-likelihood for a single observation i in period

t takes the following form:
Lie = (1= die) In ®(Bo + B'x}7) + dis In(1 = D(Bo + B'xi1)
$((ie = (Yo + ¥'x}))/0)
o(1— ®(Bo + B'x}})
+mﬂn0_¢[@ﬁmxwrwm+ywmy+wo+ﬁﬁ:D 03
1- (oY)

¢ (+) specifies the density function and @ (-) the cumulative distribution function of the
standard normal distribution. d;; indicates whether the observed obligation defaults
(diy = 1) or not (d;y = 0). Thus, all parameters may be estimated without the
knowledge of values for V;,. Equation (2.3) is then maximized over n, observations

per period and T periods:

(2.2)

+ ditIn

T ny
24)

2.2 Model assumptions and consequences

For the general framework presented above two restrictive assumptions are of partics

ular interest. The first one is the assumption that, conditional on given realizations ©

2011
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A observable risk factors, both processes are uncorrelated, ie, pU = 0. In this case
the observed log-recoveries are normally distributed (see the dark bars in Figure 2 on
ihe next page). The assumption of uncorrelated error terms allows a separate estima-

ion of the parameters underlying both processes in the model, since £ simplifies

to:
£ = (1= dig) In @(Bo + B'xly) + dig In(1 = @(Bo + B'x))
.,C?;‘)bi[
- 'Y
+din ¢ (i (yo: Y'xi))/9) 2.5)
ncrec;/ery

it

The parameters of £§tr°bi[ are estimated by a standard probit procedure via maximum
likelihood (see, for example, Gordy and Heitfield (2000); Gordy and Heitfield (2002);
and Hamerle et al (2003)):

T ny
probit __ probit
£ = E L,

t=1i=1

(2.6)

Due to the independence of the recovery process from the default process, the param-
eters of oClr-jcovery need not necessarily be estimated via maximum likelihood. For
convenience, a simple OLS regression of the observed log-recoveries may be run.!

The second possible restrictive assumption to the model is that default and recovery
processes are perfectly positively correlated, ie, pY =1, and that B = yo/0 as well
as B = y/o. In other words, both processes are driven by the same explanatory vari-
ables and each variable has the same standardized exposure in both processes. Thus,
the default barrier translates into a cutoff point for the observed log-recoveries. Their
distribution equals a truncated normal distribution (see the lighter bars in Figure 2 on
the next page).

The log-likelihood for a single observation under this restriction simplifies to the

Jog-likelihood of a Tobit model:?
Y Y
L1 = (1 - 4T 1n & (w) 4 oy 200 = Qo £ ¥'x))/0)
o o
(2.7)

! Please note that many other transformations of the recovery rates, such as logit or probit, are
possible (see, for example, Dermine and de Carvalho (2006) or Bastos (2010)), butin order to ensure
that results are comparable to the unrestricted model we focus on the logarithmic transformation.
2 For the derivation of such a likelihood, see Bierens (2004). For an empirical application for bond
defaults and recoveries, see Résch and Scheule (2009).
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FIGURE 2 Distributions of observable log-recoveries for a sample portfolio of 100000
obligors and differently correlated error terms.
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This figure presents distributions of log-recoveries for defaulted obligors in a sample portfolio of 100000 obligors
under different assumptions concerning the correlation between default and recovery process. The underlying param-
eters of the simulation for uncorrelated error terms (dark bars), ie, oY = 0, are 8o = 1.6449 (which corresponds to
a PD of 5%), yo = —2.3551 and o = 1. The underlying parameters of the simulation for perfectly correlated error
terms (light bars), ie, p¥ = 1, are Bo = 1.6449 (which corresponds to a PD of 5%), yo = 2.46735 ando =15.

