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Abstract

The main contribution of this paper is the dimensionality reduction for multiple-step 2D point feature based Simultaneous Localization and
Mapping (SLAM), which is an extension of our previous work on one-step SLAM (Wang, Huang, Frese & Dissanayake 2013). It has been
proved that SLAM with multiple robot poses and a number of point feature positions as variables is equivalent to an optimization problem
with only the robot orientations as variables, when the associated uncertainties can be described using spherical covariance matrices. This
reduces the dimension of original problem from 3m + 2n to m only (where m is the number of poses and n is the number of features).
The optimization problem after dimensionality reduction can be solved numerically using the unconstrained optimization algorithms.
While dimensionality reduction may not provide computational saving for all nonlinear optimization problems, for some SLAM problems
we can achieve benefits such as improvement on time consumption and convergence. For the special case of two-step SLAM when the
orientation information from odometry is not incorporated, an algorithm that can guarantee to obtain the globally optimal solution (in
the maximum likelihood sense) is derived. Simulation and experimental datasets are used to verify the equivalence between the reduced
nonlinear optimization problem and the original full optimization problem, as well as the proposed new algorithm for obtaining the
globally optimal solution for two-step SLAM.

Key words: Multiple-step SLAM; least squares; dimensionality reduction.

1 Introduction

For more than 15 years, Simultaneous Localization and
Mapping (SLAM) has been a key problem in robotics
(Bailey & Durrant-Whyte 2006). As a result, many al-
gorithms have been proposed to solve SLAM in various
forms. In the state-of-the-art approaches, under the as-
sumption of (independent) Gaussian noise, the SLAM
problem is formulated as a sparse non-linear least squares
(NLLS) problem over m robot poses and n features’ posi-
tions (3m + 2n variables in 2D) (Dellaert & Kaess 2006).
Newton-based iterative solvers such as Gauss-Newton and
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Levenberg-Marquardt are among the most popular algo-
rithms for solving this NLLS. The sparseness of this NLLS
is a consequence of (i) conditional independence of fea-
tures given the robot poses, (ii) limited range of sensors,
and finally (iii) uncorrelated measurement noise. Exploiting
this inherent property of SLAM problems is a key char-
acteristic of many of the modern solvers (Kaess, Johanns-
son, Roberts, Ila, Leonard & Dellaert 2012)(Kummerle,
Grisetti, Strasdat, Konolige & Burgard 2011)(Huang, Wang
& Dissanayake 2008).

It is now well-known that the SLAM problem becomes con-
siderably easier to analyse when the noise covariance matri-
ces are spherical (Wang et al. 2013). In Huang, Lai, Frese &
Dissanayake (2010), the authors reported an unexpected con-
vergence of vanilla Gauss-Newton algorithm to the optimal
solution from random initial guesses in high-dimensional
SLAM problems when the noise covariance matrices are
spherical. Similarly, in the tree-based network optimizer
(TORO) (Grisetti, Stachniss, Grzonka & Burgard 2007),
good convergence results from bad initial values are reported
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for large pose-graphs when the noise covariance matrices are
spherical. More recently, Carlone (Carlone 2013) addressed
the convergence of Gauss-Newton algorithm in pose-graph
SLAM. Under the assumption of spherical noise covariance
matrices, a conservative estimate for the basin of attraction of
the ML estimate in pose-graph SLAM was derived. In Wang
et al. (2013), Huang, Wang, Frese & Dissanayake (2012),
Wang, Hu, Huang & Dissanayake (2012), authors studied
the ML objective function in “one-step SLAM” when the
noise covariance matrices are spherical. They show that min-
imizing the ML objective function (in one-step SLAM) can
be reduced to a one-dimensional optimization problem over
the robot orientation. Furthermore, it is shown that the re-
duced problem has a unique minimizer unless the noise is
extremely large.

In this paper we extend the results of Wang et al. (2013),
Huang et al. (2012), Wang et al. (2012) along two directions:
(i) we show that the ML estimate in general (m-step) feature-
based SLAM problems can be obtained by solving a NLLS
problem over only m variables (i.e., the robot orientations in
m poses), in particular, the structure of the problem is closely
related to the incidence matrix of the directed graph of the
SLAM problem, and (ii) based on this result, we develop
an algorithm that can be guaranteed to find the globally
optimal solution to the 2-step SLAM when the orientation
information in odometry is not used.

