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Abstract—The use of relative attributes for semantic under- methods. Of the unsupervised methods, the 'topic modets’ pr
standing of images and videos is a promising way to improve yide an intuitive approach for researchers; this approgpgh t
communication between humans and machines. However, it is a1y includesProbabilistic Latent Semantic Analysis (pLSA)
extremely labor- and time-consuming to define multiple attibutes 2], [3], [4], Latent Dirichlet Allocation (LDA)5], [6], and
for each instance in large amount of data. One option is to <! 125 ' ’ v
incorporate active learning, so that the informative sampes Diffusion Maps (DM)[7]. These methods attempt to discover
can _be act?vely dis_covered and then labeled. However, m_ostthe mixture distribution of hidden topics, each of which can
existing active-learning methods select samples one at ar® then be related to a meaningful concept, and a recent study
(serial mode), and may therefore lose efficiency when leamg  g\4qested the use of a randomized visual vocabulary faracti

multiple attributes. In this paper, we propose a batch-mode .
active-learning method, calledDiverse Expected Gradient Active search [8]. In the supervised case, there have been attempts

Learning (DEGAL). This method integrates an informativeness tO utilize local patch information or image/video annatati
analysis and a diversity analysis to form a diverse batch of to explore a visual vocabulary. For example, Vogel et al. [9]
queries. Specifically, the informativeness analysis empe the constructed a vocabulary with explicit semantic meanings b
expected pairwise gradient length as a measure of informa- labeling certain semantic concepts (esly, rocks, sarjdto

tiveness, while the diversity analysis forces a constrainbn the hi i tch. H th licability of thi
proposeddiverse gradient angle. Since simultaneous optimization each local image paich. mowever, the applicabiiity o 1S

of these two parts is intractable, we utilize a two-step proedure approach is limited due to the large labeling cost when
to obtain the diverse batch of queries. A heuristic method is allocating each patch. Ji et al. [10] proposed the use of the

also introduced to suppress imbalanced multi-class distbutions.  Hidden Markov Random Field (HMRFRhodel to integrate
Empirical evaluations of three different databases demortsate ot |ocal visual features and semantic labels to guide vo-
the effectiveness and efficiency of the proposed approach. cabulary construction. In this study, the similaritiesvietn
Index Terms—Batch Mode, Active Learning, Diverse Expected (ifferent local visual features were extracted from 60,000
Gradient, Relative Attributes. labeled Flickr images, while the semantic label corretatio
were provided by WordNet. Similar to previous methods, this
|. INTRODUCTION approach still required a large nhumber of manually provided

. . . labels to produce a general vocabulary.
Semantic understanding of scenes aims to narrow the ga . .
ather than constructing a vocabulary, the recent litegatu

between what humans and computers understand by providi

the meanings of elements in text, speech, images, o vidg? s increasing attention to visual semantic attributash&di
(e.g. "the sky in the image is blue” and "the boy’s hand in the al. [11], Lampert et al. [12], and Kumar et al. [13] have

video is waving”) in a format that is understandable to husial il proposed the use of a set of visual semantic attributes

From a practical perspective, semantic understandingishi "o describe various objects and human faces. Due to their
P PErsp ' 9 robustness to visual variations, attributes have beerieapiu

relevant in systems that organize personal and prOfeﬂs'OH. erent vision tasks, including classification [14], [1Eecog-

information, and for this reason the approach has receivl(%I lon [16], and retrieval [17]. These methods treat ;

much attention in the computer vision community. Howeye{ris binary values to indicate their existence. On the other

several important research challenges still exist forotei hand, relative attributes as proposed by Parikh et al. [18],

vision tasks, including image/video classification, amtion, : . : L
) : : . are designed to provide a richer mode of communication and
and retrieval. Techniques to organize, annotate, andevetri . . o R
etailed access with human supervision. Due to the intrinsi

digital media data are lagging behind the exponential gro ré)lperties of binary and relative attributes, it is intatithat

Ine:?:csr:nosg:ngfniir::atjgs;?,stzr;%iflor?:;ﬁsjfrgn:]tegzsghii/gr eey can either be user defined (from a professional human
bertecting 19 gen perspective) or discovered from the data itself, in order to
to gain access to the content of images and videos [1].

Previous research has mainly focused on building a sema gomplement human deficiencies [16], [19]. However, this als
vocabulary. ie. embeddin tk?/e semantic informgtion mtor}HSans that each object or scene has many attributes that need
visual VO():/élb.u|;':,ll’ usin e?ther unsupervised or su ervisto be labeled manually. In addition, training a robust dfass