Since the default barrier is generally assumed to be zero, the truncation of the log-
recoveries is made at zero too. Nevertheless, real data may contain recovery rates
greater than 1, ie, log-recoveries greater than 0. These observations should be treated |
asnondefaults, such that d1°°" # d;; inthese cases. The maximum likelihood function
is:
i ne
Tobit __ Tobit
=3 0> L
t=1i=1
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2.3 Calculation of risk measures

In order to predict the risk of a debt obligation, the parameters derived by the mel
presented above are only of secondary interest. The primary risk measures of imP'O"_ .

tance are the PD, the EL and the recovery rate in the case where such an obligatiQiey
defaults (expected recovery given default (ERGD)). Generally, these three ratios an"
linked by:

EL;;
PD;; 2

ERGD;; =1 -
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Since we assume an asset value process for the default event, the PD is given as
the probability that V;, falls below zero (given the observable covariates). Under the
pormality assumption, we obtain:

PD;, = 1—®(Bo + B'x}; (2.10)

For EL and ERGD, respectively, the assumptions concerning the link between
default and recovery process have to be considered. In the general case the parameter
estimates of (2.4) are used to calculate the expected loss by:

+y'xY
EL%;:neral _ CDZI:— (ﬁO + ﬂ/in; ’_VO oy it ,/OU]

—exp(yo + ¥'x5 + 307
+y'x}t
< a] = (Bo + B'xf) —op”, T -

o, pU} (2.11)

@[, -, -] represents the distribution function of the bivariate normal distribution. For
the more restrictive case of uncorrelated error terms it is most convenient to calculate
the expected recovery given default first and the expected loss afterward by applying
the parameter estimates of (2.6) to the PD and rearranging (2.9). If the parameters
of the recovery process with log-recoveries as a dependent variable are estimated by
simple OLS, ERGD is calculated by:

ERGDO™S = exp(yo + ¥'x}; +0.5) (2.12)

With the parameters derived under the assumptions of the Tobit approach in (2.7) we
obtain EL by:

i o+ v'x]; Yo+ ¥'xk + o2
EL/" = cb(~ Yoo F ok ”) — exp(yo + ¥'x; + 0.502)q>(— = u

o o
(2.13)
Please note that in the Tobit case the PD is computed as:
g
PDf{ = @(_ yot Py "”) (2.14)
o

3 DATA AND METHODOLOGY OF THE PERFORMANCE
COMPARISON

3.1 Default and recovery data

The data sample underlying the empirical analysis is provided by Moody’s credit
rating agency and is the same as the one used by Bade et al (2011). The data set
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TABLE 1 Number of observations, default rate and mean recovery.

Percentage
Percentage of all
of all default
Rating Nobs observations Ngg oObservations DR RRGDyg
IG 146582 78.120 51 3.074 0.035 46.823
Ba 15262 8.134 87 5,244 0.570 48.607
B 20132 10.729 530 31.947 2.633 39.890
C 5662 3.018 991 59,735 17.503 34.836
Total 187638 100.000 1659 100.000 0.884  37.541

This table reports descriptive statistics on defaults and recoveries of nonfinancial bonds from 1982 to 2009. The data
set provided by Moody’s is split up into four rating categories: investment grade (IG), which contains all observatlons
with a Moody's rating higher than Ba; those with a rating of Ba; a rating of B; and a rating of C, which contains all
observations with a Moody's rating lower than B. N is the number of observations. N is the number of defaults.
DR (default rate) is the ratio of the number of defaults to the number of observations in each rating grade. RRGDg
is the mean recovery rate of the defaulted bonds in each rating grade. The recovery rate is the ratio of the price of

defaulted debt obligations thirty days after the occurrence of a default event to par value.

contains the annual ratings of regular US bond issues, as well as default dates and
recovery rates given default. Moody’s records a default event if interest or principal
payments are missed or delayed, Chapter 11 or Chapter 7 bankruptcy is filed or a
distressed exchange, such as areductionina financial obligation, occurs. The recovery
rate is equal to the price of a defaulted bond measured thirty days after a default event
in relation to the face value of the bond.