This paper is organized as follows. In Section 2, the ML
estimate in SLAM is formulated as the solution to a NLLS
problem. Section 3 introduces the definition of spherical ma-
trices and derives an alternative SLAM formulation when
covariance matrices are spherical. In Section 4, it is shown
that the m-step (m ≥ 2) SLAM problem is equivalent to
another NLLS over only the robot orientations. In Section
5, we show that the globally optimal solution to a special
case of two-step SLAM problem can be obtained by finding
the roots of a polynomial with degree 6. In Section 6, exam-
ples are presented to illustrate the benefits of dimensionality
reduction. Finally Section 7 concludes the paper.

Notations: Throughout the paper, ⊗ denotes the Kronecker
product, superscript T and −1 stand for, respectively, the
transposition and the inverse of a matrix; C Â D means
that matrix C −D is positive definite; I and In denote the
identity matrix with compatible dimension and dimension
n, 0 represents the zero matrix with compatible dimension,
and ‖e‖2C = eT Ce, where C Â 0 and e is a vector. wrap(·)
is the function that maps an angle to its equivalent angle
in (−π, π]. The symbol diag(C1, . . . , Cn) denotes a block-
diagonal matrix whose diagonal blocks are C1, . . . , Cn.

2 Problem Formulation

Suppose n 2D point features {fi}n
i=1 are observed from a se-

quence of m+1 2D robot poses {ri}m
i=0. We use Zi

k to denote
the observation made from pose ri to feature fk. We use Oi

(1 ≤ i ≤ m) to denote the odometry measurement between

pose ri−1 and pose ri. Both the odometry and observations
are corrupted by zero-mean Gaussian noises with covariance
matrices PZi

k
and POi

, respectively. Xfk
= (xfk

, yfk
)T de-

notes the position of feature fk. Xri
= (xri

, yri
)T denotes

the position of robot pose ri while φri
denotes the orienta-

tion of robot pose ri. The coordinate frame is defined by the
robot pose r0. That is, Xr0 = (0, 0)T and φr0 = 0. R(φri)
is the rotation matrix corresponding to φri defined by:

R(φri
) ,

[
cos φri

− sinφri

sinφri cos φri

]
. (1)

The non-linear least squares (NLLS) SLAM formulation
(Dellaert & Kaess 2006) uses the odometry and observation
information to estimate the state vector containing all the
robot poses and all the feature positions

X , (XT
f1

, · · · , XT
fn

, XT
r1

, φr1 , · · · , XT
rm

, φrm)T (2)

and minimizes the negative log-likelihood function

F (X) =
m∑

i=0

ni∑

j=1

‖Zi
kij
−H

Zi
kij (X)‖2

P−1
Zi

kij

+
m∑

i=1

‖Oi −HOi(X)‖2
P−1

Oi

(3)

where Oi (1 ≤ i ≤ m) are odometries, Zi
kij

are observations
(assume ni features are observed from robot pose ri and kij

is the global index of the j-th feature observed from pose
ri), and POi

and PZi
kij

are the corresponding covariance

matrices.

In the above least squares SLAM formulation, HZi
k(X) and

HOi(X) are the corresponding functions relating Zi
k and Oi

to the state X . An odometry measurement is a function of
two poses (XT

ri−1
, φri−1)

T and (XT
ri

, φri)
T and is given by

HOi(X) =

[
R(φri−1)

T (Xri
−Xri−1)

wrap(φri
− φri−1)

]
. (4)

A single observation is a function of one pose (XT
ri

, φri)
T

and one feature position Xfk
which is given by

HZi
k(X) = R(φri

)T (Xfk
−Xri

). (5)

In particular, since φr0 = 0 and Xr0 = (0, 0)T , the odome-
try function from robot r0 to r1 is given by

HO1(X) =

[
Xr1

φr1

]
(6)
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and the observation function from robot r0 to fk is given by

HZ0
k(X) = Xfk

. (7)

3 Alternative Formulation when Covariance Matrices
are Spherical

The NLLS in (3) can be simplified when matrices PZi
kij

and

POi
are spherical for every i and j.

3.1 Definition of spherical matrices

We first state the definitions of spherical matrices which
were defined in (Wang et al. 2013).