y 9 P P 89 recognizer for a real-world application requires thawusa
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years. For instance, Parkash et al’s [20] and Biswas &t aR) We extend serial-mode active learning based on gradient
[21] adopted an active learning framework to select the $ampength to the batch-mode case. To measure the diversity of a
(known as the query in the active learning field) that was query set, thd®iverse Gradient Anglés defined, based on the
most uncertain to the attribute learner. Instead of simpxpected gradient direction. By imposing a constraint an th
demanding the label for the image, the learner conveyed #sgular differences between queries in the set, we prove tha
current belief about the image to the oracle and demandbe satisfied queries can result in different model pararsete
a response and explanation in return, the image classifidrthey are separately added to the training set.
simultaneously benefited from this feedback process. Hewe\3) The proposed active learning method suffers from a multi-
in each iteration of active learning, the learner only seléc class imbalance issue, which might result in poor perforrean
the most uncertain query to be labeled, i.e., only one quasy w\e therefore design a heuristic method by introducing a
chosen, and therefore many iterations were required tchredmlance constraint to suppress the imbalanced multi-class
stability. Rather than selecting the samples importanthe tdistributions.
classification task, Xu et al. [22] studied the issue of diegd We perform empirical evaluations on three datasets eqdippe
which semantics (i.e., attributes) are pivotal. By definingith relative attributes and demonstrate that our methaed pe
a data-drivenCategory-Attribute Matrix they automatically forms favorably compared to other batch-mode active learn-
designed discriminative attributes in a principled way anidg and random-sampling baseline methods. Our approach is
in doing so avoided the use of large-scale, but redundasitnilar to [31]; however, our study differs in that we handle
attribute sets. Similarly, Choi et al. [23] proposed a novéhe diversity analysis in the gradient space, rather thaa in
joint optimization framework in which the attribute learne projected feature space characterized by a kernel.
category recognizer, and sample selector were simultafieou The remainder of this paper is organized as follows. Section
optimized. To ensure discrimination, they learned alilatbes 11 provides the background to the relative attributes mpds!
from the data in order to identify which unlabeled sample wagell as a detailed analysis from an active learning persgect
critical to the category boundaries and, in this way, both thn Section Ill, we introduce our approach, followed by an
attribute learner and category recognizer were trained orpatline of the experimental results demonstrating theiefiicy
relatively small set. As well as the attribute-related warther of our strategy in Section IV. Finally, we summarize our
active learning methods have also been proposed to imprawethod and briefly discuss future research directions.
image/video semantic tasks [24], [25], [26].

Incorporating the active learning framework to solve the Il. PRELIMINARY
above problem is clearly effective. Active learning evaédisa  The content of the relative attributes model is briefly re-
the informativeness of unlabeled instances so that moe-infviewed in this section, before providing a detailed analysi
mative instances are more likely to be queried [27]. Howevehe model that inspired our proposed algorithm.
as in Parkash et al. [20], most active learning approaches
serially select queries, i.e., they are selected one at a ti®. Relative Attributes

[27]. The time required to induce a semantic model can Attribute-based vision tasks, such as image classification

be slow or EXpensive, especially yvhen_ multiple annotatogs, object recognition, are an embedded mapping that can be
work on different labeling workstations in a network at th‘aecomposed as follows [32];

same time, which is the case in attributes learning. Under

these conditionspatch-modeactive learning, which allows H = L(S())
the learner to select queries in groups, is more suitable for S : RIS AM (1)
serial labelling environments. By picking up several gegri . M
. : : ) . . L : AV —>L
during one iteration, batch-mode active learning resuliess
iterations and faster convergence. where S is composed ofM individual attribute learners

Here we aim to improve the training efficiency of a typdbm(x)})_,, each learneb,,(x) maps a raw feature € R?
of semantics learning, namely the recently proposed velatito the correspondingn-th attribute a,, of AM, L maps a
attributes method. We present a novel batch-mode actdemantic attribute poind € A to a class label € L. R¢,
learning approach calle®iverse Expected Gradient ActiveA, andL denote thel-dimensional real-value space, thé-
Learning(DEGAL), which addresses the following two objecdimensional attribute space, and the label space, regphcti
tives: to collect batches of the most informative queries] a  The relative attributes model, which differs from the binar
2) to enforce the selected queries to be diverse with respecattributes model, may provide a promising method to deeply
each other in the training procedure. Our main contribstio@xploit human cognizance and build a wider information
include: bridge between humans and machines. This model encodes
1) Inspired by [28] and [29], we use the expected pairwiggach image with the strength of different attributes witspect
gradient length as the informativeness measure. The missother images, and can be modeled as follows [18].
informative query should provide a large number of confgsin Suppose a set of training imagésare represented by raw
pairwise relationships and cause a large change on the md@éture vectorgx € R%}!, and a set of attributefuy, ..., an}
parameters. To show that this is reasonable, we demonstraie . following, we denote the raw features g5, x, !, x2, where

equwalence between this strategy and Tongs W'dely awep{ﬁ'e subscripts and j are the indexes of pairs i®,, and Sm]resfaectively,
result [30]. and the superscripts and 2 reveal the relative order.
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Fig. 1. Ranking Direction. For a certain attribute, samdleg, 3, and 4 are
sorted in increasing order according to the strength of #tiatbute. Under
SVM conditions,w is the optimal ranking direction on which the cumulative - —
margin between all adjacent samples are maximized.

are accordingly defined. Then, for each attributg, two
kinds of image pair modes),, and S,,, are constructed
by comparing the corresponding attribute in two imageBig. 2. Decomposition of RankSVM-with-Sim. Symbol "o” deae the
_ 1 2|+ 1 27 ; ; transformed samples irb,,, while "+" and "-” indicate those inO,.
.Om. — .{(Xi’xi )|X1 ~ ?Z} is the ordered image pair mpde’Optlmlzatlon on problem (5) results wZ55VM  and problem (6) leads to
indicating that imagex; has a stronger strength on attributg,COE Thys, the overall solutiow?4 can be expressed as a combination
an, than imagex?, while S,, = {( )|x ~ XQ} is the of wL3SVM andwCOE ObV|oust if the sample closest to the hyper-plane

(solld line) belongs t(Sm it has no optimization benefit for the current model
un-ordered |mage palr mode, denotlng that Imagehas a parameters. Samples that could result in a significant éanghe direction

2
similar strength of attribute,,, as imagex;. of wi4 should be treated as the most informative and not necessimie
The goal is to learnV/ attribute rankmg functions, each ofto any plane.
which is
T
Tm(X) = Wp,X (2)

B. Active Learning Analysis
for m = 1,..,M, such that most image pairs satisfy the Even though RankSVM-with-Sim is designed to find the

corresponding image pair modes, i.e. optimal direction in which each sample is assigned to a corre
order, it can be equivalent to a classification SVM on paiewis

1 ) T 1 T 2
v(xl x;) € Om W"T”Xll > W”T”X; difference vectorgx; — x7) and (xj —x3). For attributea,,
V(x;,%; ) €Sm 1 WpX;=W,X; let us denoted” = (x! — x?) € Oy, to be assigned with a

wherew,, € R? is the direction parameter ar@? denote Iabely’” wherey’” =1if 7“%( i) >1 rm(x}) andy;” = —1
the transposition. In other words, we aim to find the optimal TT'l( 1) < rm(x}), while i = (x; —x; ) € S, which is
projected direction on which all training samples are rankd"® d|fference betweer_1 the un ordered |mage pairs,jn For
in an accurate order in the feature space, as shown in Fig_cgmpleteness, we define the _Ial@@-ifl = 0 for Sm'.

