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Abstract 
 

Parameter estimates ( ) obtained in discrete choice models are confounded with the scale 
parameter of the logistic distribution. The scale parameter captures the indecisiveness (or 
errors) made by individuals in the choice of experiment alternatives. Therefore the magnitude 
of  is determined by both location (mean) and scale (indecisiveness) effects. This has 
important implications for marketing research. Variability in  across sub-groups (e.g. 
markets, segments or research samples) is often used to indicate differences in preference. 
However, these differences may be due simply to scale, and not average preference. Incorrect 
interpretation could result in the adoption of inappropriate marketing strategies. Through the 
analysis of two simple choice experiments, this paper illustrates how errors in individual 
choice behaviour lead to a logistic distribution of choice probabilities, and the consequent 
counfounding of these errors with . The sampling distribution of is identified, and further 
research recommended into its implication for Discrete Choice Modelling. 
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Introduction 
 

In the interpretation of discrete choice models, differences in estimated beta parameter 
estimates ( ), say across segments, markets or research studies, are commonly used to 
indicate differences in consumer preference. Unfortunately, the correct interpretation is not so 
straightforward. Apparent differences in , rather than being simply an indicator of relative 
preference (location effects), may instead be the result of the indecisiveness, or inconsistency, 
of the subjects in the choice experiment (scale effects). The objective of this paper is to 
highlight this relationship between indecisiveness and , and illustrate it with data collected 
from two simple choice experiments. 
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The implication of this relationship for effective marketing decision-making is considerable. 
For example, a marketer may be interested in whether one consumer segment prefers a 
product more than another, or whether price sensitivity varies between markets. In both these 
situations it is insufficient simply to compare s. In the Multinomial Logit (MNL) model,  
is confounded with the estimated scale parameter of the logistic distribution ( ). 
Consequently,  can be large either because the alternative in the choice experiment is 
preferred on average more often or because the decisiveness (or confidence) with which the 
choice was made in the experiment was high. Scale effects might therefore cause (false) 
differences to be concluded in segment product preference or market price sensitivity, 
resulting in the adoption of inappropriate marketing strategies. Instead, the accurate 
comparison of preference between sub-groups from estimated MNL models (and all other 
limited dependent-variable models), requires consideration of both location and scale effects 
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so that the impact of scale can be removed from . Louviere and Swait (1996) have discussed 
an approach for dealing with these comparisons and this is recommended when sub-group 
comparisons are being made, for at present independent estimation of scale and location 
effects is not possible using existing MNL procedures available in commonly used marketing 
research software. For the sake of clarity it is noted that scale effects are irrelevant if no 
comparison of  is being made across sub-groups. In this simpler (and more common) one 
model situation, the magnitude of  is not being considered, and the confounding of  with b 
presents no problems in the interpretation of model outputs. 
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How Inconsistencies (Errors) in Preference lead to Variability in Parameter Estimates 
 
Random Utility Theory postulates that utility can be separated into systematic (representative) 
and random (individual idiosyncrasies of taste) components. The utility U of the ith alternative 
for the qth individual can therefore be stated as 
 

iqiq VU ε+=  
 
Utility maximising individuals are assumed to choose the alternative that yields the greatest 
utility. In other words, individual q will choose alternative i iff  
 

 ∀  j ≠ i ∈ A ,   or by rearrangement, 
iqjqjqiq VV εε −>−  

iqV jqjqiq V+ εε +>

 
Rearranging the observables and the unobservables (errors) together highlights why the 
distribution of the difference of the two error components (εj - εi) is so fundamental to choice 
modelling. Of course the analyst does not know (εj - εi), so a probability that (εj - εi) < (Vi - Vj) 
has to be assumed. In MNL the assumption is that each error component is Independently and 
Identically Distributed (IID) Extreme Value Type I (EV1). This paper focuses on examining 
this distribution of the error terms, and illustrates why the EV1 is often an appropriate 
distributional assumption, leading to a logistic distribution of choice probabilities and an 
ensuing variability of  determined by this distribution’s scale parameter. β̂
 
Real market choice behaviour, however, is complex and there are many sources of error that 
are captured by ε. So to demonstrate the effect of ε on  more clearly, a much simpler 
experimental context was chosen. Illustration of variability in  arising from this situation 
would suggest an amplified version in the more complex real-world environment. Instead of 
looking at utility maximisation (preference) behaviour, the simpler case of colour perception 
was examined in two experiments; that is, the choice of the ‘most red’ in response to two 
boxes of colour presented on a computer screen. Again for simplicity, these experiments were 
designed to limit the source of error to 'within-subject' perception error - i.e. the difference 
between subjective perception and the objective characteristic of a presented alternative. 
Louviere, Hensher and Swait (2000) have stated the functional relationships implied by the 
choice process, and Table 1 sets out a modified version of their flowchart as a summary of the 
objectives of the two colour perception experiments. 
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Table 1: The Functional Relationships of the Colour Choice Process 
 

Step Measure Description Assumed Error Distribution 
0 rx  The measured level of 

red in colour x. 
No distribution, as assumed 
to be measured without error. 

1 sx = f(rx) The perceived level of 
red in colour x 

Exponential,  
~Exp(θ,σ) 

2 ux = g(sx, sy) The perception that sx 
is more red than sy 

Extreme Value Type I 
~EV1(ξ,θ) 

3 p(x) = h(ux, uy) The likelihood of 
colour ux being chosen. 

