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Directing Human Attention with Pointing

Xun Wang1, Mary-Anne Williams1, Peter Gärdenfors2, Jonathan Vitale1,
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Abstract— Pointing is a typical means of directing a human’s
attention to a specific object or event. Robot pointing behaviours
that direct the attention of humans are critical for human-robot
interaction, communication and collaboration. In this paper,
we describe an experiment undertaken to investigate human
comprehension of a humanoid robot’s pointing behaviour. We
programmed a NAO robot to point to markers on a large screen
and asked untrained human subjects to identify the target of
the robots pointing gesture. We found that humans are able
to identify robot pointing gestures. Human subjects achieved
higher levels of comprehension when the robot pointed at
objects closer to the gesturing arm and when they stood behind
the robot. In addition, we found that subjects performance
improved with each assessment task. These new results can be
used to guide the design of effective robot pointing behaviours
that enable more effective robot to human communication and
improve human-robot collaborative performance.

I. INTRODUCTION

Attention is typically understood to be the cognitive
process of selectively concentrating on a specific aspect
of perceptions, normally the most relevant aspect, while
ignoring other aspects at the same time. It is a critically
important cognitive activity in humans [1], [2], [3], [4] for
reacting to stimuli, achieving goals, problem solving, com-
municating and collaborating with others. Attention involves
the allocation of processing resources [5], [2]. Humans have
limited computational resources and must manage them
judiciously. Paying attention not only has a computational
cost, but it creates opportunity costs as well, since not
paying attention to the most important object/event can have
undesirable consequences, e.g. not paying attention to traffic
while crossing the road can be deadly.

The ability to direct attention is critical for problem
solving and the ability to direct other peoples attention plays
a crucial role in facilitating collaboration. People use eye
movement and gestures to direct the attention of others to
objects and events. Gestures such as pointing can be used to
control and influence another agents behaviour by directing
their attention. Young children can point, and apes can be
taught to point and often do so to signal to adults to give them
food that is out of reach [6], [7], [3]. Pointing can have many
meanings; it can be used to inform, request, identify, show
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something to share and indicate preferences [8]. Tomasello
[9], [10] argues that intention is a fundamental prerequisite
for pointing and for understanding pointing [11], [12], [13].

As robots increasingly interact and collaborate with hu-
mans, they will require skills that allow them to direct
peoples attention to important and relevant objects/events1.
Determining how and when to direct peoples attention is a
critically important human-robot interaction skill for robots.
A whimsical robot that distracts people from important
activities and/or the task at hand, will not be appreciated or,
worse, could be dangerous to interact with. Pointing can be
an efficient and effective tool for robots to direct peoples
attention so that they can work fluently and safely with
people.

This paper investigates how people comprehend a robot’s
pointing behaviours. It turns out that there are two widely ac-
cepted kinds of pointing behaviours: imperative and declara-
tive pointing behaviours. Imperative pointing is basic request
to give an object out of reach to the robot. Imperative point-
ing is sometimes viewed as an extension of power, as well
as a form of communication e.g. ”I want that”. Declarative
pointing, on the other hand, allows a robot to direct the atten-
tion of a human towards a specific object/event. Declarative
pointing is a complex behaviour because it requires a robot
to confirm that the human has comprehended their pointing
behaviour successfully, e.g. it is looking at the object/event
that the robot is trying to direct their attention towards and
in some cases achieve joint attention [17]. Joint attention has
been identified as fundamental to human relationships that
rely on the sharing of experience and knowledge [7] and
plays a critical role in collaboration.

We present a quantitative experiment in which people are
asked to determine the target of a robots pointing gesture.
It provides new evidence and insights that can be used to
design efficient and effective pointing gestures in robots.
Section 2 describes our human-robot interaction experiment.
The empirical results are presented in Section 3 and analysed
in Section 4. The final discussion, design guidelines and ideas
for future human-robot interaction experiments are given in
Section 5.

1Robots can comprehend human pointing by design[14]. Abidi et al.
[15] developed a system that responds to human pointing behaviours by
interpreting the angle of a human’s arm; whereas Rich et al. [16] used a
visual hand tracking system to interpret human pointing.