To deal with the above NP-hard problem, its solution can.BaS(.Ed on the above def|_n|t|on and transferrlng RankSVM-
be approximated by introducing: (1) the non-negative sla&gth's'm into an unconstrained scenario, we can get
variabless; and~;, and (2) a regularization term to maximizeminimize:

the margin between the closest pair’s projectionvopn. This Wi
leads to the following optimization problem, namBdnking To Ts
SVM with Similarity(RankSVM-with-Sijn ||Wm||2 +C Y max(0,1—ywhd)® + > (whdr)?
i=1 j=1
minimize: %meng +C(Z 52+ 92), @) (@)
] L _— J o whereT,, denotes the number of ordered pairsfml, andTs
subject to:  V(x;,%7) € Om : Wy X; > WiX! +1—-3ii s the number of un-ordered pairs fy,. We can now make
v(x! Xj, j) € Sm |wmxj1 —wl Xj 2| < an approximate decomposition of problem (4) into two parts,
Vi, j:d; >0; v >0, namely usingleast-squares SVMLS-SVM) and constrained

optimization on the ellipse (COE):
whereC' is a free parameter that allows a trade-off between To

margin and training error. Rearranging the above condgain LS-SVM min ||Wm||2 + szax 1— inTTndlm)z

we can rewrite them as: Wi p
V(x;, x)GOm.wT(xlfx)>175 ®)
1 Ts
V(] X7) € S ¢ [ Wi, ) = Wi, XG] < 9 COE min > (whd™? st. [wnl > p, )
Wim -
By handling the above optimization problem we can acquire =1

M attribute ranking functiongr,,,(-)}»_,. To further induce wherep is a positive scalar that constrains the minimum norm
proper active learning for this model, certain propertiesudd of w,,, in COE. The above decomposition is possible because
be considered, as detailed in the next sub-section. the first two parts of (4) form the LS-SVM, while the third
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part of (4) becomes the COE. The constraint in (6) emerg€hken following equation 4, we define the objective function
from LS-SVM in (5), and it is used to avoid the solutioras
of (6) to be all zeros. In other words, if we regapdas
the norm of the solution of (5), the optimal solutiom;,
can be obtained by iteratively optimizing (5) and (6) until + Z
converged. For convenience, we provide an illustratiorhisf t
in Fig. 2, where we assume the solutions of the two problems o oo
are wLSSVM andwCOF | and the solution to problem (4) is + Z (Wi (x5 = %5))7, (8)
therefore a compromise. (x}%3)€5m

Given this model, we need to find the most informativghere \ = 1/2C and [, is the hinge loss function. If an
queries (or the queries that the learner finds most confiisingstancex is added into the training set with a certain rank
and add them into the training set. In the active learningbely, the above function becomes
field, several strategies have been proposed for SVM and Rank .

H . new __ 2
SVM. In Tong’s result [30] for binary SVM, the most informa-m"l',[?'ze' M = AWl

minimize: hy,, = \|wn|3

Wm

[1— inrTn (x; —x; )]+
(x},x2)€0m

tive query was the one closest to the classification hypeepla T (1 2\12
but t?\is is not the case in a relative attributes scenamgﬂir?z o) B xR
. Lp . = (x},x2)eOm
gueries closest to the classification hyperplane belon§,to
and cannot significantly affect the optimization of the glan + > (Whx = x3)? + Q(wim, x),
In Donmez et als [29] and Settles et al.'s [28] methods, the (x},%3)€Sm
query with the largest gradient length once added intoitrgin 9)
set under current model parameters was selected as the most
informative. Meanwhile, Parkash et al. [20] and Biswas et a¥here
[21] proposed selecting samples with the most entropy or the Q(W,Xx) = Z 1 — yuwl (x4 — X)]i
largest entropy variation. However, the critical issuehwitese (Xu.X)EOm
methods is, as stated in Section I, that they are serial-mode T 9
In order to design a batch-mode strategy, our contribution + Z (Wi (Xu —x))

accounts for the informativeness, while efficiently conpgt (e ) € Som

the diversity of different queries relative to the currerudrl. €ncodes the total loss caused by the instancand other
relevant instancesx,, x) € O,, ((x4,x) € S,,) means that

the instancex, has a different order (same order)=o

Il. PROPOSEDAPPROACH Let Vhw,, and VAL be the gradient of the original
Learning (DEGAL)method, which improves on the serial/®Spect to model parameter,,, respectively. In most cases,
mode approach presented in the previous section. A flowchB}¢ uniqueness of the SVM solution can be guaranteed [34].
of the proposed method is shown in Fig. 3. The theoreticap et us assume that the unique optimal solution of function
foundation of our batch-mode active learning method is thas®) 1S w*. EquationVhy,, = 0 holds due to the optimality.
on Settle et al. [28]. Given that the expected gradient lengtnen, the change of gradient induced by instarde
is a measure of sample unlcertainty, our goal is to as_,sist the $(x,y) = VI — Vhy:
attribute learner to actively find a batch of informative des . X