Definition 1 A ∈ R2×2 is called spherical if it commutes
with R(φ) (defined in (1)) for every φ. i.e. AR(φ) = R(φ)A
for every φ. B ∈ R3×3 is called spherical if it has the format
of B = diag(A, a) where A ∈ R2×2 is spherical and a is a
real number.

Remark 1 Every positive definite spherical matrix A ∈
R2×2 can be written as A = a2I2 for some a 6= 0. Further-
more, for every positive definite spherical matrix B ∈ R3×3

we have B = diag(a2I2, b
2) for some non-zero a and b.

A more general definition of spherical matrices was also
introduced in (Wang et al. 2013), which will also be used in
the following of this paper.

Definition 2 Let R̄k(φ) be the block-diagonal matrix with
k blocks where each block is a 2× 2 rotation matrix R(φ).
That is

R̄k(φ) , diag(R(φ), . . . , R(φ)). (8)
Matrix A ∈ R2n×2m is called spherical if AR̄m(φ) =
R̄n(φ)A for every φ.

Remark 2 The sum, difference, product, inverse, transpose
of spherical matrices are also spherical matrices. This fact
will be used in the proof of the main result of this paper.

When sensors used are laser range finders, the covariances
can in general be approximated as spherical ones. Other
sensors, in particular stereo vision, have much larger un-
certainty in the depth direction, will result in covariances
far from spherical. Many publicly available datasets used
in SLAM have spherical covariance matrices (Kummerle,
Steder, Dornhege, Ruhnke, Grisetti, Stachniss & Kleiner
2009).

In this paper, the following strategy is used when approx-
imating the original (non-spherical) covariance matrices
PZi

kij

, POi as spherical matrices

PZi
kij

= diag(P̄Zi
kij

, P̄Zi
kij

), POi = diag(P̄Oxy
i

, P̄Oxy
i

, pOφ
i
)

where P̄Zi
kij

= 1
2 (PZi

kij

(1, 1) + PZi
kij

(2, 2)), PZi
kij

(1, 1)

and PZi
kij

(2, 2) are the elements in the 1-st row and 1-st col-

umn, and 2-nd row and 2-nd column of original covariance
matrix PZi

kij

, respectively. Similarly, P̄Oxy
i

= 1
2 (POi(1, 1)+

POi
(2, 2)), pOφ

i
= POi

(3, 3).

3.2 Alternative formulation

When the covariance PZi
kij

are 2× 2 spherical positive def-

inite matrices, we have

‖Zi
kij
−H

Zi
kij (X)‖2

P−1
Zi

kij

=‖Zi
kij
−R(φri

)T (Xfkij
−Xri

)‖2
P−1

Zi
kij

(9)

=‖(Xfkij
−Xri

)−R(φri
)Zi

kij
‖2

P−1
Zi

kij

. (10)

The expression in (10) is easier to deal with than that in (9)
because there is no product of variables in (10). Similarly,

if we denote the odometry as Oi =
[
OxyT

i Oφ
i

]T

, then
when the covariance POi

are 3×3 spherical positive definite
matrices with the format

POi
= diag(POxy

i
, pOφ

i
) (11)

with POxy
i

being a 2 × 2 spherical positive definite matrix
and pOφ

i
> 0, then the odometry term ‖Oi −HOi(X)‖2

P−1
Oi

in (3) becomes

‖Oxy
i −R(φri−1)

T (Xri
−Xri−1)‖2P−1

O
xy
i

+ p−1

Oφ
i

(wrap(Oφ
i − φri

+ φri−1))
2

= ‖(Xri
−Xri−1)−R(φri−1)O

xy
i ‖2

P−1
O

xy
i

+ p−1

Oφ
i

(wrap(Oφ
i − φri

+ φri−1))
2. (12)

Thus, when PZi
kij

and POi
are all spherical, the objective

function in NLLS SLAM formulation (3) can be written as

F (X) =
m∑

i=0

ni∑

j=1

‖(Xfkij
−Xri)−R(φri)Z

i
kij
‖2

P−1
Zi

kij

+
m∑

i=1

‖(Xri
−Xri−1)−R(φri−1)O

xy
i ‖2

P−1
O

xy
i

+
m∑

i=1

p−1

Oφ
i

(wrap(Oφ
i − φri

+ φri−1))
2 (13)

where φr0 = 0, R(φr0) = R(0) = I , and Xr0 = (0, 0)T .
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r0
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r1
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f3

Fig. 1. An example of two-step SLAM with three features.

