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Abstract—The use of relative attributes for semantic under-
standing of images and videos is a promising way to improve
communication between humans and machines. However, it is
extremely labor- and time-consuming to define multiple attributes
for each instance in large amount of data. One option is to
incorporate active learning, so that the informative samples
can be actively discovered and then labeled. However, most
existing active-learning methods select samples one at a time
(serial mode), and may therefore lose efficiency when learning
multiple attributes. In this paper, we propose a batch-mode
active-learning method, calledDiverse Expected Gradient Active
Learning (DEGAL). This method integrates an informativeness
analysis and a diversity analysis to form a diverse batch of
queries. Specifically, the informativeness analysis employs the
expected pairwise gradient length as a measure of informa-
tiveness, while the diversity analysis forces a constrainton the
proposeddiverse gradient angle. Since simultaneous optimization
of these two parts is intractable, we utilize a two-step procedure
to obtain the diverse batch of queries. A heuristic method is
also introduced to suppress imbalanced multi-class distributions.
Empirical evaluations of three different databases demonstrate
the effectiveness and efficiency of the proposed approach.

Index Terms—Batch Mode, Active Learning, Diverse Expected
Gradient, Relative Attributes.

I. I NTRODUCTION

Semantic understanding of scenes aims to narrow the gap
between what humans and computers understand by providing
the meanings of elements in text, speech, images, or videos
(e.g. ”the sky in the image is blue” and ”the boy’s hand in the
video is waving”) in a format that is understandable to humans.
From a practical perspective, semantic understanding is highly
relevant in systems that organize personal and professional
information, and for this reason the approach has received
much attention in the computer vision community. However,
several important research challenges still exist for various
vision tasks, including image/video classification, annotation,
and retrieval. Techniques to organize, annotate, and retrieve
digital media data are lagging behind the exponential growth
in the amount of that data, and some researchers believe that
perfecting semantic understanding is an urgent need in order
to gain access to the content of images and videos [1].

Previous research has mainly focused on building a semantic
vocabulary, i.e., embedding the semantic information intoa
visual vocabulary using either unsupervised or supervised
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methods. Of the unsupervised methods, the ’topic models’ pro-
vide an intuitive approach for researchers; this approach typ-
ically includesProbabilistic Latent Semantic Analysis (pLSA)
[2], [3], [4], Latent Dirichlet Allocation (LDA)[5], [6], and
Diffusion Maps (DM)[7]. These methods attempt to discover
the mixture distribution of hidden topics, each of which can
then be related to a meaningful concept, and a recent study
suggested the use of a randomized visual vocabulary for action
search [8]. In the supervised case, there have been attempts
to utilize local patch information or image/video annotation
to explore a visual vocabulary. For example, Vogel et al. [9]
constructed a vocabulary with explicit semantic meanings by
labeling certain semantic concepts (e.g.sky, rocks, sand) to
each local image patch. However, the applicability of this
approach is limited due to the large labeling cost when
allocating each patch. Ji et al. [10] proposed the use of the
Hidden Markov Random Field (HMRF)model to integrate
both local visual features and semantic labels to guide vo-
cabulary construction. In this study, the similarities between
different local visual features were extracted from 60,000
labeled Flickr images, while the semantic label correlations
were provided by WordNet. Similar to previous methods, this
approach still required a large number of manually provided
labels to produce a general vocabulary.

Rather than constructing a vocabulary, the recent literature
pays increasing attention to visual semantic attributes. Farhadi
et al. [11], Lampert et al. [12], and Kumar et al. [13] have
all proposed the use of a set of visual semantic attributes
to describe various objects and human faces. Due to their
robustness to visual variations, attributes have been applied to
different vision tasks, including classification [14], [15], recog-
nition [16], and retrieval [17]. These methods treat attributes
as binary values to indicate their existence. On the other
hand, relative attributes, as proposed by Parikh et al. [18],
are designed to provide a richer mode of communication and
detailed access with human supervision. Due to the intrinsic
properties of binary and relative attributes, it is intuitive that
they can either be user defined (from a professional human
perspective) or discovered from the data itself, in order to
complement human deficiencies [16], [19]. However, this also
means that each object or scene has many attributes that need
to be labeled manually. In addition, training a robust classifier
or recognizer for a real-world application requires thousands
of samples, and obtaining these samples and attributes is an
extremely time- and labor-consuming task.

Semantic understanding would therefore benefit from high-
volume semantic learning with restricted time and labor costs,
and progress in this area has been seen over the past two
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years. For instance, Parkash et al.’s [20] and Biswas et al.’s
[21] adopted an active learning framework to select the sample
(known as the ’query’ in the active learning field) that was
most uncertain to the attribute learner. Instead of simply
demanding the label for the image, the learner conveyed its
current belief about the image to the oracle and demanded
a response and explanation in return, the image classifiers
simultaneously benefited from this feedback process. However,
in each iteration of active learning, the learner only selected
the most uncertain query to be labeled, i.e., only one query was
chosen, and therefore many iterations were required to reach
stability. Rather than selecting the samples important to the
classification task, Xu et al. [22] studied the issue of deciding
which semantics (i.e., attributes) are pivotal. By defining
a data-drivenCategory-Attribute Matrix, they automatically
designed discriminative attributes in a principled way and
in doing so avoided the use of large-scale, but redundant,
attribute sets. Similarly, Choi et al. [23] proposed a novel
joint optimization framework in which the attribute learner,
category recognizer, and sample selector were simultaneously
optimized. To ensure discrimination, they learned all attributes
from the data in order to identify which unlabeled sample was
critical to the category boundaries and, in this way, both the
attribute learner and category recognizer were trained on a
relatively small set. As well as the attribute-related work, other
active learning methods have also been proposed to improve
image/video semantic tasks [24], [25], [26].

Incorporating the active learning framework to solve the
above problem is clearly effective. Active learning evaluates
the informativeness of unlabeled instances so that more infor-
mative instances are more likely to be queried [27]. However,
as in Parkash et al. [20], most active learning approaches
serially select queries, i.e., they are selected one at a time
[27]. The time required to induce a semantic model can
be slow or expensive, especially when multiple annotators
work on different labeling workstations in a network at the
same time, which is the case in attributes learning. Under
these conditions,batch-modeactive learning, which allows
the learner to select queries in groups, is more suitable for
serial labelling environments. By picking up several queries
during one iteration, batch-mode active learning results in less
iterations and faster convergence.