. ; = VQ(w),,x) (10)
that possess relatively large expected gradient lengtho(my
2> g(Xu, X, Yu),

the largest one), and simultaneously maintain diversioynfr

each other.
where
A. Informativeness Analysis V(%u, %) € O :
*T
In this section we incorporate the expected gradient lgngth —Yu(Xu = x)[1 = YuWm (xu = x)],
which measures the informativeness of each unlabeled if{Xu; X, yu) = if yuwi) (% —x) <1
stance, into the model. This is feasible because the relativ 0, if yowil(x, —x) >1

attributes model can be optimized in the primal using the

gradient descent method [33]. Once a query is added into T

the training set, it will create the greatest change in the (XusX) € S 9(¥us X, yu) = (¥u = X)[Wpy (Xu = X)].
pairwise gradient length under the objective function. eHetandy is a label vector, each dimension of which indicates the

is a mathematical explanation: relative order betweer and the corresponding training sam-
First, we need to impose a general constraint on the pairwisie. Now, according to [28], we can define the informativenes
differences, which is of the instance as the accumulated pairwise gradient lengths,
ie.
V(xl,x2) € 0, : ||x! —x?|| =1, '
(i) € O [l = 7| @ 06 y) =23 llgew %, 3| (11)

V(x;,x?) € Sn: Hx]1 fxiﬂ =1. <o
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Fig. 3. A flowchart of the proposed method.

From definitions (10) and (11) above, we know tiidk,y) expanded training set will result in slow convergence to the
is the direction of gradient descent afteris added into overall optimal solution; we therefore need to diversifg th
the training set. This will be used in the diversity analysiguery set. Different diversity measurements possess f&peci
in Section IlI-B. Furthermore, the informativeneggx,y) properties and can result in different sets of query candida
reveals the uncertainty of the current model with respect Respite this, one particular case needs to be emphasized tha
x. The largery(x,y), the more confusing will be to the cannot be guaranteed: for any two queries in the query set, on
model. will still be selected as an informative sample if the othersw
However, one issue to consider when evaluating the infaeded into the training set and the model was updated. This is
mativeness of unlabeled instances is that an active learbecause the data used in real applications always changks, a
cannot know the true label in advance. The expectationshe updated model cannot be predicted unless the label of the
of both ¢(x,y) andvy(x,y) therefore need to be calculatecadded query is known. However, according to the definition of

over the attribute learner’s current beliB{y|x), that is informativeness in (13), the queries selected in eachtitera
are always useful for updating the model.
O(x) = _ PyPx)o(xy), (12) " The theory behind our approach is that the selected queries
Y can greatly change the model parameters if they are used for
U(x) = Pyx)e(x,y). (13) training. When considering diversity, it might be expedtieat
y different queries could lead the current model parameters i

The beliefP(y|x) can be estimated using Platt's method [35fifferent directions, as shown in Fig. 4. To realize this, we
in which the posterior probability?(y|x) is regressed using aPropose thediverse gradient angle (DGAjo measure the
sigmoid function. Then, the instance with the largest etqubc diversity of candidates in a query set, a detailed desonpf
informativeness is the optimal one to be added into theitrgin Which is given below.

set. In fact,max, ¥(x) is equivalent to Tong’s result [30], Definition 1: Suppose that instances and x;, are two
which is proven in Appendix A. In our setting, we selec€andidates selected in the query set, and their associated

a batch of K queries,X* = {x}¥, each of which has a expected gradient changes drex;) and®(xy), respectively.
relatively large value off(x), i.e., Then, theDiverse Gradient Angldetweenx,; andxy is

(@ (1), D(x))
1 (o) [ @ ()|

where () is the inner product and - || is L-norm.

] ] ] Given the definition of DGA, we know that #f;; is larger

B. Diversity Analysis than a specific value, say, x; and x; lead to different
The query set selected in the above section capturegligections of the gradient descent. In other words, wkgeis

large amount of information to be discovered by the curreatided into the training set, the solution of (9) is quiteetiint

model, which we refer to as query candidates. However, tsthat whenx; is added, which is expected. On the other

described in Section 1I-B, each query candidate may hakeand, if 6,; is smaller thano or leans more towards 0, the

similar information to other candidates, and the effect afvo query candidates would result in a similar direction of

adding one similar query into the training set will thereforgradient descent. Obviously, in this casg, may be useless

be the same as adding other similar queries. In this case, #fier x; is labeled as a training sample.

X*= argmax » W(x) (14)

XCUN|X|=K ccx (15)

0, = arccos

whereU is the unlabeled set.
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ThereforeY a > ¢ andfy; > a,
[E(wj, —wy)|?
> 57 (|0(xe)[|* + [ @(xi) [|* = [ @(xe) [ 1@ (x1)]])

> 5% min(]| @ (x) ]| [|2(xx)|%), (20)
and
L R [E(wy, — wi)ll > s - min([|@0x) [, |2 (xx)])- (21)
D (x) () D(x}) The proposition is proved. [
@) (b) Proposition 1 states that when DGHy, is large enough,

Fig. 4. Take a quadratic form as an example. In both (a) andifp)black the difference between the updated model parameters by

s, s dach s g 8wl o, is proporiona tomin ), [9(s0).

:r:ining set withx,, and x;, respectively. OJbvioust, in (a), the DGAtgk therefc_)re rt_aaso_nable to believe that mStamﬁand_xk _car!

is large, sox;, andx; would lead to quite different updates of the optimalresult in quite different model parameters under this ciwrali

solution. In (b), DGAp,y, is small, which means labeling,, or x; would  Fyrthermorex; andx; become more diverse in relation to

possibly result in the same solution. each other whem,, continues to increase. To select a batch
of queries with an expected diversity, we incorporate the

To appropriately choose the value of, the following following objective function to modify the query set:
proposition and its proof are proposed.

