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ABSTRACT 

There is potential to improve water quality monitoring programs by generating 

pollution data that better represents the aquatic ecosystem being monitored. By 

incorporating rapid and cost-effective bioanalytical methods into water quality 

monitoring programs, risk associated with unrepresentative data can be reduced by 

increasing the number of samples collected without incurring additional costs. The 

rapid and cost-effective toxin-identification method presented here is based on 

quantifying patterns of change in chlorophyll a fluorescence (fluorescence 

fingerprints) associated with a toxicants mode of action (MoA). Chlorophyll a 

fluorescence yield is influenced by environmental factors and can be used to identify 

stress caused by light, nutrient status and the presence of pollutants. When the 

functional state of the photosynthetic apparatus changes, the yield of fluorescence 

emission also changes, generating a chlorophyll a fluorescence response that has 

previously been thought to be unique based on a toxicants mode of action. 

The toxin-identification method was developed as a bioanalytical system based on the 

chlorophyll a fluorescence responses of a microalgae (Dunaliella tertiolecta) to 

herbicide and nutrient impacts, measured using the Imaging-PAM fluorometer. The 

analysis of the fluorescence response was the novel method; a holistic approach was 

employed. Unlike previous approaches which measured one fluorescence parameter 

for toxicant identification, the method presented here assessed the temporal unity of 

change in energy dissipation, which was found to be unique depending on a 

chemical ' s mode of action (i.e. its physico-chemical properties and toxicokinetic 

relationship with the organism). The method was tested for two different uses: (1) as 

a non-specific biosensor able to identify herbicides (and their potency) in a water 

sample of unknown constituents, and (2) a method specific to the identification and 

potency of nutrients in a water sample. 

Seven herbicides were examined totaling three different MoAs; PSII inhibitors 

(DCMU, Irgarol, Bromacil and Simazine), uncoupling of phosphorylation (Dinoseb 

and PCP) and creation of reactive oxygen species (paraquat). By first generating a 

database of reference response patterns, the response patterns of laboratory derived 

test samples were then measured and quantitatively compared to the reference 
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patterns. The unknown or test sample was compared to reference toxicants using a 

mean-square fit (MSF) software program. The MSF program tells the user how well 

the fingerprint of the test sample fits to each of the fingerprints of the reference 

chemicals. The method showed 93% accuracy in correctly identifying six herbicides, 

with false negative identifications occurring for only two toxicants, simazine (8% of 

samples) and Dinoseb (27% of samples). 

Phosphate induced fluorescence transients were also assessed to demonstrate that the 

toxin-identification method was versatile in its ability to also be used as a selective 

biomarker. By culturing P-limited D. tertiolecta cells, a unique fluorescence response 

was recorded upon additions of P04
3

-. The NIFT (nutrient induced fluorescent 

transient) response was specific to Pol- additions compared to NH4
3+ and N02

-

additions. Quantification of the NIFT response showed high levels of precision and 

specificity for multiple fluorescence parameters. 

The toxin-identification method presented here is still in its preliminary stages and 

higher levels of validation are still necessary including testing environmental samples, 

and comparing results from the toxin-identification method to results from chemical 

analysis. However, this thesis presents the foundational work of a unique and 

powerful bioanalytical tool with the potential to greatly improve water quality 

management practices. 
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