Table 1 summarizes important descriptive statistics for the data set, which consists
of 187 638 observations for regular US bond issues of nonfinancial institutions from
1982 to 2009. Coincident with a change in Moody’s rating methodology in 1982 and
the role of ratings in the subsequent analysis, earlier observations are excluded from

this empirical study.

During the observation period, a total o
a default rate (DR) of 0.884%. The mean recovery rate
37.541%; the median recovery rate is 32%.

Table 1 also shows the descriptive statistics per rating ¢
with a rating higher than Ba are aggregated to an investment grade
bond issues with a rating lower than B are aggregated to rating C. This categorizatiol
addresses the limited number of default events in the subcategories. The table shows
that, as one may expect, the default rate increases from rating IG to C. The meall
recovery rate decreases from rating IG to C, except for grades Ba (48.607 %) and G
(46.823%), which may be due to the small number of defaults, and hence the smé
number of recovery events in both grades.

Since the rating grade as well as the rating shift in the year prior to the obse
— rating;,_,) are statistically and economically significal

£ 1659 defaults occurred, which yields
for all defaulted bonds i

ategory: all bond issues
(IG) rating, and al

ved
. § t fﬂ_r-_-f
rating status (rating;, Y

i
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the data set, we include rating dummies as well as an ordinal variable for the rating
shift as explanatory variables in the empirical study.?

In order to account for the time series variation of default and recovery rates shown
in Figure 1 on page 27, we include the lagged chan ge of GPDI as a further explanatory
variable in the study.

Since all explanatory variables are lagged by one year, they can be treated as known
quantities when predicting PD, EL and ERGD.

3.2 Model validation framework

In the empirical study we compare four banks with competing approaches to the
projection of future defaults and losses:

Bank 1 simply estimates PD, EL and ERGD by historical averages, which is
probably the most convenient but most likely also the least accurate method for
predicting future default or recovery rates.

e Bank 2 follows the restrictive approach of (2.5), ie, it estimates the PD with
the probit approach of (2.6), which allows an incorporation of firm-specific,
industry-specific and macroeconomic covariates and an explanation of the
marginal effect of each considered variable on the likelihood of a default. With
regard to LGD forecasts, Bank 2 uses an OLS regression with the natural log-
arithm of the recovery rate of defaulted bonds as dependent variable.

* Bank 3 uses the Tobit approach of (2.7) to obtain the relevant parameters from
the historical data.

* Bank 4 uses the general Heckman approach of (2.3) to forecast PD and LGD
simultaneously.

In detail, the model validation framework for our performance comparison consists
of five steps, which are repeated 10 000 times in order to exclude sample effects:

® Step 1: we select 90% of the data as a random sample and treat the remaining
10% of the data as out-of-sample.

-_— .

Since, for bonds originated in the year of observation, ratng;, —rating;,_ yields a missing value

(MV), we include a dummy variable for these observations and set rating;, — rating;,_; = 0.
Through (his, we are able to keep these observations in the data set and differentiate between
Observations with rating;, — rating;,_; = 0 and rating;, — raling;,—; = MV,
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TABLE 2 Results for RMSE on the recovery rate level.

in-sample
(a) RMSERn

Specification Bank 1 Bank 2 Bank 3 Bank 4
1 0.28623 0.27280 0.26855 0.26632
(0.00060) (0.00130) (0.00126) (0.00134)
2 0.28623 0.27281 0.26821 0.26592
(0.00059) (0.00130) (0.00123) (0.00133)
3 0.28623 0.27231 0.26864 0.26553
(0.00060) (0.00133) (0.00127) (0.001 37)
4 0.28623 0.27224 0.26833 0.26520
(0.00060) (0.00134) (0.00126) (0.00138)
(b) l-_“vlsEout-of-sample
RR

Specification Bank 1 Bank 2 Bank 3 Bank 4
1 0.28633 0.27380 0.26842 0.26665
(0.01386) (0.01195) (0.01167) (0.01 258)

2 0.28631 0.27402 0.26808 0.26636
(0.01394) (0.01152) (0.01141) (0.01241)

3 0.28629 0.27373 0.26851 0.26617
(0.01406) (0.01202) (0.01171) (0.01281)

4 0.28630 0.27388 0.26823 0.26598
(0.01413) (0.01218) (0.01167) (0.01279)

RMSE is calculated by (3.1). Standard deviations are reported in parentheses.

e Step 2: with the in-sample data we estimate the relevant parameters of the mod-
els underlying the banks’ prediction techniques. For each model, we investigate
four different specifications containing the following explanatory variables.