II. MEASURING HUMAN COMPREHENSION OF
POINTING

There is an important body of work studying the compre-
hension of gestures such as pointing in human-human inter-
actions [11], [2] and this work is critical to understanding
human comprehension of robot gestures. In human pointing
experiments, the comprehension criterion is typically mea-
sured by extending or pivoting a body part such as the hand
or head, towards an object/event of reference [2], [18], asking
subjects to identify the referenced object/event and then
measuring accuracy. Comprehension of pointing depends on
whether it is proximal or distal [19], [3]. Proximal pointing
occurs when the target is touched by the pointing device
(e.g. stick, finger) and, as such, presents little opportunity
for ambiguity. Distal pointing occurs when the target is
remotely situated in relation to the pointing device [19].
The comprehension of distal pointing can be measured by
the so-called detection accuracy that subjects exhibit when
they locate the target of a pointing gesture [20]. This spatial
location task requires a subject to visually discriminate and
identify the target of a pointing gesture [5]. It turns out
that detection accuracy is well known for eye gaze, but
Butterworth and Itakura [20] found detection accuracy to be
low for distal pointing gestures.

In a human-robot scenario, St. Clair, Mead and Mataric
[21] undertook an experiment to investigate the effect of
visual saliency in pointing. They used a humanoid robot mak-
ing deictic gestures in front of a subject. A transparent panel
was placed between the robot and the experiment participant.
The experimenters asked to the subjects to identify the point
on the transparent screen referenced by the robot pointing
in two scenarios: an empty panel (no salient objects), and
a panel with some randomly placed round marker (presence
of salient objects). They found that environmental saliency,
in this specific form of human-robot interaction, leads only
to minimal improvements on the detection of the target.

In contrast to the work of St. Clair, Mead and Mataric
[21], other studies have focused more on measuring the
human comprehension of robot pointing in open space.
Hato et al. [22] conducted an experimental investigation
into the deictic interactions that reference spacial regions.
They found that people use two kinds of pointing models
for referring to regions in the space: using the index finger
maintaining stable the arm in a direction, and using the
index finger reproducing a circle through the movement of
the arm in a circular way. The authors used the observed
human behaviour for the robot used in the experiment, in
order to let the robot refer to specific areas in an open
space. The results show that a robot with region-cognition,
namely a limited well known list of the possible regions in
the space, can express the referred region better than without
this region-cognition of the considered space. Furthermore,
they found that the dimension of the considered region has
an impact on the detection performance, namely a large size
region is recognised better than a small one. Williams et al.
[23] undertook an experiment using a PR2 robot in a static

pointing pose in a public building to study the way humans
interpret robot pointing. This experiment was designed to
test whether people interpret robot pointing in the same
way as they interpret people pointing reported in Wnuczko
and Kennedy [24]. They found that the majority of people
use the arm angle to determine the pointing target and that
the head angle of the PR2 robot plays a significant role in
influencing how people determine the target of a static PR2
robot pointing posture.

These previous experiments have established a number of
important aspects of human comprehension of robot point-
ing. In the following section we describe a new laboratory
based human-robot interaction experiment. This experiment
draws inspiration from the human-human interaction experi-
ment proposed by Bangerter [19] but we collect more precise
data using an iPad interface. Since Williams et al. [23]
found the elongated head shape of the PR2 influenced human
comprehension our experiment uses a NAO robot whose
head has a circular side profile rather than an elongated
rectangular side profile like the PR2 head. Furthermore,
contrary to Bangerters experiment using a single line of
targets, the visual stimuli are placed in a two-dimensional
grid introducing more complexity and realism to the task
[19].

III. THE HUMAN-ROBOT INTERACTION
EXPERIMENT

A. The Objective of the Experiment

The objective of the experiment is to investigate how
people interpret dynamic distal robot pointing behaviours for
the purpose of designing efficient and effective robot pointing
behaviours in human-robot interaction. The experiment used
a NAO robot that, starting from a neutral stance, dynamically
pointed towards a target randomly chosen from a grid of
12 possible targets. Each subject participated in 10 trials,
attempting to identify the target of the pointing gesture with
each trial.