4 m-Step SLAM is Equivalent to an Optimization
Problem with only m Variables

To better illustrate the equivalence between optimization
problem of dimensionality reduced SLAM and that of orig-
inal full dimension SLAM, we first prove the equivalence
for two-step SLAM case (with three robot poses r0, r1, r2)
in detail. The general m-step case (with m + 1 robot poses
r0, r1, · · · , rm) can be proved similarly.

4.1 Two-step SLAM

When the covariance matrices are spherical, by (13), the
objective function of the two-step SLAM problem can be
written in a compact form as below (note φr0 = 0)

F (XL, φr1 , φr2) = ‖AT XL − Ř(φr0 , φr1 , φr2)z‖2C
+ p−1

Oφ
1
(wrap(Oφ

1 − φr1))
2

+ p−1

Oφ
2
(wrap(Oφ

2 − φr2 + φr1))
2 (14)

where XL ,
[
XT

f1
. . . XT

fn
XT

r1
XT

r2

]T

, and

A , A0 ⊗ I2, (15)

where A0 ∈ R(n+2)×(n0+n1+n2+2) (n is the total number
of features observed, ni is the number of features observed
from pose ri, i = 0, 1, 2) is the reduced incidence matrix of
the directed graph of the SLAM problem (the direction of
each edge is from the robot pose to the observed feature or
from the robot pose i to the robot pose i+1, as shown in Fig.
1). The reduced incidence matrix is obtained by deleting the
row that corresponds to the “origin” in the incidence matrix
of graph 1 . For example, for the two-step SLAM with three
features as shown in Fig. 1 with pose r0 as the “origin”, the
reduced incidence matrix A0 can be written as

1 For the directed graph G = (V, E), the incidence matrix
A ∈ {0, 1,−1}nv×ne where nv = |V| and ne = |E|. For the k’th
edge (ik, jk) ∈ E , Aikk = −1 and Ajkk = 1. The other elements
of A are zero.

A0 =

0
BBB@

Z0
1 Z0

2 Z1
1 Z1

2 Z1
3 Z2

2 Z2
3 Oxy

1 Oxy
2

Xf1 1 0 1 0 0 0 0 0 0
Xf2 0 1 0 1 0 1 0 0 0
Xf3 0 0 0 0 1 0 1 0 0
Xr1 0 0 −1 −1 −1 0 0 1 −1
Xr2 0 0 0 0 0 −1 −1 0 1

1
CCCA.

The other matrices/vectors in (14) are (note that φr0 = 0)

Ř(φr0 , φr1 , φr2)

, diag(R̄n0(φr0), R̄n1(φr1), R̄n2(φr2), R(φr0), R(φr1))
= diag(R̄n0(0), R̄n1(φr1), R̄n2(φr2), R(0), R(φr1))

(16)

z ,
[
(Z0

f )T (Z1
f )T (Z2

f )T (Oxy
1 )T (Oxy

2 )T
]T

(17)

C , diag(C0
z , C1

z , C2
z , Cp) (18)

where R̄k(φ) is defined in (8), and

Zi
f =

[
(Zi

ki1
)T · · · (Zi

kini
)T

]T

, i = 0, 1, 2 (19)

Ci
z = diag(P−1

Zi
ki1

, . . . , P−1
Zi

kini

), i = 0, 1, 2 (20)

Cp = diag(P−1
Oxy

1
, P−1

Oxy
2

) (21)

According to Definition 2, A, C are both spherical matrices.

Remark 3 Note that when the variables φr1 , φr2 are fixed,
the function F (XL, φr1 , φr2) in (14) becomes a quadratic
function of XL. Moreover, the matrix A only depends on
the structure of the graph in SLAM (i.e. which feature is ob-
served by which pose), and z is the integration of the obser-
vation and odometry data (x, y part). The special structure
of the function F (XL, φr1 , φr2) in (14) makes it possible
to obtain the main result of dimensionality reduction in this
paper.

The following lemma about linear least squares is well
known.