Proposition 1: Supposex; and x; are two instances se-
lected by (14) as informative queries, and their associated
expected gradient changes dréx;) and®(x;). If ¥ a > %,
such that the DGAY;, betweenx; and x;, is larger than The free parameten controls the diversity of the query set,
a, i.e., 0y > «, the difference between the updated modgk., when the value ofv increases, the constraiflf, > o
parameters byx; and x; is expected to be larger thancould result in a more diverse set. However, the large value
s - min(]|®(xq)]], || ®(xx)||), wheres is a positive scalar. of a will lead to only a limited number of available queries,

Proof: To prove this proposition, we first assum€ is  since only a small number of queries can satisfy the comstrai
the optimal solution of (8) andv; (or wy) is the optimal This might result in no queries being selected in subsequent
solution of (9) whenx; (or x;) is added into the training set.jterations. To overcome this issue, we use an intuitive oath
Then, to setw in each iteration, which is detailed in the next sub-
(16) section.

XP = argmax Z O
XCUNIX|=K ., Srex

s.t. Vx¢xp € X cosby > a. (22)

wi =w" — Aw; = W' — 5 (%, ¥1)
wy =w'— Aw, = w" — 5 d(Xk, Yi) a7 . ) . )
) . C. Diverse Expected Gradient Active Learning
wherey; andy,, are true labels, and is a scalar controlling _ . . .
n this section, we develop oWiverse Expected Gradient

the step size in the gradient descent method. The above. L X DEGAL hod binati fth
equations hold because the step size in each iteration”fgIVe Learning ( Jmethod as a combination of the

proportional to the magnitude of the current gradient. T €thods P“’F’OSG‘?' in Sections ”,I'A gnd IIl-B. By integratin
difference betweemw”* andw* is calculated as oth the informativeness and diversity analyses, the tivera
t k

objective function becomes

wi—w, = s (o(xt,¥t) — d(Xk, Vi)
BOTE T A oo 18 XPEGAL — argmax > U(x)+ Y
= S§- thk; ( ) XgUleszeX Xt Xk EX
where we denote\¢y. = ¢(xt,y:) — d(Xk,yk). Since the s t. Vx,xp€X: cosby > a (23)

true labels are all unknown, the expected difference should
be calculated over the distribution &y, |x;) and P(y,|x;), Where the first item provides the measurement of informative
ie., ness of the query set and the second item accumulates the set’

. 2 diversity.
[E(wy, — wi)ll Optimization of the above problem would undoubtedly
= 5°|E(A¢w)|? produce a diverse query set. However, to the best of our
— & Z P(yelx) P(yulxi) (6(xe, ¢) — (i, yi))||2 knowledge, it is intractable due to the need to enumerate

Yeve all possible combinations of queries in the unlabeled set to
o 9 , achieve the optimal solution. To tackle this, we propose a
= 52(1 D_ Plyilx)o(xi, yo) [ + 11 D Plyrlxi) d(xi v )| two-step heuristic method to discover an approximate agitim
Yt Yk

query set.

=203 P(yilx)d(x1,30), Y Pyslxr)(xk, yk)) In each selection iteration, we first calculate the informa-
v v tiveness of all unlabeled samplesti and selectk’ (> K)
= 52 (|| (xe)]|2 + [|@(xx)||* — 2||®(x¢)||[|®(xx)] cosbx) . most informative instances, which form the candidate@et

(19) The second step eliminates all candidategjirthat do not
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Algorithm 1 DEGAL VAN
Input: R N . G
Optimized parametew, unlabeled set. oo w
Output: e.0 0.0
Diverse query setX comprising K queries, and the Cl\/ \/63
updated model parameter™<®. @ (b)

1. Calculate, according to (13), the informativenggs;) of ) ) ) . - .
9 ( ) @i t> Fig. 5. Multi-class imbalance. Circles indicate trainingmples, while

each sample i/ with w; . . _ triangles denote the class center. Figure (a) illustrabes goor solution
2: Collect K’ (> K) most informative samples with a produced by an imbalanced training set formed according ctive learning
decreasing order, to form candidate &gt scheme. Figure (b) shows the optimal solution if all data tait labels are

. . . bserved. Indeed, once the solution is affected by imbalabbecomes even
3: Calculate, according to (15), the Diverse Gradient Angi&oe severe in the subsequent iteration and cannot beused-into a regular

between each pair of samples @ resulting the matrix case.
© where[O], = O;
4: Initialize «;

5: repeat However, the multi-class imbalance problem, which is a

6: Processx; € @ from the most informative, to leastSevere limitation of multi-class classification [36], [3&lso
informative; affects relative attributes performance and, as a consegue

7 Find the samples whogg.(w.rt. x;) violate the con- the proposed active learning scheme. In fact, in an active
straint of 0. > «; learning procedure, all query selection is blind. If theedsity

8: Eliminate these samples frof), and the correspond- of one class is large, then it is very likely to choose queries
ing rows and columns o®; belonging to this class in every iteration, leading to a®esi

9: if (# of Q) > K then imbalance in the distribution of the training data. Evennf a

10: Increasen = a + ¢; acceptable balance between all classes of all data exists, a

11 end if random initialization of the training data would result ip@or

12: until There areK” samples remaining iQ; selection of queries in the subsequent iteration and eaéntu

13: X = Q; form an imbalanced training set. For an example, see Fig. 5.

14: Add X into the training set; We therefore propose to control the imbalance of the train-

15: Optimize the model parameter™™ on the enlarged ing setin each iteration by first defining the balance comfra
training set, by usingv as initialization; as follows.