Here we aim to improve the training efficiency of a type
of semantics learning, namely the recently proposed relative
attributes method. We present a novel batch-mode active
learning approach calledDiverse Expected Gradient Active
Learning(DEGAL), which addresses the following two objec-
tives: to collect batches of the most informative queries, and
2) to enforce the selected queries to be diverse with respectto
each other in the training procedure. Our main contributions
include:
1) Inspired by [28] and [29], we use the expected pairwise
gradient length as the informativeness measure. The most
informative query should provide a large number of confusing
pairwise relationships and cause a large change on the model
parameters. To show that this is reasonable, we demonstrate
equivalence between this strategy and Tongs widely accepted
result [30].

2) We extend serial-mode active learning based on gradient
length to the batch-mode case. To measure the diversity of a
query set, theDiverse Gradient Angleis defined, based on the
expected gradient direction. By imposing a constraint on the
angular differences between queries in the set, we prove that
the satisfied queries can result in different model parameters
if they are separately added to the training set.
3) The proposed active learning method suffers from a multi-
class imbalance issue, which might result in poor performance.
We therefore design a heuristic method by introducing a
balance constraint to suppress the imbalanced multi-class
distributions.
We perform empirical evaluations on three datasets equipped
with relative attributes and demonstrate that our method per-
forms favorably compared to other batch-mode active learn-
ing and random-sampling baseline methods. Our approach is
similar to [31]; however, our study differs in that we handle
the diversity analysis in the gradient space, rather than ina
projected feature space characterized by a kernel.

The remainder of this paper is organized as follows. Section
II provides the background to the relative attributes model, as
well as a detailed analysis from an active learning perspective.
In Section III, we introduce our approach, followed by an
outline of the experimental results demonstrating the efficiency
of our strategy in Section IV. Finally, we summarize our
method and briefly discuss future research directions.

II. PRELIMINARY

The content of the relative attributes model is briefly re-
viewed in this section, before providing a detailed analysis of
the model that inspired our proposed algorithm.

A. Relative Attributes

Attribute-based vision tasks, such as image classification
and object recognition, are an embedded mapping that can be
decomposed as follows [32]:

H = L(S(·))

S : R
d → A

M (1)

L : A
M → L

where S is composed ofM individual attribute learners
{bm(x)}Mm=1, each learnerbm(x) maps a raw featurex ∈ R

d

to the correspondingm-th attributeam of A
M , L maps a

semantic attribute pointa ∈ A
M to a class labell ∈ L. Rd,

A
M , andL denote thed-dimensional real-value space, theM -

dimensional attribute space, and the label space, respectively.
The relative attributes model, which differs from the binary

attributes model, may provide a promising method to deeply
exploit human cognizance and build a wider information
bridge between humans and machines. This model encodes
each image with the strength of different attributes with respect
to other images, and can be modeled as follows [18].

Suppose a set of training imagesI are represented by raw
feature vectors{x ∈ R

d}1, and a set of attributes{a1, ..., aM}

1In the following, we denote the raw features asx
1

i , x2

i , x1

j , x2

j , where
the subscriptsi and j are the indexes of pairs inOm andSm respectively,
and the superscripts1 and2 reveal the relative order.
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Fig. 1. Ranking Direction. For a certain attribute, samples1, 2, 3, and 4 are
sorted in increasing order according to the strength of thatattribute. Under
SVM conditions,w is the optimal ranking direction on which the cumulative
margin between all adjacent samples are maximized.

are accordingly defined. Then, for each attributeam, two
kinds of image pair modes,Om and Sm, are constructed
by comparing the corresponding attribute in two images.
Om = {(x1

i ,x
2
i )|x

1
i ≻ x2

i } is the ordered image pair mode,
indicating that imagex1

i has a stronger strength on attribute
am than imagex2

i , while Sm = {(x1
j ,x

2
j )|x

1
j ∼ x2

j} is the
un-ordered image pair mode, denoting that imagex1

j has a
similar strength of attributeam as imagex2

j .
The goal is to learnM attribute ranking functions, each of

which is
rm(x) = wT

mx (2)

for m = 1, ...,M , such that most image pairs satisfy the
corresponding image pair modes, i.e.

∀(x1
i ,x

2
i ) ∈ Om : wT

mx1
i > wT

mx2
i

∀(x1
j ,x

2
j) ∈ Sm : wT

mx1
j = wT

mx2
j

wherewm ∈ R
d is the direction parameter and(·)T denote

the transposition. In other words, we aim to find the optimal
projected direction on which all training samples are ranked
in an accurate order in the feature space, as shown in Fig. 1.

To deal with the above NP-hard problem, its solution can
be approximated by introducing: (1) the non-negative slack
variablesδi andγj , and (2) a regularization term to maximize
the margin between the closest pair’s projection onwm. This
leads to the following optimization problem, namedRanking
SVM with Similarity(RankSVM-with-Sim):

minimize
wm

:
1

2
‖wm‖22 + C(

∑

i

δ2i +
∑

j

γ2j ), (3)

subject to: ∀(x1
i ,x

2
i ) ∈ Om : wT

mx1
i ≥ wT

mx2
i + 1− δi;

∀(x1
j ,x

2
j) ∈ Sm : |wT

mx1
j −wT

mx2
j | ≤ γj ;

∀ i, j : δi ≥ 0; γj ≥ 0,

whereC is a free parameter that allows a trade-off between
margin and training error. Rearranging the above constraints,
we can rewrite them as:

∀(x1
i ,x

2
i ) ∈ Om : wT

m(x1
i − x2

i ) ≥ 1− δi;

∀(x1
j ,x

2
j) ∈ Sm : |wT

mx1
j −wT

mx2
j | ≤ γj .

By handling the above optimization problem, we can acquire
M attribute ranking functions{rm(·)}Mm=1. To further induce
proper active learning for this model, certain properties should
be considered, as detailed in the next sub-section.