~ Specification 1: ratings.
~ Specification 2: ratings and lagged GPDI change.
— Specification 3: ratings and rating shift.
~ Specification 4: ratings, rating shift and lagged GPDI change.
e Step 3: these parameters are incorporated to estimate PD, ERGD and EL fof

each observation of the in-sample data set as well as for the out-of-sample
data set.
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e Step 4: on the single borrower level we follow the approach by Bastos (2010)
and compare the realized recovery rates of the defaulted bonds RR;, where
Jj=1..., nfef, in each data subset with their estimates via RMSE:

-1 T n?ef

> (RR;; — BRGDj*)2 (3.1)

t=1j=1

'
RMSERR = ( Z I’l?ef>
=1

and RAE:
4 n?ef model
i1 275, IRR;; — ERGDY,

T der e 100 (3.2)
D=1 Zji—_l IRR; — ERGDJ.t |

RAEgr =

RMSE measures the accuracy of the estimates in absolute terms while RAE
measures the accuracy relative to a benchmark estimator. For convenience we
use the arithmetic mean of the realized recovery rates calculated by Bank 1 for
the corresponding rating grade of each observation as a simple predictor.

e Step 5: on the portfolio level we aggregate the PDs and ELs of the borrowers
in both subsamples to portfolio PDs and ELs by:

-1 T ny
PDPF_—-(Zn,) > PDi (3.3)

t=1 t=1i=1

and:

T -1 T nt
ELPF:(Zn,) > Y ELy (3:4)

=1 t=1i=1

Since we only get one value per risk measure and portfolio that is compared with the
realized portfolio default rate and portfolio loss rate, respectively, we have to calculate
RMSE and RAE over the 10000 iterations of this random sampling procedure. We
do this for the out-of-sample portfolio.

4 RESULTS

4.1 Single borrower level

Table 2 on the facing page shows the RMSEs in-sample and out-of-sample by bank
and specification. On average, the least accurate predictive power is reached by using
the arithmetic mean of observed recovery rates (Bank 1) as a forecast for ERGD
in-sample as well as out-of-sample. Despite the highest average RMSE, the standard

Research Paper www.journalofriskmodelvalidation.com

35



36 B.Badeetal

TABLE 3 Results for RAE on the recovery rate level,

(a) RAES2MP
Specification Bank 1 Bank2 Bank3 Bank4
1 100 99.067 97.275 95.026
- (0.417) (0.433) (0.590)
2 100 99.121 97.1214 94.897
— (0.413) (0.424) (0.571)
3 100 98.367 96.856 94.271
— (0.418) (0.437) (0.605)
4 100 98.376 96.841 94.240
— (0.420) (0.437) (0.621)
(b) RAEout-of-sample
RR
Specification Bank 1 Bank2 Bank3 Bank4
1 100 99.657 97.477 95.323
— (7.272) (6.525) (5.712)
2 100 99.785 97.322 95.217
— (7.142) (6.399) (5.600)
3 100 99.114 97.070 94.654
— (7.236) (6.451) (5.537)
4 100 99.214 97.065 94.664
- (7.385) (6.523) (5.611)

RAE is calculated by (3.2), Standard deviations are reported In parentheses.

deviation for the in-sample RMSEs of Bank 1 (0.0006) is the lowest of all four banks
in each specification. In contrast, the out-of-sample standard deviation of Bank 1's
RMSEs is the highest. Thus, Bank 1 not only has the least accurate method to predict
future (ie, out-of-sample) recovery rates for defaulted bonds on average, but also the
most insecure method.