16: return X = Q andw"cv, Definition 2: The balance constraint denotes that the num-

ber of training samples in each class differ from each other
no more thark.

satisfy the constraints in (22). The overBIEGAL is shown Given this definition, we utilize a Gaussian model to sim-
in Algorithm 1. ulate the class center of each attribute strength, which is

In the above procedure, the issue remains of how to inigali£Stimated according to the ranking score under the current
and increase the value of Due to the unknown structure of Model parameters. In a new selection iteration, once theyque

the feature space, we cannot evaluate whabuld properly set X is ob'Fained, thg active learner pre_dicts the label of
diversify different samples. Also, when the iterationstiore  ©aCh query inX and discards those that violate the balance
for some time, the informativeness of the remainder of tf@nstraint. Note that in this step the oracle has no responsi
unlabeled samples may not be as strong as those previol@i§jy to inform the active learner whether the predictetidh
selected, because the direction parametertends to be 'S COITect or incorrect, whlgh is reqsqnab]e be_cause,_ if the
globally optimal. In this case, any fixed value of would abel is correct, either keeping or eliminating this samisle
cause an empty set ¢f. Here, we incorporate an explorator)ﬁXaC“y what we intend to do. If the Ia_lbel is incorrect, reiag

trick that starts with a relatively smadt at initialization and thiS sample would, as expected, adjust the model parameters

then increase: by ¢ if all values of© satisfy the constraints; while removing it does not harm the overall procedure, ekcep
meanwhile, morgk” samples remain ). for slightly affecting the rate at which the optimal solutics

reached.
. One further issue deserves consideration: if some queries

D. The Multi-class Imbalance Issue are discarded by the balance constraint in the currenttsmiec

In the relative attributes model, the task requires leayninteration, they could still be selected as queries in thet nex
a ranking direction, along which the pairs of images in thigeration, and continuing execution would likely result am
training set are ordered as correctly as possible. The imdgénite loop. To ensure that the active learner does not fall
pairs in O have different attribute strengths, while those imto this trap, we construct a backup set to store the dischrd
S are similar. From this viewpoint, this task can be cast agieries, instead of returning them into the unlabeled pool.
a multi-class classification scenario, where each classl laB\fter a certain number of iterations (say 20 or 30), this logck
corresponds to a specific attribute strength, and differesttt is returned to the unlabeled pool.
images with different attribute strengths belong to défer  The whole procedure for controlling the multi-class imbal-
classes. ance issue is shown in Algorithm 2.
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Algorithm 2 Multi-class Balancing ‘ Scenes

Input: :
The labelled training setl, unlabeled setU, « and
MAX _BACKUP_ITER.

: Optimize the model parameter on L;

. Initialize the backup seB = 0;

1=1;

repeat

: Predict the attribute scoregx) in L usingw; o
: Calculate the Gaussian parameters for each class t F
using the predicted scores;
7: (X, w*)=DEGAL(w, U); ~
8: U=U\X,
.v -

o Predict the attribute scoregx) in X usingw™c";
10: Estimate each query’s label as the one with the highest

Gaussian probability;

11: Eliminate the queries fronX which would violate the
balance constraint if added 1o

12: Store the discarded queries i

13: L=LUX,w=w"",

14: 1 =1+ 1;

15: if « >MAX_BACKUP_ITER then

16: ReturnB to U; Fig. 6. Example images. First row: OSR examples. Second RuwbFig
17: i=1, B=0 examples. Third row: Shoes examples.
18: end if