+ +

+

+

+

+

+

_
_

__

_

_

_

o
o

o
o

o

o

COE

mw

LSSVM

mw
RA

mw

Fig. 2. Decomposition of RankSVM-with-Sim. Symbol ”o” denotes the
transformed samples iñSm, while ”+” and ”-” indicate those inÕm.
Optimization on problem (5) results inwLSSVM

m , and problem (6) leads to
w

COE
m . Thus, the overall solutionwRA

m can be expressed as a combination
of wLSSVM

m andwCOE
m . Obviously, if the sample closest to the hyper-plane

(solid line) belongs tõSm, it has no optimization benefit for the current model
parameters. Samples that could result in a significant change in the direction
of wRA

m should be treated as the most informative and not necessarily close
to any plane.

B. Active Learning Analysis

Even though RankSVM-with-Sim is designed to find the
optimal direction in which each sample is assigned to a correct
order, it can be equivalent to a classification SVM on pairwise
difference vectors(x1

i − x2
i ) and(x1

j − x2
j ). For attributeam,

let us denotedm
i = (x1

i − x2
i ) ∈ Õm to be assigned with a

label ymi , whereymi = 1 if rm(x1
i ) > rm(x2

i ) andymi = −1
if rm(x1

i ) < rm(x2
i ), while dm

j = (x1
j − x2

j ) ∈ S̃m, which is
the difference between the un-ordered image pairs inSm. For
completeness, we define the labelymj = 0 for Sm.

Based on the above definition and transferring RankSVM-
with-Sim into an unconstrained scenario, we can get

minimize
wm

:

1

2
‖wm‖22 + C





TO
∑

i=1

max(0, 1− yiw
T
mdm

i )2 +

TS
∑

j=1

(wT
mdm

j )2





(4)

whereTO denotes the number of ordered pairs inÕm, andTS
is the number of un-ordered pairs iñSm. We can now make
an approximate decomposition of problem (4) into two parts,
namely usingleast-squares SVM(LS-SVM) and constrained
optimization on the ellipse (COE):

LS-SVM min
wm

1

2
‖wm‖22 + C

TO
∑

i=1

max(0, 1− yiw
T
mdm

i )2,

(5)

COE min
wm

TS
∑

j=1

(wT
mdm

j )2 s.t. ‖wm‖ ≥ ρ, (6)

whereρ is a positive scalar that constrains the minimum norm
of wm in COE. The above decomposition is possible because
the first two parts of (4) form the LS-SVM, while the third
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part of (4) becomes the COE. The constraint in (6) emerges
from LS-SVM in (5), and it is used to avoid the solution
of (6) to be all zeros. In other words, if we regardρ as
the norm of the solution of (5), the optimal solutionw∗

m

can be obtained by iteratively optimizing (5) and (6) until
converged. For convenience, we provide an illustration of this
in Fig. 2, where we assume the solutions of the two problems
arewLSSVM

m andwCOE
m , and the solution to problem (4) is

therefore a compromise.
Given this model, we need to find the most informative

queries (or the queries that the learner finds most confusing)
and add them into the training set. In the active learning
field, several strategies have been proposed for SVM and Rank
SVM. In Tong’s result [30] for binary SVM, the most informa-
tive query was the one closest to the classification hyperplane,
but this is not the case in a relative attributes scenario, since the
queries closest to the classification hyperplane belong toS̃m

and cannot significantly affect the optimization of the plane.
In Donmez et al.’s [29] and Settles et al.’s [28] methods, the
query with the largest gradient length once added into training
set under current model parameters was selected as the most
informative. Meanwhile, Parkash et al. [20] and Biswas et al.
[21] proposed selecting samples with the most entropy or the
largest entropy variation. However, the critical issue with these
methods is, as stated in Section I, that they are serial-mode.
In order to design a batch-mode strategy, our contribution
accounts for the informativeness, while efficiently computing
the diversity of different queries relative to the current model.

III. PROPOSEDAPPROACH

We next describe ourDiverse Expected Gradient Active
Learning (DEGAL)method, which improves on the serial-
mode approach presented in the previous section. A flowchart
of the proposed method is shown in Fig. 3. The theoretical
foundation of our batch-mode active learning method is based
on Settle et al. [28]. Given that the expected gradient length
is a measure of sample uncertainty, our goal is to assist the
attribute learner to actively find a batch of informative queries
that possess relatively large expected gradient length (not only
the largest one), and simultaneously maintain diversity from
each other.

A. Informativeness Analysis

In this section we incorporate the expected gradient length,
which measures the informativeness of each unlabeled in-
stance, into the model. This is feasible because the relative
attributes model can be optimized in the primal using the
gradient descent method [33]. Once a query is added into
the training set, it will create the greatest change in the
pairwise gradient length under the objective function. Here
is a mathematical explanation:

First, we need to impose a general constraint on the pairwise
differences, which is

∀(x1
i ,x

2
i ) ∈ Om : ‖x1

i − x2
i ‖ = 1;

∀(x1
j ,x

2
j) ∈ Sm : ‖x1

j − x2
j‖ = 1.

(7)

Then following equation 4, we define the objective function
as

minimize
wm

: ~wm
= λ‖wm‖22

+
∑

(x1

i
,x2

i
)∈Om

[1− yiw
T
m(x1

i − x2
i )]

2
+

+
∑

(x1

j
,x2

j
)∈Sm

(wT
m(x1

j − x2
j))

2, (8)

whereλ = 1/2C and [·]+ is the hinge loss function. If an
instancex is added into the training set with a certain rank
labely, the above function becomes

minimize
wm

: ~
new
wm

= λ‖wm‖22

+
∑

(x1

i
,x2

i
)∈Om

[1− yiw
T
m(x1

i − x2
i )]

2
+

+
∑

(x1

j
,x2

j
)∈Sm

(wT
m(x1

j − x2
j ))

2 +Q(wm,x),

(9)

where

Q(wm,x) =
∑

(xu,x)∈Om

[1− yuw
T
m(xu − x)]2+

+
∑

(xu,x)∈Sm

(wT
m(xu − x))2

encodes the total loss caused by the instancex and other
relevant instances.(xu,x) ∈ Om ((xu,x) ∈ Sm) means that
the instancexu has a different order (same order) tox.