Using a simple OLS regression and calculating ERGDs on the basis of the regres:
sion results yields improved results compared with Bank 1’s approach. The RMSES
are reduced on average and for the out-of-sample data in standard deviation, toO- Th:*'
more elaborate the model specification, the lower the average RMSEL"Pe, Out-0f%
sample, adding GPDI to the regression model, ie, switching from Specification 1 1° 2 |
or from 3 to 4, reduces the predictive accuracy. With the exception of switching from
Specification 1 to 2 for the out-of-sample data, the standard deviation 0
increases with the number of variables taken into account in both subsamples- 3

1l
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TABLE 4 Robustness check results for RMSE on the recovery rate level.

e

in-sample
(a) RMSESS

Specification Bank 1 Bank 2 Bank 3 Bank 4
1 0.28625 0.27267 0.26810 0.26618
(0.00066) (0.00145) (0.00143) (0.00151)
2 0.28625 0.27251 0.26761 0.26596
(0.00065) (0.00144) (0.00142) (0.00151)
3 0.28625 0.27167 0.26700 0.26482
(0.00066) (0.00145) (0.00145) (0.00152)
4 0.28625 0.27152 0.26674 0.26487
(0.00066) (0.00145) (0.00143) (0.00153)
(b) RMSE%Lg—of-sample

Specification Bank 1 Bank 2 Bank 3 Bank 4
1 0.28638 0.27407 0.26793 0.26649
(0.01579) (0.01324) (0.01318) (0.01400)

2 0.28638 0.27421 0.26746 0.26639
(0.01566) (0.01329) (0.01315) (0.01390)

3 0.28638 0.27335 0.26685 0.26527
(0.01582) (0.01359) (0.01339) (0.01416)

4 0.28637 0.27351 0.26658 0.26543
(0.01553) (0.01355) (0.01328) (0.01396)

RMSE is calculated by (3.1). Standard deviations are reported in parentheses.

The Tobit procedure used by Bank 3 yields a further improvement of the results
compared with Banks 1 and 2. Nevertheless, some qualitative differences are apparent.
In contrast to Bank 2, the incorporation of GPDI yields more accurate recovery rate
forecasts; RMSE decreases on average as well as its standard deviation. On the other
hand, incorporating the rating shift increases RMSE as well as its standard deviation
and thus lowers the predictive power of the Tobit model for recovery rates. Unusually,
the average RMSESa "™ is Jower than the average RMSE "™ for each model
specification.

The Heckman model implemented by Bank 4 yields the best results for the average
RMSE. The predictive power rises by adding more explanatory variables to the model
specification. The standard deviation of RMSE, though, is higher than for the other
banks’ predictions in-sample and higher than Bank 2’s predictions out-of-sample. Due
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TABLE 5 Robustness check results for RAE on the recovery rate level.

in-sample
(a) RAER

Bank 4

Bank 1

Specification Bank2 Bank3
1 100 98.641 96.450 94.778
—_ (0.470) (0.490) (0.617)
2 100 98.575 96.225 94.611
—_ (0.489) (0.494) (0.612)
3 100 97.864 95.648 93.879
— (0.474) (0.494) (0.606)
4 100 97.826 95.576 93.984
— (0.473) (0.500) {0.618)
out-of-sample
(b) RAERR
Specification Bank1 Bank2 Bank3 Bank 4
1 100 99.440 96.700 95.121
= (8.342) (7.253) (6.517)
2 100 99.483 96.485 94.989
— (8.381) (7.310) (6.615)
3 100 98.778 95.916 94.264
—_ (8.516) (7.365) (6.573)
4 100 98.830 95.838 94.389
— (8.407) (7.290) (6.577)

RAE is calculated by (3.2). Standard deviations are reported in parentheses.

to the computational complexity of the likelihood function, too little recovery data in
the sample might be an explanation for a higher number of outliers for the recovery
rate estimates compared with the other models. Since such outliers have a higher
loading in a quadratic measure like RMSE than for a measure based on the absolute
value like RAE, the distribution of RMSE itself is more sensitive to these. Thus, a
higher standard deviation of RMSEs, which itself is the square root of a quadratic
measure, is likely to be caused by this connection.