19: until Get an expected model parameter. .
P P B. Experimental Setup

This section provides a detailed description of our basslin
and experimental settings.
IV. EXPERIMENTS Dataset Splitting: Every dataset is equally divided into two
sets, i.e.,50% of samples in the training set ar@% of
A. Dataset samples in the testing set. For each trial, the samples wsed f
training are selected from the training set, either acgfival
To empirically investigate performance, we evaluate otiandomly, while the testing set is used to evaluate perfao@a
approach on three datasets: the Outdoor Scene Recognift@selines:We include four active learning baselines and two
(OSR) dataset [38], the Public Figures Face (PubFig) datasgndomized baselines for comparison. The first active iegrn
[13], and the Shoes from the Attribute Discovery datase}. [3%aseline is the batch mode proposed in [31]. Since this mdetho
The OSR data contains 2688 images from eight categoriesrealized by minimizing the version space of the model,
and has six attribute@natural’, 'open’, 'perspective’, 'large- while maximizing the diversity measurement (which we call
objects’, 'diagonal-plane’, 'close-depthtjescribed by a 512- the Kernel-based Anglé&KBA)) of the query batch, we denote
dimensional GIST descriptor. For the PubFig dataset, aesubi¢é as "MVS+KBA”". The second active learning baseline ("M-
of images was selected from the original dataset in [13]; coB+KBA”) is a combination of multi-class uncertainty sanmgji
sisting of 772 images from eight people with eleven attelut (called margin sampling(MS)) and KBA [40], [41]. The
('masculine-looking’, 'white’, 'young’, 'smiling’, 'chbby’, third ("Entropy-QBC") is an extension of query-by-comrait
visible-forehead’, ’bushy-eyebrows’, 'narrow-eyespointy- algorithms from the entropy viewpoint [42]. The final active
nose’, 'big-lips’, 'round-face’) The feature for describing facelearning baseline ("TEGL+KBA”) is an integration of EGL and
instances is a concatenation of 512-dimensional GIST fd&BA. The two randomized baselines are as follows: the first
tures and 30-dimensional color histogram features. The th{’Random”) is where training samples are randomly selected
dataset, Shoes, is a relatively large-scale dataset tingdine from the training set, while the quantity in each class is the
14658 shoe images structured by ten classes and ten afibgame. The second ("RandomC”) is designed to illustrate the
(’pointy-at-the-front’, 'open’, 'bright-in-color’, 'corered-with- effect of the imbalance issue, and differs from the first iatth
ornaments’, 'shiny’, 'high-at-the-heel’, 'long-on-tHeg’, 'for-  all classes are randomly and equally split into two cliques.
mal’, 'sporty’, 'feminine’), and 960-dimensional GIST featuresVe randomly choos@0% x N samples for classes in the first
and 30-dimensional color histogram features are alsazetlli clique andl0% x N for classes in the second clique, whéve
to describe a shoe instance. These datasets cover divelemotes the total number of samples used to train the model
domains of interest, including natural scenes, human facparameter. Note that in this situation, the number of sasple
and products (Fig. 6) and provide an ideal test-bed for our all the classes is not necessarily equal.
approach. Active Setting: For active learning, an initial labeled sét
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is randomly selected from the training set, and the remaindeyes, laughing can narrow the eyes. If this type of image
form the unlabeled set/. Since a good initialization of a existed, the active learner’s belief could be misled toward
model parameter (i.e., the model is trained on the initialarrow-eyes(see Fig. 8(e)). The Shoes dataset also has the
labeled set) is favorable for active learning, we set the lmerm same issue, such as with the local attributdigh-at-the-heel
of initial labeled samples to: 1) 32 for OSR and PubFig withlowever, for most attributedDEGAL performs well. These
four samples per class; and 2) 100 for Shoes, with ten samplesults suggest th&dEGAL can discover key information in
per class. For each iteration, we utilize a fixed batch size lefarning the relative attributes models, but lacks theitgtiif
5, meaning that 5 queries are chosen each time. The angsklf-tuning when it gets into a trap.
parameterx is set tow/4, ande to 7/36. Furthermore, the  DEGAL is superior to the four active learning baselines in
balance constraint parameteris set at5. The influence of most cases. It can be seen that MVS+KBA has very limited
different parameter settings can be found in Section IV-D. performance, consistent with the analysis in Section li-&,
Model training: In all experiments, problem (8) is optimizedthe samples closest to the classification hyperplane are not
using Joachims’ method [43], and the paraméieis deter- necessarily the most informativ@EGAL outperforms both
mined by cross-validation. All experiments are conducted MS+KBA and Entropy-QBC, because our method intends to
times, and the performance is then averaged. find a query that can produce a large number of uncertain
Performance evaluation: Performance is measured by thepairwise relationships, whereas the other two methodg trea
accuracy of predicted relative strength. For two test samplhe relative attributes as a multi-class problem and only
x; andx;, the comparison,(x;) > rn,(x;) (or r,,(x;) < select a query uncertain to all classes. At this point, the
rm(x;)) is correct if it is consistent with the ground truthinformation induced by one query IDBEGAL is larger than
Then, the total accuracy for attribute is calculated by the that in MS+KBA and Entropy-QBC. FinallyDEGAL offers
rate of correct comparison to total comparison. an improvement over EGL+KBA by modifying the original
EGL as the expected pairwise gradient length, which is more
suitable for the relative attributes model. Furthermotes t
C. Results proposed diversity measurement in the gradient space is an
The comparative results for different relative attributes alternative to that in the primal feature space or the kéezeeél
the OSR dataset, PubFig dataset and Shoes dataset are slspatoe.
in Fig. 7, Fig. 8 and Fig. 9, respectivelREGAL performs  The comparison oDEGAL with RandomCillustrates the
better than both the active learning baselines and the mandimportance of thebalance constraint RandomCbecomes
baselines. SurprisinglfRandomworks well in some of our extremely unstable and has limited performance due to the
experiments, and may even be comparabBESGALIN some imbalanced distribution between different classes. Lofs o
cases. This phenomenon helps us to understand the meainfigrmation is very harmful to the training model, partiatly
of each attribute in each of the datasets. Prior to analws&s, for DEGAL As stated earlier, the initialization dDEGAL
defined two types of attributes, namely the global attributénvolves only minimal information and produces significant
and the local attributes. Global attributes are relatedh® tuncertainty that could blind the subsequent selectiongutoe
whole image, while local attributes are determined only byand result in an imbalanced scenario that performs similarl
local region in the image. In the OSR dataset, all six attdébu to RandomC This also accounts for the slight turbulence on
are global because they need to be assigned by observingDf®&SAL curves and the severe turbulence seenRlandomC
whole image. In this casdDEGAL always performs better The same conclusion can also be reached from the results
than Randomsince the features used are globally relatesf the experiments that test different settingsxopfpresented
to the attribute value. However, in the Pubfig dataset, sorireSection IV-D. Therefore, by using the balance constraint
attributes are globalnfale white, young chubby andround- DEGAL can outperforrRandomC
face, while the others are localskiling visible-forehead
bushy-eyebrowsarrow-eyes pointy-noseand big-lips). The
results indicate thaDEGAL sptill works well on tr?e global D. Effects of the Parameters
attributes but exhibits some limitations on the local htttes. In this section we evaluate the effects of changing ke
One reason for this is that our method cannot localize the andx parameters. Each is tested by fixing the others. All
attributes to a specific region, and without this informatio experiments are conducted on the OSR dataset and the results
i.e., the localization, the active learner might be confusad are averaged over all six attribute learners’ performances
easily affected by the distinct features in other regiohg; t Fig. 10 shows the influence dk on the performance of
algorithm subsequently picks up queries that lead thebatei DEGAL Overall, the different settings have similar perfor-
learner in the wrong direction. In subsequent iteratiohe, tmances and produce consistent results for the final setectio
attribute learner performs normally until there are enoudhowever, for the middle selections, there is slight diveigge
training samples, such that the localization can be reeaeras shown in the enlarged box. Smaller valuegsofesult in a
For example, the attributemiling can be regarded as a globabetter performance, while increasiAgdecreases the accuracy
case, since a smile changes the profile of the whole faice this range, suggesting that smaller K helps the active
even though it is only related to the mouth shap&GAL learner to precisely explore the feature space, while targe
therefore works well orsmiling Taking the attributenarrow- K results in redundant information in the selected query set
eyesinto consideration, even if a person has a pair of largdthough smaller’ works better, this comes at computational
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cost due to the need for more iterations for selections and
retraining. There is therefore a trade-off betwe&h and ossr
the computational cost, which needs to be considered in the el

implementation.
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The effects of the parameterwhen settingK’ = 5 andx = 5.