B. The Robot Platform used in the Experiment

A NAO humanoid robot was used as the robot platform
in the experiment. The NAO is an inexpensive and pro-
grammable humanoid robotic platform that stands approxi-
mately 60cm tall (see Figure 1). It has 25 degrees of freedom
in total and four degrees of freedom in each arm. We used
the NAO RoboCup edition, meaning that it does not have
the ability to control individual fingers. We used Aldebaran’s
proprietary middleware, NAOqi, to develop a pointing system
that points towards targets at known positions in 3D space,
and then communicates gesture and timing information over
a wireless network to an iPad user interface.

C. The Experimental Hypotheses

The experiment was designed to test four hypotheses
regarding human comprehension of dynamic robot distal
pointing gestures using the method of measuring detection
accuracy of human subjects. The first hypothesis provides
an important baseline for human interpretation of dynamic



robot pointing gestures. We would like to establish that
pointer gesture can be an effective tool for directing people’s
attention.

H1: Humanoid robot pointing gestures can direct human’s
attention and humans can interpret the gesture without addi-
tional cues.

The second hypothesis concerns the best position for a
person to stand when trying to comprehend the target of
a robots pointing gesture. This hypothesis investigates the
importance of where a person trying to comprehend a robot
pointing gesture should stand relative to the robot. Testing
this hypothesis will inform the design of robot positioning
in robot pointing behaviours.

H2: Humans identify the robot target object more accu-
rately when standing on the same side of the robot as the
arm that the robot uses to point.

The third and fourth hypotheses focus on which arm is
more effective in pointing to different sides of the body
and testing them will inform which arm a robot should
use when directing human attention. The third hypothesis
tests comprehension accuracy and the fourth comprehension
speed. The third hypothesis is used to test if higher levels of
detection accuracy can be achieved when the robot uses the
arm on the same side as the target. The fourth hypothesis
is used to test if subjects can determine the target of robot
pointing gestures faster when the robot uses the arm on the
same side as the target.

H3: Humans find the robot target object more accurately
when it lies on the same side as the arm the robot uses to
point.

H4: Humans find the robot target object more quickly
when it lies on the same side as the arm the robot uses
to point.

With the fifth hypothesis, we seek to confirm our expecta-
tion that there is a familiarity effect: that observers improve
their comprehension of pointing gestures, even if the system
does not provide feedback on their accuracy.

H5: Human comprehension of robot pointing gestures
improves in less than 10 observations.

D. Experimental Design

The experiment was conducted over the course of a univer-
sity open day, in which prospective students, their families
and other interested members of the public were invited to
learn about the university’s course offerings and research.
As such, our experiment participants were drawn from a
broad cross-section of society but that would be biased
towards individuals and families interested in the university’s
research and offerings. That is, our sample population was
biased towards young adult age group. The participants were
indiscriminately recruited based on solely their willingness
to participate with the experiment.

In the experiment, 12 (3x4) green circles labeled with the
letters A to L were projected onto the wall (Fig.2). These
labeled green circles were shown in the same configuration
on an iPad, used as the input device for the human partici-
pants. The NAO robot was placed at a fixed position in front

of the screen. A human subject was instructed to stand in
one of three fixed positions (Left, Right or Behind) next to
the robot (see Fig.1). The subject was then briefed on the
procedure for the experiment and the operation of the iPad
interface.

The experiment started with the robot randomly selecting
and pointing at one of the green circles on the screen with
its right arm. The human subjects then identified the target
circle that the robot was pointing towards. The participants
were able to answer the question by tapping one of the
circles displayed on the iPad. If a participant could not
identify the target within the maximum allowed time period
of ten seconds, we interpret this at the subject unable to
identify the target. We provided audio and visual cues to
the participants to indicate the beginning and the ending of
answering session. The response time of the participant was
recorded (measured in seconds from the end of the visual cue
to the selection of a green circle on the screen of the iPad
by the subject). Once the answer was recorded, the robot
moved its arm to a rest position next to its leg, pointing
downwards. The above stated steps were repeated ten times
for each human subject.