Lemma 1 For the linear least-squares problem of minimiz-
ing ‖AT X − b‖2C where A, b, C are given, its optimal solu-
tion X∗ can be obtained by

X∗ = (AC−1AT )−1AC−1b

and when substituting X∗ into ‖AT X − b‖2C , we can get

min
X
‖AT X − b‖2C = ‖b‖2Q (22)

where
Q , C − CAT (ACAT )−1AC. (23)
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Before stating the main results, we introduce more notations.
Denote

Ai , A0
i ⊗ I2, i = 0, 1, 2 (24)

where A0
i has the same size as A0, and its non-zero columns

are equal to the columns of A0 in which the corresponding
edges are originated from robot pose ri. Thus

A0 = A0
0 + A0

1 + A0
2, A = A0 + A1 + A2.

For example, for the two-step case as shown in Fig. 1, if we
divide A0 into five blocks as

A0 =
[
a1 a2 a3 a4 a5

]
(25)

where

a1 =




1 0

0 1

0 0

0 0

0 0




, a2 =




1 0 0

0 1 0

0 0 1

−1 −1 −1

0 0 0




, a3 =




0 0

1 0

0 1

0 0

−1 −1




,

a4 =
[
0 0 0 1 0

]T

, a5 =
[
0 0 0 −1 1

]T

,

then we have that

A0
0 =

[
a1 0 0 a4 0

]
, A0

1 =
[
0 a2 0 0 a5

]
,

A0
2 =

[
0 0 a3 0 0

]
.

Furthermore, we define

Qi , CAT
i (ACAT )−1AC, i = 0, 1, 2. (26)

Now our main result about two-step SLAM is stated as fol-
lows.

Theorem 1 The two-step SLAM problem (minimizing the
objective function F (XL, φr1 , φr2) in (14)) is equivalent to
a nonlinear least squares problem with only 2 variables
φr1 , φr2

min
φr1 ,φr2

f0(φr1 , φr2) (27)

where

f0(φr1 , φr2) =
(
Ř(φr0 , φr1 , φr2)z

)T
Q

(
Ř(φr0 , φr1 , φr2)z

)

+
2∑

i=1

p−1

Oφ
i

(wrap(Oφ
i − φri + φri−1))

2

(28)
with Ř(φr0 , φr1 , φr2) being given in (16), and z is given by
(17), Q is given by (23).

Furthermore, the function f0(φr1 , φr2) can be simplified as

f0(φr1 ,φr2) = c0 − 2
∑

0≤i<2

∑

i<j≤2

bij cos(φrj − φri − φij0)

+
2∑

i=1

p−1

Oφ
i

(wrap(Oφ
i − φri

+ φri−1))
2 (29)

where c0 , zT Cz −∑2
i=0 bii, and for i, j = 0, 1, 2,

bij ,
√

(zT Qizj)2 + (zT Qiz⊥j )2 (30)

φij0 , atan2(zT Qiz
⊥
j , zT Qizj) (31)

with Qi given in (26), and z⊥j is defined as

z⊥j , Ř(
π

2
,
π

2
,
π

2
)zj (32)

with

z0 =




Z0
f

0

0

Oxy
1

0




, z1 =




0

Z1
f

0

0

Oxy
2




, z2 =




0

0

Z2
f

0

0




. (33)

Proof. Apply Lemma 1, we have

min
XL

‖AT XL − Ř(φr0 , φr1 , φr2)z‖2C
=

(
Ř(φr0 , φr1 , φr2)z

)T
QŘ(φr0 , φr1 , φr2)z.

Thus we have

min
XL,φr1 ,φr2

F (XL, φr1 , φr2) = min
φr1 ,φr2

min
XL

F (XL, φr1 , φr2)

= min
φr1 ,φr2

f0(φr1 , φr2)

where F (XL, φr1 , φr2) is given in (14) and f0(φr1 , φr2) is
given in (28). This completes the proof of the first part of
the theorem.