Fig. 11 shows the effects of angular parameteDifferent g o ]
values ofo have almost the same performance, suggesting that ~ § oasl |
the proposed algorithm is insensitive to this parameteteNo
that this is partially due to the incremental strategy used i 084t ]
Algorithm 1, i.e., increasingv by e. oaal [ ]

Fig. 12 shows that parameterhas a relatively significant B
influence on performance: = 5 and x = 10 have similar 08 = - - 2607'77":“2;0

performance, while wherk 20 the accuracy slightly
decreases for the middle selections. Whenis set to 40,
the performance significantly drops as the number of querie
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Fig. 12. The effects of the parameterwhen settingk’ = 5 anda = /4.
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increases, suggesting that the imbalance issue between EheComputational Complexity

class_es is severe enough to negatively affect the activedea The computational complexity of the proposed method is

Keeplngm small IS therefore an gffectlve way to control thecmalyzed based on the cost in one iteration, which consists o
imbalance of multi-class distributions. the training model parameters and active selection. Assume
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that the training set has samples, the unlabeled pool has taken to compute the informativeness and the angle values is
samples, the batch size I§, and the attribute haklevels of O(nm?) and O(C%), respectively. The calculation involved
strength. Sinc&2, pairs need to be considered in the training multi-class balancing is of orde®(m + K). Thus, the
phase, the complexity for training is of ordér((C2)3) in total complexity in one iteration i®((C2,)3 + nm? + C% +

the worst case [33]. In the active selection phase, the time+ K). The corresponding computational complexities of
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TABLE | . s .
COMPARISON OFCOMPUTATIONAL COMPLEXITY maxx ¥(x), we can write¥(x) by substituting (11) into (13):

Method Name [ Computational Complexity U(x) = ZP(Y|X)¢(X7 y)

DEGAL O(nm? + C% + m+ K) y

EGL+KBA O(nm? + nm)

MS+KBA O(InCZ + nm) =23 "> P(yulx)llg(xu, X, )

MVS+KBA O(nC% + nm) Xu  Yu

- 2
SR ot =23 (P(1)lg(xu %, 1) | + P(~L0) g e x, ~1) |
X,

+P(01x)[lg(xu, x,0)[]) - (24)

the different methods are shown in Table I. For clarity, wi . S .

. . . . o ue to the unit constraint in equation (7),
omit the complexity for training since it is the same for al
approaches. Our method takes less time than other batce-mogx) =2 Z (P(1|x)[1 —wil(x, —x)]¢
active learning strategies, singeand K are generally smaller xu
thann. Entropy-QBC has the lowest computational complexity + P(—1x)[1 + wT (x4 — X))+
because it is a serial-mode method, but this method may take PO T _ o5
more iterations to reach an expected solution. P Ofx) W, (e X)|) ’ (25)

Define the above accumulation items s, x):

f (Xua X)

V. ConcLusioN =PRI — Wil (% — %)) + P(-1pO[L + Wil (x, — )4

m

+ P(0]x)|w}) (xu —x)|
Incorporating an active learning scheme into semantimlearg(p(nx) + P(~1]x)) + (P(~1|x) — P(1|x))w*T (x, — X)
ing is a promising method to efficiently improve various T
semantic learners, especially when faced with a large amount £ (0 [Wn (xu = x)]. (26)
of internet data. In order to focus on the improvement dfhe above equality is obtained whéw*” (x, — x)| < 1.
relative attributes learning with limited label informai, here Note thatP(1|x) + P(—1|x) + P(0x) = 1, and in an ideal
we present a novel batch-based active learning metho@ﬂcakbase,P(1|x) + P(~1|x) = 1 for w:I'(x, — x) # 0, while

m

Diverse Expected Gradient Active Learning (DEGAlMe use P(0|x) = 1 for w’''(x, — x) = 0. This is because of the
the expected gradient length as the informativeness of eafffinitions of O and S.

unlabeled sample, and illustrate its equivalence to Toregpalt Without loss of generality, we assuni,, |w’(x, —
[30]. To collect a batch of queries of reasonable diversity)| < 1. Therefore, ifw*" (x, — x) # 0,

we constrain thaliverse gradient anglebetween the queries T

to preserve different guidance on parameter optimizatioﬁ(xuvx) =1+ (P(=1x) = P(1x))wy, (¥u —X). (27)
Finally, a two-step optimization is formulated that rang@sn | this case f(x.,x) reaches a maximum wheR(—1[x) =

informativeness analysis to diversity analysis. To adslte® p(1|x) = 0.5, which is exactly the same as Tong's result. On
problem of imbalanced class distribution, we exploit a $8npthe other hand, it 7 (x, —x) =0,

method to minimize the issue using thelance constraint "

The experimental results on three different kinds of dagasd (Xu:X) = [Wy, (xu —x)|. (28)
demo_nstrate that the propos@EGAL is superior to other ;. qer this condition, any large value ¢fx,,x) means that
baselines. the pairwise differencex, — x is informative to the current

However,DEGAL still has some limitations. For example,model parametew’,, since it is supposed to be located on
how to actively discover the specific regions related todwal the classification hyperplane.

attributes remains open. Furthermore, the proposed meshod |n conclusion, sincef (x.,, x) > 0, the queryx maximizing

fixed at the attribute level. How to define the joint informag (x) is the one which produces the greatest quantity of

tiveness of a single sample for different attributes stéeds informative pairwise differences. Adding such a query te th

to be considered, and this will be investigated in futurekwortraining set can significantly improve leading the optirtiza
procedure to the optimum.
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