At the end of the experiment we asked the participants
to answer a brief questionnaire about their gender and age
group. We considered five age groups: 5 to 15, 16 to 25, 26
to 35, 36 to 55 and above 55. As our interest was oriented
towards understanding the relationships between the robot
pointing behaviour and human ease of comprehension, we
asked the subjects if they had any free comments about the
difficulty found in the proposed task. Furthermore, we asked
for free comments about the perceived level of confidence
when determining the target of the robot pointing. The entire
experiment required about 5 to 10 minutes per participant.

Fig.1, shows the spatial configuration of the experiment.
This particular spatial setup is constrained by the physical
parameters of the room used for the experiment and the
angles that could be achieved by the robots arm since the
robot had to point towards all 12 targets projected on the
wall.

Fig. 2, shows the relative size and separation of the
graphical objects displayed on the projector screen. The robot
was pre-programed to randomly point at one of these marks
from its fixed position.

IV. EMPIRICAL RESULTS

In this section we report the experimental results for 36
untrained experiment subjects. The gender, age and location
relative to the robot of the 36 subjects was noted. There
were 21 male subjects and 15 female subjects across four
age groups: 5 subjects in the 5-15 years of age range; 26
subjects in 16-25 years: 2 subjects in 26-35: 3 subjects in
36-55 year range. Each subject was asked to stand in one of
three positions. The total number of subjects in each position
was: Left: 15; Behind: 13; Right: 8.

The detection accuracy was measured for each subject.
On average, the subjects scored 31% accuracy over ten trials
(three out of ten correct answers) with a standard deviation of



Fig. 1. The NAO robot was positioned at R. 2.23m from the screen on a
wall where the targets were projected. Human participants were placed to
the left, right and behind the robot (H), and asked to determine the target
of the pointing gesture.

Fig. 2. The configuration of the target objects that the robot directed human
subjects attention toward.

Fig. 3. The experimental set up: (a) NAO humanoid robot in a neutral
stance with subject holding iPad standing behind the robot, and (b) NAO
humanoid robot in pointing stance with subject holding iPad standing to the
left of the robot. (Photos by Pramod Parajuli).

1.5. Grouped by gender the accuracy was 32% for males and
30% for females: 30%. Grouped by age, the accuracy for 5-
15 year olds was 26%, for 16-25 years olds was 34%, for 26-
35 year olds was 15% and for 36-55 year olds the accuracy
was 33%. Grouped by location relative to the robot: the
accuracy was 32% for subjects placed to the left of the robot,
34% for subjects behind the robot, and 26% for subjects to
the right. The highest number of correct targets identified by
a subject was 6 out of 10 (3 out 36 subjects achieved this
level of success). Every subject made at least one correct
answer. Across all 360 pointing events, the subjects were
unable to determine any target on only 3 occasions. The
subjects detection accuracy of robot pointing towards the 12
green circle targets was measured during the experiment and
given in Table I, below.

TABLE I
SUBJECT DETECTION ACCURACY TASK FOR EACH TARGET.

A: 0.16 B: 0.25 C: 0.50 D: 0.90
E: 0.13 F: 0.10 G: 0.22 H: 0.44
I: 0.00 J: 0.04 K: 0.34 L: 0.55

The time taken for each subject during the detection
accuracy task was measured in seconds and recorded. The
overall average time to respond was 2.51s. Grouped by
gender: the average response time for males was 2.68s,
and for females was 2.72s. Grouped by age: the average
response time for subjects between 5-15 was 2.17s; for the
16-25 age group the average response time was 2.37s; for
the 26-35 age group the average response time was 2.51s;
for the 36-55 age group the average response time was
4.20s. Grouped by location relative to the robot: Left: 2.68s;
Behind: 2.72s; Right: 2.19s. The average time taken for the
detection accuracy task for each of the 12 green circle targets
was measured during the experiment and given in Table II,
below.