Let ∇~wm
and ∇~

new
wm

be the gradient of the original
objective function (8) and the new objective function (9) with
respect to model parameterwm, respectively. In most cases,
the uniqueness of the SVM solution can be guaranteed [34].
So let us assume that the unique optimal solution of function
(8) is w∗. Equation∇~w∗

m
= 0 holds due to the optimality.

Then, the change of gradient induced by instancex is

φ(x,y) = ∇~
new
w∗

m
−∇~w∗

m

= ∇Q(w∗
m,x) (10)

= 2
∑

xu

g(xu,x, yu),

where

∀(xu,x) ∈ Om :

g(xu,x, yu) =











−yu(xu − x)[1− yuw
∗T
m (xu − x)],

if yuw∗T
m (xu − x) < 1

0, if yuw∗T
m (xu − x) ≥ 1

∀(xu,x) ∈ Sm : g(xu,x, yu) = (xu − x)[w∗T
m (xu − x)].

andy is a label vector, each dimension of which indicates the
relative order betweenx and the corresponding training sam-
ple. Now, according to [28], we can define the informativeness
of the instancex as the accumulated pairwise gradient lengths,
i.e.,

ψ(x,y) = 2
∑

xu

‖g(xu,x, yu)‖. (11)
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Fig. 3. A flowchart of the proposed method.

From definitions (10) and (11) above, we know thatφ(x,y)
is the direction of gradient descent afterx is added into
the training set. This will be used in the diversity analysis
in Section III-B. Furthermore, the informativenessψ(x,y)
reveals the uncertainty of the current model with respect to
x. The largerψ(x,y), the more confusingx will be to the
model.

However, one issue to consider when evaluating the infor-
mativeness of unlabeled instances is that an active learner
cannot know the true labely in advance. The expectations
of both φ(x,y) andψ(x,y) therefore need to be calculated
over the attribute learner’s current beliefP (y|x), that is

Φ(x) =
∑

y

P (y|x)φ(x,y), (12)

Ψ(x) =
∑

y

P (y|x)ψ(x,y). (13)

The beliefP (y|x) can be estimated using Platt’s method [35],
in which the posterior probabilityP (y|x) is regressed using a
sigmoid function. Then, the instance with the largest expected
informativeness is the optimal one to be added into the training
set. In fact,maxx Ψ(x) is equivalent to Tong’s result [30],
which is proven in Appendix A. In our setting, we select
a batch ofK queries,X∗ = {x}K , each of which has a
relatively large value ofΨ(x), i.e.,

X∗ = argmax
X⊆U∩|X|=K

∑

x∈X

Ψ(x) (14)

whereU is the unlabeled set.

B. Diversity Analysis

The query set selected in the above section captures a
large amount of information to be discovered by the current
model, which we refer to as query candidates. However, as
described in Section II-B, each query candidate may have
similar information to other candidates, and the effect of
adding one similar query into the training set will therefore
be the same as adding other similar queries. In this case, the

expanded training set will result in slow convergence to the
overall optimal solution; we therefore need to diversify the
query set. Different diversity measurements possess specific
properties and can result in different sets of query candidates.
Despite this, one particular case needs to be emphasized that
cannot be guaranteed: for any two queries in the query set, one
will still be selected as an informative sample if the other was
added into the training set and the model was updated. This is
because the data used in real applications always changes, and
the updated model cannot be predicted unless the label of the
added query is known. However, according to the definition of
informativeness in (13), the queries selected in each iteration
are always useful for updating the model.

The theory behind our approach is that the selected queries
can greatly change the model parameters if they are used for
training. When considering diversity, it might be expectedthat
different queries could lead the current model parameters in
different directions, as shown in Fig. 4. To realize this, we
propose thediverse gradient angle (DGA)to measure the
diversity of candidates in a query set, a detailed description of
which is given below.

Definition 1: Suppose that instancesxt and xk are two
candidates selected in the query set, and their associated
expected gradient changes areΦ(xt) andΦ(xk), respectively.
Then, theDiverse Gradient Anglebetweenxt andxk is

θtk = arccos
〈Φ(xt),Φ(xk)〉

‖Φ(xt)‖‖Φ(xk)‖
(15)

where〈·〉 is the inner product and‖ · ‖ is L2-norm.
Given the definition of DGA, we know that ifθtk is larger

than a specific value, sayα, xt and xk lead to different
directions of the gradient descent. In other words, whenxt is
added into the training set, the solution of (9) is quite different
to that whenxk is added, which is expected. On the other
hand, if θtk is smaller thanα or leans more towards 0, the
two query candidates would result in a similar direction of
gradient descent. Obviously, in this case,xk may be useless
afterxt is labeled as a training sample.
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(a) (b)

Fig. 4. Take a quadratic form as an example. In both (a) and (b), the black
solid line indicates the objective function under the original training set, while
the blue and red dotted lines denote the objective function under the enlarged
training set withxk and xt, respectively. Obviously, in (a), the DGAαtk

is large, soxk andxt would lead to quite different updates of the optimal
solution. In (b), DGAβtk is small, which means labelingxk or xt would
possibly result in the same solution.

To appropriately choose the value ofα, the following
proposition and its proof are proposed.

Proposition 1: Supposext and xk are two instances se-
lected by (14) as informative queries, and their associated
expected gradient changes areΦ(xt) andΦ(xk). If ∀ α ≥ π

3 ,
such that the DGAθtk betweenxt and xk is larger than
α, i.e., θtk > α, the difference between the updated model
parameters byxt and xk is expected to be larger than
s ·min(‖Φ(xt)‖, ‖Φ(xk)‖), wheres is a positive scalar.