Next, we prove the second part. Firstly, apart from R̄k(φ)
defined in (8) and Ř(φr0 , φr1 , φr2) defined in (16), we define

Ř0(φr0) , diag(R̄n0(φr0), 0, 0, R(φr0), 0)

Ř1(φr1) , diag(0, R̄n1(φr1), 0, 0, R(φr1))

Ř2(φr2) , diag(0, 0, R̄n2(φr2), 0, 0) (34)
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Note that Q = C − CAT (ACAT )−1AC, and also
ŘT (φr0 , φr1 , φr2)C = CŘT (φr0 , φr1 , φr2), we have

zT ŘT (φr0 , φr1 , φr2)QŘ(φr0 , φr1 , φr2)z = zT Cz

− zT (
2∑

i=0

ŘT
i (φri

))CAT (ACAT )−1ACŘ(φr0 , φr1 , φr2)z.

For i = 0, 1, 2,

ŘT
i (φri

)C = CŘT
i (φri

), ŘT
i (φri

)AT = AT
i R̄T

n+2(φri
),

where Ai is defined in (24) and R̄k(φ) is defined in (8).
Furthermore, (ACAT )−1AC is a spherical matrix according
to Remark 2, thus from Definition 2,

R̄T
n+2(φri

)(ACAT )−1AC = (ACAT )−1ACR̄T
n0+n1+n2+2(φri

).

Now we have

ŘT
i (φri

)CAT (ACAT )−1AC

=CAT
i R̄T

n+2(φri)(ACAT )−1AC

=CAT
i (ACAT )−1ACR̄T

n0+n1+n2+2(φri
)

=QiR̄
T
n0+n1+n2+2(φri

)

where Qi is defined in (26). Thus,

zT ŘT (φr0 , φr1 , φr2)QŘ(φr0 , φr1 , φr2)z

= zT Cz − zT (
2∑

i=0

QiR̄
T
n0+n1+n2+2(φri)Ř(φr0 , φr1 , φr2))z

= zT Cz − zT (
2∑

i=0

QiŘ(φr0 − φri
, φr1 − φri

, φr2 − φri
))z.

Note that z = z0 + z1 + z2 (see (33)), we have

zT (
2∑

i=0

QiŘ(φr0 − φri
, φr1 − φri

, φr2 − φri
))z

=zT
2∑

i=0

Qi

2∑

j=0

Řj(φrj − φri)zj

=zT
2∑

i=0

Qi

2∑

j=0

(zj cos(φrj
− φri

) + z⊥j sin(φrj
− φri

))

=
2∑

i=0

2∑

j=0

(

[
zT Qizj

zT Qiz
⊥
j

]T [
cos(φrj

− φri
)

sin(φrj
− φri

)

]
). (35)

So we have

‖AT XL − Ř(φr0 , φr1 , φr2)z‖2C

=zT Cz −
2∑

i=0

2∑

j=0

(

[
zT Qizj

zT Qiz
⊥
j

]T [
cos(φrj

− φri
)

sin(φrj
− φri

)

]
)

=c0 −
2∑

i=0

2∑

j=0,j 6=i

bij cos(φrj − φri − φij0) (36)

where c0 = zT Cz −
2∑

i=0

bii, φij0 = 0 for j = i.

Notice that zT Qizj = zT Qjzi, and

zT Qiz
⊥
j = zT CAT

i (ACAT )−1ACŘ(
π

2
,
π

2
,
π

2
)zj

= −zT Qjz
⊥
i , (37)

we have bij = bji, φij0 = −φji0, and

‖AT XL − Ř(φr0 , φr1 , φr2)z‖2C
=c0 − 2

∑

0≤i<2

∑

i<j≤2

bij cos(φrj
− φri

− φij0). (38)

Thus, f0(φr1 , φr2) in (27) can be simplified as that in (29),
this completes the proof.

4.2 m-step SLAM

For the m-step case (13), the SLAM problem can be formu-
lated as minimizing the following objective function

F (XL,φr1 , ..., φrm
) = ‖AT XL − Ř(φr0 , φr1 , · · · , φrm

)z‖2C
+

m∑

i=1

p−1

Oφ
i

(wrap(Oφ
i − φri + φri−1)

2) (39)

where A = A0 ⊗ I2, with A0 being the reduced
incidence matrix of the m-step SLAM graph, and

XL =
[
XT

f1
. . . XT

fn
XT

r1
. . . XT

rm

]T

,

Ř(φr0 , φr1 , · · · , φrm) = diag(R̄n0(φr0), R̄n1(φr1), ...,
R̄nm

(φrm
), R(φr0), ..., R(φrm−1)), (40)

z =
[
(Z0

f )T · · · (Zm
f )T (Oxy

1 )T · · · (Oxy
m )T

]T

(41)