TABLE II
LENGTH OF TIME TAKEN BY SUBJECTS DURING THE DETECTION

ACCURACY TASK.

A: 2.60 B: 2.84 C: 2.30 D: 1.57
E: 2.70 F: 2.55 G: 3.10 H: 1.92
I: 2.41 J: 2.77 K: 3.16 L: 2.07

V. EXPERIMENT DATA ANALYSIS

The experimental results show that people can interpret
pointing gestures because 93% of all targets identified
by subjects during the experiment were deemed correct
or directly adjacent to the target (vertical, horizontal and
diagonally) and 31% of answers were precisely correct.
Less than 1% (3 out of 360 targets took more than 10
seconds to determine) of the robot pointing behaviours
were incomprehensible to the subjects. This provides strong
support for hypothesis H1 that humanoid robot pointing



can direct human’s attention and human can interpret the
pointing gesture, especially where the required gesturing
precision is similar to or greater than the degree separation
between adjacent circles used in the experiment. The less
than expected accuracy of the human interpretation is due
to the small physical size of the robot and the fact that our
RoboCup NAO does not have movable fingers and can only
point using its fists. Low accuracy has little impact on the
validity of H1 since accuracy was not tested for H1, only the
ability of subjects to comprehend a robot’s pointing gesture
when it raises its arm and extends in a direction.

For hypothesis H2, H3 and H5, the subjects pointing
interpretation accuracy was analysed using a statistically
based binomial mixed model and allowed for correlation
within each participant. For observation from participant we
model the probability of correct detection using the following
equation,

Prob(Correcti j) =
eXT

i j β+µ j

1+ eXT
i j β+µ j

, i = 1,2, ...,10, j = 1,2, ...,36

µ j ∼ N(0,σ2
U ), j = 1,2, ...,36.

The model is fit in R environment2 with the glmer func-
tion in the lme4 package using a model that incorporates
fixed effects gender, age, position, target, accuracy, ordering,
subjective self-evaluations and an individual effect factor. If
any estimated effect has a p-value between 0.1 and 0.05, we
say that the effect is marginally significant. If any estimated
effect has a p-value of less than 0.05, we say that the effect
is ”significant”.

Our major findings are as follows: (i) there were no
significant differences in gender in terms of interpretation
accuracy, (ii) accuracy rates for each subject increased as the
experiment went on (significant effect), thereby confirming
hypothesis H5, and (iii) the subject location with the best
detection accuracy was behind the robot; being right of robot
was worst and the difference is marginally significant. Thus,
we failed to confirm H3 and have weak evidence for the
converse (i.e. that a more distant observation position is more
effective for interpreting robot gestures.

We found significant evidence to support H2, that humans
identify the robot target object more accurately when stand-
ing on the same side of the robot as the arm that the robot
uses to point. In particular, the most easily identified target
was D located at the top right corner of the screen with a
success ratio of 0.9. The least identifiable target was I located
at the bottom left corner of the screen, no subject identified it
correctly. Subjects made more accurate interpretations when
the robot pointed to a target that is on the same side as its
pointing arm, i.e. as the robot used the right arm to point,
participants gained higher performance when identifying
targets on the right side of the screen. The targets in order
of easiest to correctly detect are: D,L,C,H,K,B,G,A,E,F,J,I.

2R is a statistical computing environment used for professional statistical
data analysis. See http://www.r-project.org.

TABLE III
TARGETS ARE NUMBERED IN INCREASING ORDER ACCORDING TO THE

DEGREE OF COMPREHENSION AS MEASURED BY ACCURACY.

8 6 3 1
9 10 7 4

12 11 5 2

This analysis shows that subjects exhibited higher levels
of interpretation accuracy for targets that lie on the same
side as the robots pointing arm. Interestingly, an additional
observation we made was that after adjusting for gender,
age, position, total questionnaire scores, time order and
target circle, the person-to-person variability is quite small.
That is, recognition accuracy tends not to be an individual
characteristic, but something that can be predicted from
demographic information of a participant.