Proof: To prove this proposition, we first assumew∗ is
the optimal solution of (8) andw∗

t (or w∗
k) is the optimal

solution of (9) whenxt (or xk) is added into the training set.
Then,

w∗
t = w∗ −∆wt = w∗ − s · φ(xt,yt) (16)

w∗
k = w∗ −∆wk = w∗ − s · φ(xk,yk) (17)

whereyt andyk are true labels, ands is a scalar controlling
the step size in the gradient descent method. The above
equations hold because the step size in each iteration is
proportional to the magnitude of the current gradient. The
difference betweenw∗

t andw∗
k is calculated as

w∗
k −w∗

t = s · (φ(xt,yt)− φ(xk,yk))

= s ·∆φtk, (18)

where we denote∆φtk = φ(xt,yt) − φ(xk,yk). Since the
true labels are all unknown, the expected difference should
be calculated over the distribution ofP (yt|xt) andP (yk|xk),
i.e.,

‖E(w∗
k −w∗

t )‖
2

= s2‖E(∆φtk)‖
2

= s2‖
∑

yt,yk

P (yt|xt)P (yk|xk)(φ(xt,yt)− φ(xk,yk))‖
2

= s2(‖
∑

yt

P (yt|xt)φ(xt,yt)‖
2 + ‖

∑

yk

P (yk|xk)φ(xk,yk)‖
2

− 2〈
∑

yt

P (yt|xt)φ(xt,yt),
∑

yk

P (yk|xk)φ(xk ,yk)〉)

= s2
(

‖Φ(xt)‖
2 + ‖Φ(xk)‖

2 − 2‖Φ(xt)‖‖Φ(xk)‖ cos θtk
)

.
(19)

Therefore,∀ α ≥ π
3 andθtk > α,

‖E(w∗
k −w∗

t )‖
2

> s2
(

‖Φ(xt)‖
2 + ‖Φ(xk)‖

2 − ‖Φ(xt)‖‖Φ(xk)‖
)

≥ s2 ·min(‖Φ(xt)‖
2, ‖Φ(xk)‖

2), (20)

and

‖E(w∗
k −w∗

t )‖ > s ·min(‖Φ(xt)‖, ‖Φ(xk)‖). (21)

The proposition is proved.
Proposition 1 states that when DGAθtk is large enough,

the difference between the updated model parameters by
xt and xk is proportional tomin(‖Φ(xt)‖, ‖Φ(xk)‖). It is
therefore reasonable to believe that instancesxt andxk can
result in quite different model parameters under this condition.
Furthermore,xt and xk become more diverse in relation to
each other whenθtk continues to increase. To select a batch
of queries with an expected diversity, we incorporate the
following objective function to modify the query set:

XD = argmax
X⊆U∩|X|=K

∑

xt,xk∈X

θtk

s. t. ∀ xt,xk ∈ X : cos θtk > α. (22)

The free parameterα controls the diversity of the query set,
i.e., when the value ofα increases, the constraintθtk > α
could result in a more diverse set. However, the large value
of α will lead to only a limited number of available queries,
since only a small number of queries can satisfy the constraint.
This might result in no queries being selected in subsequent
iterations. To overcome this issue, we use an intuitive method
to setα in each iteration, which is detailed in the next sub-
section.

C. Diverse Expected Gradient Active Learning

In this section, we develop ourDiverse Expected Gradient
Active Learning (DEGAL)method as a combination of the
methods proposed in Sections III-A and III-B. By integrating
both the informativeness and diversity analyses, the overall
objective function becomes

XDEGAL = argmax
X⊆U∩|X|=K

∑

x∈X

Ψ(x) +
∑

xt,xk∈X

θtk

s. t. ∀ xt,xk ∈ X : cos θtk > α (23)

where the first item provides the measurement of informative-
ness of the query set and the second item accumulates the set’s
diversity.

Optimization of the above problem would undoubtedly
produce a diverse query set. However, to the best of our
knowledge, it is intractable due to the need to enumerate
all possible combinations of queries in the unlabeled set to
achieve the optimal solution. To tackle this, we propose a
two-step heuristic method to discover an approximate optimal
query set.

In each selection iteration, we first calculate the informa-
tiveness of all unlabeled samples inU , and selectK ′ (> K)
most informative instances, which form the candidate setQ.
The second step eliminates all candidates inQ that do not
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Algorithm 1 DEGAL
Input:

Optimized parameterw, unlabeled setU .
Output:

Diverse query setX comprising K queries, and the
updated model parameterwnew.

1: Calculate, according to (13), the informativenessΨ(xt) of
each sample inU with w;

2: Collect K ′ (> K) most informative samples with a
decreasing order, to form candidate setQ;

3: Calculate, according to (15), the Diverse Gradient Angle
between each pair of samples inQ, resulting the matrix
Θ where[Θ]tk = θtk;

4: Initialize α;
5: repeat
6: Processxt ∈ Q from the most informative, to least

informative;
7: Find the samples whoseθt·(w.r.t. xt) violate the con-

straint ofθt· > α;
8: Eliminate these samples fromQ, and the correspond-

ing rows and columns ofΘ;
9: if (# of Q) > K then

10: Increaseα = α+ ǫ;
11: end if
12: until There areK samples remaining inQ;
13: X = Q;
14: Add X into the training set;
15: Optimize the model parameterwnew on the enlarged

training set, by usingw as initialization;
16: return X = Q andwnew.

satisfy the constraints in (22). The overallDEGAL is shown
in Algorithm 1.

In the above procedure, the issue remains of how to initialize
and increase the value ofα. Due to the unknown structure of
the feature space, we cannot evaluate whatα could properly
diversify different samples. Also, when the iterations continue
for some time, the informativeness of the remainder of the
unlabeled samples may not be as strong as those previously
selected, because the direction parameterw tends to be
globally optimal. In this case, any fixed value ofα would
cause an empty set ofQ. Here, we incorporate an exploratory
trick that starts with a relatively smallα at initialization and
then increaseα by ǫ if all values ofΘ satisfy the constraints;
meanwhile, moreK samples remain inQ.

D. The Multi-class Imbalance Issue

In the relative attributes model, the task requires learning
a ranking direction, along which the pairs of images in the
training set are ordered as correctly as possible. The image
pairs inO have different attribute strengths, while those in
S are similar. From this viewpoint, this task can be cast as
a multi-class classification scenario, where each class label
corresponds to a specific attribute strength, and different
images with different attribute strengths belong to different
classes.

w

(a)

ww

(b)

Fig. 5. Multi-class imbalance. Circles indicate training samples, while
triangles denote the class center. Figure (a) illustrates the poor solution
produced by an imbalanced training set formed according to an active learning
scheme. Figure (b) shows the optimal solution if all data andtheir labels are
observed. Indeed, once the solution is affected by imbalance, it becomes even
more severe in the subsequent iteration and cannot be self-tuned into a regular
case.