C = diag(C0
z , . . . , Cm

z , Cp) (42)

where Zi
f (i = 1, · · · ,m) is defined in (19), Ci

z (i =
1, · · · ,m) is defined in (20), and Cp = diag(P−1

Oxy
1

, . . . , P−1
Oxy

m
).
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Theorem 2 The m-step SLAM problem (minimizing the ob-
jective function F (XL, φr1 , ..., φrm) in (39)) is equivalent
to a nonlinear least squares problem with only m variables
φr1 , · · · , φrm

min
φr1 ,··· ,φrm

f0(φr1 , · · · , φrm
) (43)

where

f0(φr1 , · · · , φrm
)

=
(
Ř(φr0 , φr1 , · · · , φrm)z

)T
Q

(
Ř(φr0 , φr1 , · · · , φrm)z

)

+
m∑

i=1

p−1

Oφ
i

(wrap(Oφ
i − φri + φri−1))

2 (44)

with Ř(φr0 , φr1 , · · · , φrm
) being given in (40), z is given

by (41), and Q is given by (23).

Furthermore, the function f0(φr1 , · · · , φrm
) can be simpli-

fied as

f0(φr1 , · · · , φrm
) = c0 − 2

∑

0≤i<j≤m

bij cos(φrj
− φri

− φij0)

+
m∑

i=1

p−1

Oφ
i

(wrap(Oφ
i − φri + φri−1))

2 (45)

where c0 = zT Cz −∑m
i=0 bii, and for i, j = 0, . . . , m,

bij =
√

(zT Qizj)2 + (zT Qiz⊥j )2 (46)

φij0 =atan2(zT Qiz
⊥
j , zT Qizj) (47)

with Qi = CAT
i (ACAT )−1AC, where Ai, zj are similar

to those defined in Theorem 1.

Proof. The proof outline of Theorem 2 is identical to that
of Theorem 1 and is omitted here.

Remark 4 From Theorem 2, it can be seen that the m-step
point feature based SLAM problem can be formulated as
minimizing a m-dimensional nonlinear function. Note that
the dimension of the SLAM problem has been reduced from
3m + 2n to m, where n is the total number of features.

Remark 5 For the case of non-spherical covariance matri-
ces, it can still be proved that the m-step point feature based
SLAM problem is equivalent to minimizing a m-dimensional
nonlinear function. However, the function will be much more
complicated than that in (45).

Remark 6 In general, dimensionality reduction may not di-
rectly lead to computational saving, but for some SLAM
problems, for example, when the ratio between the number
of features and the number of poses is high, dimensionality
reduction may improve the efficiency and convergence, this
will be illustrated through examples in Section 6.

Remark 7 The idea that certain linear components can be
factored out as proposed in this paper is related to that in
(Zikos & Petridis 2011). In that work the authors propose a
Rao-Blackwellized particle filtering approach in which first
the robot orientations are estimated using a particle filter.
Then for each particle, the features and robots positions are
estimated using a Kalman filter.

5 Two-step SLAM without Orientation Part of Odom-
etry

As an application of the dimensionality reduction, we will
develop an algorithm for two-step SLAM when the orienta-
tion part of the odometry is not available (or not used), that
can guarantee to obtain the globally optimal solution. This
is useful in building local maps for map joining algorithms.
It may also lead to practical applications besides SLAM, for
example, registration of three laser scans similar to Iterative
Closest Point (ICP) based algorithm for registration of two
laser scans.

5.1 The optimization problem

According to Theorem 1, the two-step SLAM problem with-
out the orientation part of odometry is equivalent to mini-
mizing the following objective function:

f0(φr1 ,φr2) = c0 − 2
∑

0≤i<2

∑

i<j≤2

bij cos(φrj
− φri

− φij0)

Let us define

φ1 , φr1−φ010, φ2 , φr2−φ020, ∆ , φ020−φ010−φ120.