To evaluate H4, that humans find the robot target object
more quickly when it lies on the same side as the arm the
robot uses to point, we constructed a linear mixed model
analogously to that used previously for H2, H3 and H5, that
also allowing correlations within each participant. That is,
for observation from participant we model the probability of
correct pointing interpretation by the following formula,

Timei j = N(XT
i j β +µ j,σ

2), i = 1,2, ...,10, j = 1,2, ...,36

µ j ∼ N(0,σ2
U ), j = 1,2, ...,36.

Again, this model is fit in R with the glmer function using
a model that incorporates fixed effects gender, age, position,
target, answer time, ordering, subjective self-evaluations and
an individual effect factor.

Major findings are as follows: (i) there were no significant
differences in gender for time taken to complete the inter-
pretation task, (ii) the 36-55 age group took the longest time
to answer, while the 5-15 age group took shortest time and
the difference was marginally significant, (iii) there was no
significant differences in response time for the three different
positions, (iv) for each subject, the time to respond shortened
with each successive detection task with an average 0.63
second reduction in response between the first and last
detection tasks. The targets in order of shortest response
time are: D,L,H,C,I,E,K,J,B,A,F,G. This order is presented
in Table IV, below, and is similar to that for interpretation
accuracy.

TABLE IV
TARGETS ARE NUMBERED IN INCREASING ORDER ACCORDING TO THE

TIME TAKEN TO COMPLETE THE DETECTION ACCURACY TASK.

10 9 4 1
6 11 12 3
5 8 7 2

The difference in recognition time between the targets on
the left and right hand side of the grid is significant, lending
support for H4. Interestingly, after adjusting for gender,



age, position, total questionnaire scores, target circle and
correctness of target, the person-to-person variability is quite
large; some people just take longer (or shorter) to answer!

VI. DISCUSSION

This paper presents the first quantitative experiment that
investigating whether a NAO robot can direct human’s
attention through dynamic-distal pointing behaviours, how
a human interpret the pointing behaviour and factors that
influence human interpretation. The experimental results
support our initial hypotheses, H1, H3, H4 and H5. The
experiment confirmed that NAO robot can direct human’s at-
tention through pointing and human can interpret the pointing
behaviours, since the human subjects were able to identify
the targets correctly or directly adjacent to the correct targets.
Only in 3 out of 360 trials, i.e. less than 1% human subjects
were unable to comprehend the robot pointing. However, the
average accuracy of identifying correct targets is still low. We
believe the small size and limited pointing capability of the
NAO robot are two main factors for this low accuracy. In
the next experiment, we plan to use a human size robot to
verify this hypothesis.

The experiment showed that humans can comprehend
robot pointing both more accurately and more quickly when
the robot uses the arm closest to the target. This result has
practical use in helping human to better understand humanoid
robot pointing. That is, robot pointing behaviours should be
designed to use the arm that lies on the same side of the
robot body as the target to help human comprehension of
robot pointing.

The experiment also revealed a familiarity effect: humans
tend to get better at recognising pointing gestures without any
feedback on their performance. This improvement in human
interpretation of robot pointing appear in very limited expo-
sure time to the robot. This means, humans can quickly self-
adapt to understand robot pointing and this provides further
evidences for robot pointing as a viable communication tool
for human-robot interaction.

Finally, the experiment did not find any support for H2.
Instead, our analysis shows that the most effective place to
stand when determining the pointing target of a robot is
behind the pointing arm. This discovery can be exploited in
robot pointing behaviour design and it has significant impact
in face-to-face human-robot interaction when humans and
robots are in close proximity and the robot is attempting to
direct a humans attention.

The experiment presented in this paper is our initial experi-
ment on understanding human’s comprehension of humanoid
robot pointing. Our data sample population was relatively
small and may be biased towards particular age groups. In the
future, we will conduct larger scale experiments with better
experimental controls. We will conduct geometric analysis
of the spatial relationship between human participants, robot
and markers and how this relationship may effect human
interpretation of robot pointing. We may use different visual
markers and introducing audio cues to study their effects.

Finally, we plan to carry out comparison studies on different
types of humanoid robots.
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