However, the multi-class imbalance problem, which is a
severe limitation of multi-class classification [36], [37], also
affects relative attributes performance and, as a consequence,
the proposed active learning scheme. In fact, in an active
learning procedure, all query selection is blind. If the diversity
of one class is large, then it is very likely to choose queries
belonging to this class in every iteration, leading to a serious
imbalance in the distribution of the training data. Even if an
acceptable balance between all classes of all data exists, a
random initialization of the training data would result in apoor
selection of queries in the subsequent iteration and eventually
form an imbalanced training set. For an example, see Fig. 5.

We therefore propose to control the imbalance of the train-
ing set in each iteration by first defining the balance constraint,
as follows.

Definition 2: The balance constraint denotes that the num-
ber of training samples in each class differ from each other
no more thanκ.

Given this definition, we utilize a Gaussian model to sim-
ulate the class center of each attribute strength, which is
estimated according to the ranking score under the current
model parameters. In a new selection iteration, once the query
set X is obtained, the active learner predicts the label of
each query inX and discards those that violate the balance
constraint. Note that in this step the oracle has no responsi-
bility to inform the active learner whether the predicted label
is correct or incorrect, which is reasonable because, if the
label is correct, either keeping or eliminating this sampleis
exactly what we intend to do. If the label is incorrect, retaining
this sample would, as expected, adjust the model parameters,
while removing it does not harm the overall procedure, except
for slightly affecting the rate at which the optimal solution is
reached.

One further issue deserves consideration: if some queries
are discarded by the balance constraint in the current selection
iteration, they could still be selected as queries in the next
iteration, and continuing execution would likely result inan
infinite loop. To ensure that the active learner does not fall
into this trap, we construct a backup set to store the discarded
queries, instead of returning them into the unlabeled pool.
After a certain number of iterations (say 20 or 30), this backup
set is returned to the unlabeled pool.

The whole procedure for controlling the multi-class imbal-
ance issue is shown in Algorithm 2.
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Algorithm 2 Multi-class Balancing
Input:

The labelled training setL, unlabeled setU , κ and
MAX BACKUP ITER.

1: Optimize the model parameterw on L;
2: Initialize the backup setB = ∅;
3: i = 1;
4: repeat
5: Predict the attribute scoresr(x) in L usingw;
6: Calculate the Gaussian parameters for each class by

using the predicted scores;
7: (X,wnew)=DEGAL(w, U );
8: U = U\X ;
9: Predict the attribute scoresr(x) in X usingwnew;

10: Estimate each query’s label as the one with the highest
Gaussian probability;

11: Eliminate the queries fromX which would violate the
balance constraint if added toL;

12: Store the discarded queries inB;
13: L = L

⋃

X , w = wnew ;
14: i = i+ 1;
15: if i >MAX BACKUP ITER then
16: ReturnB to U ;
17: i = 1, B = ∅;
18: end if
19: until Get an expected model parameter.

IV. EXPERIMENTS

A. Dataset

To empirically investigate performance, we evaluate our
approach on three datasets: the Outdoor Scene Recognition
(OSR) dataset [38], the Public Figures Face (PubFig) dataset
[13], and the Shoes from the Attribute Discovery dataset [39].
The OSR data contains 2688 images from eight categories
and has six attributes(’natural’, ’open’, ’perspective’, ’large-
objects’, ’diagonal-plane’, ’close-depth’)described by a 512-
dimensional GIST descriptor. For the PubFig dataset, a subset
of images was selected from the original dataset in [13], con-
sisting of 772 images from eight people with eleven attributes
(’masculine-looking’, ’white’, ’young’, ’smiling’, ’chubby’,
’visible-forehead’, ’bushy-eyebrows’, ’narrow-eyes’, ’pointy-
nose’, ’big-lips’, ’round-face’). The feature for describing face
instances is a concatenation of 512-dimensional GIST fea-
tures and 30-dimensional color histogram features. The third
dataset, Shoes, is a relatively large-scale dataset that contains
14658 shoe images structured by ten classes and ten attributes
(’pointy-at-the-front’, ’open’, ’bright-in-color’, ’covered-with-
ornaments’, ’shiny’, ’high-at-the-heel’, ’long-on-the-leg’, ’for-
mal’, ’sporty’, ’feminine’), and 960-dimensional GIST features
and 30-dimensional color histogram features are also utilized
to describe a shoe instance. These datasets cover diverse
domains of interest, including natural scenes, human faces,
and products (Fig. 6) and provide an ideal test-bed for our
approach.

Scenes

Faces

Shoes

Fig. 6. Example images. First row: OSR examples. Second row:PubFig
examples. Third row: Shoes examples.