The results for RAEgs """ and RAEga °"*™" presented in Table 3 on page 36
broadly confirm the results above. Relative to the results of Bank 1, the Heckman
model performs best, followed by the Tobit approach and the OLS approach, which
only performs a little better than the historical average. It is notable that in-sample
the standard deviation of the RAEs increases with decreasing average RAE, while
out-of-sample the result is the opposite.

The Journal of Risk Model Validation Volume 5/Number 2, Summer 2011
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TABLE 6 Results for RMSE and RAE of the portfolio default rate.

e

(a) RMSEpR

Specification  Bank 1 Bank 2 Bank 3 Bank 4

0.000668 0.000668 0.000674 0.000669
0.000679 0.000675 0.000680 0.000675
0.000681 0.000676 0.000684 0.000677
0.000684 0.000675 0.000683 0.000676

H LN~

(b) RAEpR

Specification ~ Bank 1 Bank 2 Bank 3 Bank 4

100 100.000 100.591 99.941

1
2 100 99.256 99.837 99.192
3 100 99.099 100.207 99.227
4 100 98.668 99.652 98.746

In order to check whether the results are data specific, we excluded all observations
that have a missing value (62 990 observations) for rating;, — rating;,_, and repeated
the study. Table 4 on page 37 and Table 5 on the facing page present the results of
this robustness check for RMSE and RAE. Qualitatively, the previous results remain
unchanged. In absolute terms the data reduction has contrary effects. While RMSE
for Bank 1 rises on average, it decreases for almost every specification of the other
three banks. Relative to Bank 1, each of the other three banks performs better than

for the whole data set, as Table 5 on the facing page shows.

4.2 Portfolio level

The results of the performance analysis for the portfolio default rate are presented
in Table 6.4 The probit approach of Bank 2 and the Heckman approach of Bank 4
yield almost identical RMSEs, which are lower than for Bank 1 and Bank 3. Bank 3’s
Tobit approach yields the worst predictions of all four banks for the first three model
specifications. Specification 4 shows a slightly higher RMSEpg for Bank 1. The draw
between Bank 2 and Bank 4 is confirmed by RAEpg. For Specifications 1 and 2

4 Note that the portfolio loss rate may also be compared with the value-at-risk of the LGD models
considered in this paper. This would require accounting for an unobservable systematic risk factor
to capture the comovement of default and recovery processes. Bade et al (2011) introduce such

models.
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TABLE 7 Results for RMSE and RAE of the portfolio loss rate.

(a) RMSE R
Specification Bank 1 Bank 2 Bank 3 Bank 4
1 0.000462 0.000616 0.000550 0.000463
2 0.000466 0.000618 0.000554 0.000466
3 0.000463 0.000626 0.000557 0.000465
4 0.000470 0.000629 0.000560 0.000469
(b) RAE|R
Specification Bank 1 Bank 2 Bank 3 Bank 4
1 100 136.607 120.479 100.912
2 100 135.682 120.010 99.967
3 100 137.819 121.082 100.214
4 100 137.341 120.604 100.197

the Heckman approach yields a lower value for RAEpg and for the remaining two
specifications the probit approach is advantageous.

The results for the portfolio loss rate shown in Table 7 are much more widespread.
Here, the simple prediction by historical average is the best predictor for future port-
folio loss rates, followed closely by the Heckman approach of Bank 4. The Tobit
approach performs rather poorly with a 20% worse loss estimation against the histor-

ical average, indicating that default and recovery process are not perfectly correlated.

The worst performance is reached by Bank 2, with more than 35% fewer accurate
loss rate predictions. Thus, an estimation of two separate models for PD and LGD

followed by a calculation of the expected loss based on the parameters derived from 2

both models is not suitable. It results in a high degree of misspecification, since the
possible correlation between the processes is ignored.