Logistic distribution 
~Logistic(m,b) 

 
The Two Experiments 
 
The first experiment (Experiment 1) was designed to capture the distribution of errors in sx 
(Step 1). The second experiment (Experiment 2) was designed to capture the distribution of 
errors in ux (Step 2). Further analysis of Experiment 2 data was then conducted to understand 
the distribution of the choice probabilities p(x) (Step 3), and hence the distribution of  and  
resulting from the preceding error distributions. Each treatment was a simple computer screen 
containing two boxes of colour, and the subject was asked to click the ‘most red’ box. Both 
experiments had the same appearance, although the experimental design behind each was 
different. The treatments were evaluated by a single subject, on the same computer, to 
minimize uncontrolled sources of error. The two colours assigned to stimuli A and B can be 
defined as follows. Let U be the universe of all possible colours definable on an RGB scale. 
Let T ⊂ U be the subset of RGB colours chosen for the experiment. Let {x,y}∈ T be a pair of 
colours presented to the subject as the experiment treatment. Let the colour of x be defined as 
x = f(r,g,b), where r, g and b are red, green and blue, respectively. (Colours with varying 
levels of red can therefore be generated by altering the parameter r, while holding the 
parameters g and b constant at zero). Let r be measured on an interval scale of range [0,255]. 
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Experiment 1: Errors in perception (Step 1) 
In Experiment 1, the midpoint of the pair {x,y} was fixed at r = 60, and treatments were 
constructed by varying y-x over the range [0,60]. Colours x and y were then randomly 
allocated to treatment stimuli A and B. Each possible difference y-x was randomly presented 
100 times (N = 6,100). Figure 1 shows the distribution of errors in choosing the ‘most red’, 
over the range of colour differences. It can be seen that the distribution of error is well 
approximated by an exponential distribution. The average rate of error was nine percent. The 
results of Experiment 1 provide an approximate distribution of perception error given mean-
centred differences ( r  = 60) in the actual level of red in the two colours. This distribution can 
now be used as a selection probability that yields a subset of colours S ⊂ T such that each 
element x ∈ S enters the set in proportion to its likelihood of being perceived the same as r = 
60. In this sense, S represents the domain of error for r = 60, and its use in Experiment 2 
enables accurate measurement of errors made in the perception of a maximum when 
evaluating the function ux. Its use is also necessary due to the effect of Weber’s Law over 
different colour intensities. Fixed differences in colour become easier to discriminate between 
the more red they are, and hence a non-constant error variance exists over the colour 
spectrum. The subset S thus provided the appropriate experiment frame for Experiment 2. 



Experiment 2: Errors in the perception of a maximum (Step 2) 
This experiment focussed on the distribution of errors around the choice of the ‘most red’ for 
pairs of colours randomly selected from the domain of error S; that is, the distribution of 
rchosen - rnotchosen  when rchosen is not an objective maximum. Experimental treatments were 
designed by randomly selecting pairs of colours from subset S. As assumed in MNL, Figure 2 
shows that this distribution is well approximated by the EV1 distribution. This is not 
surprising, as Johnson, Kotz and Balakrishnan (1995) have shown that the EV1 distribution is 
the distribution of sample maxima taken from a parent distribution whose tail decreases at 
least at an exponential rate. This result has therefore captured the distribution of the error 
component εj - εi where Vi was perceived a maximum. A total of N = 7,000 treatments were 
evaluated. The average error rate was 50%. 
 
Fig.1: Plot of % Error in Experiment 1         Fig.2: Plot of % Error in Experiment 2 
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The choice of A or B: Errors in the choice of an alternative (Step 3) 
Experiment 2 demonstrated the use of the EV1 distribution to approximate the distribution of 
errors around rchosen - rnotchosen. However, in the MNL choice model we are interested in the 
likelihood of a particular alternative being chosen: the probability (in Step 3) that x is chosen 
given the perception ux > uy. Johnson, Kotz and Balakrishnan (1995) have shown that the 
difference between two IID EV1 variables is the logistic distribution. This is supported both 
in the marginal means plot of the choice of A given the difference rB – rA (Figure 3) and in the 
linearity of the plot of estimated regression coefficients versus the midpoints of sextiles of this 
difference (Figure 4). Although treatments A and B were the ‘most red’ with equal frequency, 
there was approximately a 60/40 preference for A, possibly due to the subject’s left-eye 
dominance, or the slight relative ease of centre-to-left over centre-to-right mouse movements. 
 
Fig.3: Plot of % Choice of Treatment A       Fig.4: Plot of  for Sextiles of rB – rA β̂
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We note that the data support the use of a logistic distribution of error differences (εB - εA) as 
close first approximations appear to be consistent with the theory as postulated. Subsequent 
examination of the functional form of the logistic regression model π(x) and its linear form 
created through the logit link function g(x) [i.e. taking the log of the odds ratio], provides a 
notational explanation of how each β is confounded with the scale parameter. 
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The variability of parameter estimates – the effect of lambda 
Finally, the collected data can be treated as a population, and a series of MNL models run on 
subsets of the data, simulating a hypothetical segment, market or multiple-study situation. By 
taking repeated random samples (N = 10,000), with replacement, the sampling distribution of 

 and  was bootstrapped. Figures 5 and 6 detail these results, indicating that b  is distributed 
normally, and  is distributed EV1 with a large variability in the estimated parameter. 
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Fig.5: Bootstrap Plot of                                 Fig.6: Bootstrap Plot of  b̂ β̂
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Limitations, Conclusions and Further Research 
 
Although a high level of replication for each subject is appropriate for examining within-
subject error, a limitation of this study is that it was conducted on a single subject only. These 
results would therefore benefit from demonstration of consistency of the error distributions 
(although not the estimated parameters) across individuals. Despite this, it is hoped that 
sufficient evidence has been provided to conclude that s obtained in MNL models are 
confounded with the scale parameter of the logistic distribution, and that the errors captured 
in the scale parameter dramatically impact the magnitude of . The sampling distribution of 

 has not been widely considered in discrete choice modelling, and further research is 
recommended to understand the implication of this result. 
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