B. Experimental Setup

This section provides a detailed description of our baselines
and experimental settings.
Dataset Splitting: Every dataset is equally divided into two
sets, i.e.,50% of samples in the training set and50% of
samples in the testing set. For each trial, the samples used for
training are selected from the training set, either actively or
randomly, while the testing set is used to evaluate performance.
Baselines:We include four active learning baselines and two
randomized baselines for comparison. The first active learning
baseline is the batch mode proposed in [31]. Since this method
is realized by minimizing the version space of the model,
while maximizing the diversity measurement (which we call
theKernel-based Angle(KBA)) of the query batch, we denote
it as ”MVS+KBA”. The second active learning baseline (”M-
S+KBA”) is a combination of multi-class uncertainty sampling
(called margin sampling(MS)) and KBA [40], [41]. The
third (”Entropy-QBC”) is an extension of query-by-committee
algorithms from the entropy viewpoint [42]. The final active
learning baseline (”EGL+KBA”) is an integration of EGL and
KBA. The two randomized baselines are as follows: the first
(”Random”) is where training samples are randomly selected
from the training set, while the quantity in each class is the
same. The second (”RandomC”) is designed to illustrate the
effect of the imbalance issue, and differs from the first in that
all classes are randomly and equally split into two cliques.
We randomly choose90%×N samples for classes in the first
clique and10%×N for classes in the second clique, whereN
denotes the total number of samples used to train the model
parameter. Note that in this situation, the number of samples
in all the classes is not necessarily equal.
Active Setting: For active learning, an initial labeled setL
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is randomly selected from the training set, and the remainder
form the unlabeled setU . Since a good initialization of a
model parameter (i.e., the model is trained on the initial
labeled set) is favorable for active learning, we set the number
of initial labeled samples to: 1) 32 for OSR and PubFig with
four samples per class; and 2) 100 for Shoes, with ten samples
per class. For each iteration, we utilize a fixed batch size of
5, meaning that 5 queries are chosen each time. The angular
parameterα is set toπ/4, and ǫ to π/36. Furthermore, the
balance constraint parameterκ is set at5. The influence of
different parameter settings can be found in Section IV-D.
Model training: In all experiments, problem (8) is optimized
using Joachims’ method [43], and the parameterC is deter-
mined by cross-validation. All experiments are conducted 10
times, and the performance is then averaged.
Performance evaluation: Performance is measured by the
accuracy of predicted relative strength. For two test samples
xi andxj , the comparisonrm(xi) > rm(xj) (or rm(xi) <
rm(xj)) is correct if it is consistent with the ground truth.
Then, the total accuracy for attributem is calculated by the
rate of correct comparison to total comparison.

C. Results

The comparative results for different relative attributeson
the OSR dataset, PubFig dataset and Shoes dataset are shown
in Fig. 7, Fig. 8 and Fig. 9, respectively.DEGAL performs
better than both the active learning baselines and the random
baselines. Surprisingly,Randomworks well in some of our
experiments, and may even be comparable toDEGAL in some
cases. This phenomenon helps us to understand the meaning
of each attribute in each of the datasets. Prior to analysis,we
defined two types of attributes, namely the global attributes
and the local attributes. Global attributes are related to the
whole image, while local attributes are determined only by a
local region in the image. In the OSR dataset, all six attributes
are global because they need to be assigned by observing the
whole image. In this case,DEGAL always performs better
than Randomsince the features used are globally related
to the attribute value. However, in the Pubfig dataset, some
attributes are global (male, white, young, chubby, and round-
face), while the others are local (smiling, visible-forehead,
bushy-eyebrows, narrow-eyes, pointy-noseand big-lips). The
results indicate thatDEGAL still works well on the global
attributes but exhibits some limitations on the local attributes.
One reason for this is that our method cannot localize the
attributes to a specific region, and without this information,
i.e., the localization, the active learner might be confused and
easily affected by the distinct features in other regions; the
algorithm subsequently picks up queries that lead the attribute
learner in the wrong direction. In subsequent iterations, the
attribute learner performs normally until there are enough
training samples, such that the localization can be recovered.
For example, the attributesmiling can be regarded as a global
case, since a smile changes the profile of the whole face
even though it is only related to the mouth shape;DEGAL
therefore works well onsmiling. Taking the attributenarrow-
eyesinto consideration, even if a person has a pair of large

eyes, laughing can narrow the eyes. If this type of image
existed, the active learner’s belief could be misled towards
narrow-eyes(see Fig. 8(e)). The Shoes dataset also has the
same issue, such as with the local attribute ofhigh-at-the-heel.
However, for most attributes,DEGAL performs well. These
results suggest thatDEGAL can discover key information in
learning the relative attributes models, but lacks the ability of
self-tuning when it gets into a trap.

DEGAL is superior to the four active learning baselines in
most cases. It can be seen that MVS+KBA has very limited
performance, consistent with the analysis in Section II-B,i.e.,
the samples closest to the classification hyperplane are not
necessarily the most informative.DEGAL outperforms both
MS+KBA and Entropy-QBC, because our method intends to
find a query that can produce a large number of uncertain
pairwise relationships, whereas the other two methods treat
the relative attributes as a multi-class problem and only
select a query uncertain to all classes. At this point, the
information induced by one query inDEGAL is larger than
that in MS+KBA and Entropy-QBC. Finally,DEGAL offers
an improvement over EGL+KBA by modifying the original
EGL as the expected pairwise gradient length, which is more
suitable for the relative attributes model. Furthermore, the
proposed diversity measurement in the gradient space is an
alternative to that in the primal feature space or the kernelized
space.

The comparison ofDEGAL with RandomCillustrates the
importance of thebalance constraint. RandomCbecomes
extremely unstable and has limited performance due to the
imbalanced distribution between different classes. Loss of
information is very harmful to the training model, particularly
for DEGAL. As stated earlier, the initialization ofDEGAL
involves only minimal information and produces significant
uncertainty that could blind the subsequent selection procedure
and result in an imbalanced scenario that performs similarly
to RandomC. This also accounts for the slight turbulence on
DEGAL curves and the severe turbulence seen forRandomC.
The same conclusion can also be reached from the results
of the experiments that test different settings ofκ, presented
in Section IV-D. Therefore, by using the balance constraint,
DEGAL can outperformRandomC.

D. Effects of the Parameters

In this section we evaluate the effects of changing theK,
α, andκ parameters. Each is tested by fixing the others. All
experiments are conducted on the OSR dataset and the results
are averaged over all six attribute learners’ performances.

Fig. 10 shows the influence ofK on the performance of
DEGAL. Overall, the different settings have similar perfor-
mances and produce consistent results for the final selections.
However, for the middle selections, there is slight divergence,
as shown in the enlarged box. Smaller values ofK result in a
better performance, while increasingK decreases the accuracy
in this range, suggesting that smaller K helps the active
learner to precisely explore the feature space, while larger
K results in redundant information in the selected query set.
Although smallerK works better, this comes at computational
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Fig. 7. Results on OSR Dataset

Fig. 10. The effects of the parameterK when settingα = π/4 andκ = 5.

cost due to the need for more iterations for selections and
retraining. There is therefore a trade-off betweenK and
the computational cost, which needs to be considered in the
implementation.

Fig. 11 shows the effects of angular parameterα. Different
values ofα have almost the same performance, suggesting that
the proposed algorithm is insensitive to this parameter. Note
that this is partially due to the incremental strategy used in
Algorithm 1, i.e., increasingα by ǫ.