We provide the same robustness check on the portfolio level as on the single bor-
rower level. Table 8 on the facing page shows the results. Due to the data reduction:
RMSEpgr and RMSE; r deteriorate for all four banks. The draw between Bank 2 and
Bank 4 concerning the default rate forecast switches to a marginal advantage for the
probit approach. The portfolio loss rate predictions of Banks 2-4 relative to Bank I
improve compared with the primary results. Yet the Heckman approach yields the
best predictions if more explanatory variables than the rating grade are taken ini¢
consideration.
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1SS rate. TABLE 8 Robustness check results for RMSE and RAE on the portfolio level.
(a) RMSEpR
Bank 3 Bank 4 Specification Bank 1 Bank 2 Bank 3 Bank 4
.000550 0.000463 1 0.000874 0.000874 0.000878 0.000874
.000554 0.000466 2 0.000862 0.000859 0.000863 0.000859
.000557 0.000465 3 0.000875 0.000868 0.000874 0.000870
.000560 0.000469 4 0.000876 0.000867 0.000872 0.000868
(b) RAEDR
Bank 3 Bank 4 Specification  Bank 1 Bank 2 Bank 3 Bank 4
120.479 100.912 1 100 100000 100306 99966
120.010 99.967 2 100 99628 99988 99631
121.082 100.214 3 100 99263" 99804 99374
120.604 100.197 4 100 98882 99 366 98975
(C) RMSELH

Epr and for the remaining t
. 1ng two Specification  Bank 1 Bank 2 Bank 3 Bank 4

0.000595 0.000777 0.000664 0.000599
0.000587 0.000766 0.000652 0.000586
0.000600 0.000782 0.000666 0.000595
0.000591 0.000773 0.000658 0.000587

e 7 are much more widespread.
ie best predictor for future port-
ipproach of Bank 4. The Tobit
ss estimation against the histor-
ess are not perfectly correlated.

more than 35% fewer accurate o (d) RAELR B -
arate models for PD and LGD Specification  Bank 1 Bank 2 Bank 3 Bank 4

on the parameters derived from

OO =

. . . . 1 100 131485 110730 100292
e of misspecification, since the 5 100 131982 110707 99698
’ 3 100 132489 111229 99334
folio level as on the single bor- 4 100 133427 111760 99252
ults. Due to the data reduction,
The dra\/Y between Bank 2 and 5 CONCLUSION
to a marginal advantage for the
f Banks 24 relative to Bank 1 Various work in the literature on default rates and recovery rates, as well as recent con-
Heckman approach yields the tributions suggesting a joint modeling of both variables, shows the high complexity
the rating grade are taken into of these quantities and the challenge involved in obtaining an accurate measurement.

While many previous contributions focused on the qualitative and quantitative drivers
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of both variables, this paper compares the predictive performance of several modeling
approaches. RMSEs and RAEs are calculated for four banks, with each bank using a
different approach to forecast future defaults and losses. In order to check their con-
tribution to the predictive power of each bank’s approach, four different combinations
of explanatory variables are investigated.

The results show that a disjunct consideration of default and recovery ignoring the
high correlation between both quantities yields not only biased parameter estimates,
but also a worse predictive power for future losses than the general approach applied
by Bade et al (2011). Especially on the portfolio loss level, the relative inaccuracy is
severe.

While the portfolio default rate estimates may not be considered as significantly
differing among the four banks, the portfolio loss rate and the recovery rate of a single
borrower are predicted best with the general model allowing default and recovery to be
correlated. Nevertheless, the quick and dirty solution also yields a relatively accurate
measure of the future portfolio loss rate.

Thus, accounting for the high correlation of default and recovery rates highlighted
during past economic downturns — most recently by the global financial crisis - is
a necessary condition for a suitable credit risk model. This paper provides further
evidence that the model suggested by Pykhtin (2003) and adopted by Bade et al
(2011) is a suitable model fulfilling this requirement.
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