Fig. 12 shows that parameterκ has a relatively significant
influence on performance.κ = 5 and κ = 10 have similar
performance, while whenκ = 20 the accuracy slightly
decreases for the middle selections. Whenκ is set to 40,
the performance significantly drops as the number of queries
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Fig. 11. The effects of the parameterα when settingK = 5 andκ = 5.

Fig. 12. The effects of the parameterκ when settingK = 5 andα = π/4.
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Fig. 8. Results on PubFig Dataset

increases, suggesting that the imbalance issue between the
classes is severe enough to negatively affect the active learner.
Keepingκ small is therefore an effective way to control the
imbalance of multi-class distributions.

E. Computational Complexity

The computational complexity of the proposed method is
analyzed based on the cost in one iteration, which consists of
the training model parameters and active selection. Assume
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Fig. 9. Results on Shoes Dataset

that the training set hasm samples, the unlabeled pool hasn
samples, the batch size isK, and the attribute hasl levels of
strength. SinceC2

m pairs need to be considered in the training
phase, the complexity for training is of orderO((C2

m)3) in
the worst case [33]. In the active selection phase, the time

taken to compute the informativeness and the angle values is
O(nm2) andO(C2

K), respectively. The calculation involved
in multi-class balancing is of orderO(m + K). Thus, the
total complexity in one iteration isO((C2

m)3 + nm2 +C2
K +

m + K). The corresponding computational complexities of
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TABLE I
COMPARISON OFCOMPUTATIONAL COMPLEXITY

Method Name Computational Complexity
DEGAL O(nm2 + C2

K
+m+K)

EGL+KBA O(nm2 + nm)
MS+KBA O(lnC2

n + nm)
MVS+KBA O(nC2

n + nm)
Entropy-QBC O(l2n)

the different methods are shown in Table I. For clarity, we
omit the complexity for training since it is the same for all
approaches. Our method takes less time than other batch-mode
active learning strategies, sincem andK are generally smaller
thann. Entropy-QBC has the lowest computational complexity
because it is a serial-mode method, but this method may take
more iterations to reach an expected solution.

V. CONCLUSION

Incorporating an active learning scheme into semantic learn-
ing is a promising method to efficiently improve various
semantic learners, especially when faced with a large amount
of internet data. In order to focus on the improvement of
relative attributes learning with limited label information, here
we present a novel batch-based active learning method, called
Diverse Expected Gradient Active Learning (DEGAL). We use
the expected gradient length as the informativeness of each
unlabeled sample, and illustrate its equivalence to Tong’sresult
[30]. To collect a batch of queries of reasonable diversity,
we constrain thediverse gradient anglesbetween the queries
to preserve different guidance on parameter optimization.
Finally, a two-step optimization is formulated that rangesfrom
informativeness analysis to diversity analysis. To address the
problem of imbalanced class distribution, we exploit a simple
method to minimize the issue using thebalance constraint.
The experimental results on three different kinds of datasets
demonstrate that the proposedDEGAL is superior to other
baselines.

However,DEGAL still has some limitations. For example,
how to actively discover the specific regions related to the local
attributes remains open. Furthermore, the proposed methodis
fixed at the attribute level. How to define the joint informa-
tiveness of a single sample for different attributes still needs
to be considered, and this will be investigated in future work.

APPENDIX A
EQUIVALENCE BETWEENmaxx Ψ(x) AND TONG’ S RESULT

[30]

Remember that Tong’s result indicates the most informative
query is the one located on the classification hyperplane, which
says that the label of this query has50% probability to be
1 and 50% to be -1. To see equivalence between this and

maxx Ψ(x), we can writeΨ(x) by substituting (11) into (13):

Ψ(x) =
∑

y

P (y|x)ψ(x,y)

=2
∑

xu

∑

yu

P (yu|x)‖g(xu,x, yu)‖

=2
∑

xu

(P (1|x)‖g(xu,x, 1)‖+ P (−1|x)‖g(xu,x,−1) ‖

+P (0|x)‖g(xu,x, 0)‖) . (24)

Due to the unit constraint in equation (7),

Ψ(x) =2
∑

xu

(

P (1|x)[1−w∗T
m (xu − x)]+

+ P (−1|x)[1 +w∗T
m (xu − x)]+

+P (0|x)|w∗T
m (xu − x)|

)

. (25)

Define the above accumulation items asf(xu,x):

f(xu,x)

=P (1|x)[1 −w∗T
m (xu − x)]+ + P (−1|x)[1 +w∗T

m (xu − x)]+

+ P (0|x)|w∗T
m (xu − x)|

≤(P (1|x) + P (−1|x)) + (P (−1|x)− P (1|x))w∗T
m (xu − x)

+ P (0|x)|w∗T
m (xu − x)|. (26)

The above equality is obtained when|w∗T
m (xu − x)| ≤ 1.

Note thatP (1|x) + P (−1|x) + P (0|x) = 1, and in an ideal
case,P (1|x) + P (−1|x) = 1 for w∗T

m (xu − x) 6= 0, while
P (0|x) = 1 for w∗T

m (xu − x) = 0. This is because of the
definitions ofO andS.

Without loss of generality, we assume∃xu, |w∗T
m (xu −

x)| ≤ 1. Therefore, ifw∗T
m (xu − x) 6= 0,

f(xu,x) = 1 + (P (−1|x)− P (1|x))w∗T
m (xu − x). (27)

In this case,f(xu,x) reaches a maximum whenP (−1|x) =
P (1|x) = 0.5, which is exactly the same as Tong’s result. On
the other hand, ifw∗T

m (xu − x) = 0,

f(xu,x) = |w∗T
m (xu − x)|. (28)

Under this condition, any large value off(xu,x) means that
the pairwise differencexu − x is informative to the current
model parameterw∗

m, since it is supposed to be located on
the classification hyperplane.

In conclusion, sincef(xu,x) ≥ 0, the queryx maximizing
Ψ(x) is the one which produces the greatest quantity of
informative pairwise differences. Adding such a query to the
training set can significantly improve leading the optimization
procedure to the optimum.
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