Then minimizing the above objective function is equivalent
to minimizing

f̄(φ1, φ2) =− b01 cos(φ1)− b02 cos(φ2)
− b12 cos(φ2 − φ1 + ∆) (48)

Since b12 > 0, we can define b1 , b01
b12

, b2 , b02
b12

. Then
minimizing (48) is the same as minimizing

f(φ1, φ2) = −b1 cos(φ1)− b2 cos(φ2)− cos(φ2 − φ1 + ∆)
(49)

Next, we will prove that there are at most 24 pairs of solu-
tions to ∇f(φ1, φ2) = 0 in (−π, π]× (−π, π], and provide
an algorithm to find all of the local minima, i.e., solutions
of ∇f(φ1, φ2) = 0 that satisfy ∇2f(φ1, φ2) Â 0.
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5.2 Polynomial representation

The gradient of f(φ1, φ2) in (49) must vanishes at the min-
ima:

b1 sin(φ1)− sin(φ2 − φ1 + ∆) = 0
b2 sin(φ2) + sin(φ2 − φ1 + ∆) = 0 (50)

Now let us define

φ3 , φ2 − φ1 + ∆, λ , sin(φ3)

Then from (50) we have:

sin(φ1) =
λ

b1
, sin(φ2) =

−λ

b2
, sin(φ3) = λ (51)

By definition we have φ3−φ2 = ∆−φ1. By applying cos(·)
function on both sides, and define c , cos(∆), s , sin(∆)
we have:

cos(φ3) cos(φ2)− c cos(φ1) =
λ2

b2
+

s

b1
λ

Now by squaring both sides and applying (51), we get:

(b2
2 − λ2)(1− λ2)

b2
2

+ c2 b2
1 − λ2

b2
1

− (
λ2

b2
+

s

b1
λ)2

= 2c cos(φ1) cos(φ2) cos(φ3) (52)

By squaring both sides again, finally, we get

λ6 + s
(b1

b2
+

b2

b1
+ b1b2

)
λ5 +

[1
4
(b2

1b
2
2 +

b2
1

b2
2

+
b2
2

b2
1

)

+ (s2 − 1
2
)(b2

1 + b2
2 + 1)

]
λ4 − s(2− s2)b1b2λ

3

− 1
2
s2(b2

1 + b2
2 + b2

1b
2
2)λ

2 +
1
4
s4b2

1b
2
2 = 0 (53)

According to (51) we know that |λ| ≤ bmin in which bmin ,
min{1, b1, b2}. Therefore, we are looking for the real roots
of (53) in [−bmin, bmin]. Strum’s theorem can be used to find
the number of distinct real roots of (53) in this interval.

5.3 Numerical algorithm

Now we can find the globally optimal solution to the two-
step SLAM problem without the orientation part of odometry
using the algorithm below.

Algorithm 1:

– Step 1. Find all the real roots of the degree-6 polynomial
(53) within [−bmin, bmin] where bmin , min{1, b1, b2}.
There are at most 6 real roots.

– Step 2. For each real root λ within [−bmin, bmin], compute
the four possible pairs (φ1, φ2) using (51).

– Step 3. For each pair (φ1, φ2), check the gradient con-
dition and the Hessian condition to see whether it is a
minimum or not.

– Step 4. Compare the objective function value f(φ1, φ2)
for each minimum and find the global minimum.

– Step 5. For the global minimum (φ∗1, φ
∗
2), compute

φr1 = φ∗1 + φ010, φr2 = φ∗2 + φ020 (54)

and then compute the rest of the optimal solution XL by

XL = (AC−1AT )−1AC−1Ř(0, φr1 , φr2)z (55)

Remark 8 Note that the above algorithm can find all the
minima and thus can be guaranteed to find the global min-
imum. As a byproduct, the total number of minima of the
SLAM problem is also obtained.

Remark 9 The two-step SLAM problem without orientation
part of odometry can be regarded as an extension of the least
squares fitting of point sets (Arun, Huang & Blostein 1987)
by extending two point sets into three point sets. An optimal
solution to this problem (especially in 3D) can be useful
in many different applications (e.g. (Nuchter, Lingemann,
Hertzberg & Surmann 2007)).

6 Examples

In this section, we use simulation and experimental datasets
to show the benefit of dimensionality reduction for some
SLAM problems. The timing results are obtained by using
simple MATLAB implementations running on an Intel Pen-
tium CPU operating at 2.00 GHz.

6.1 Simulation results

6.1.1 Improved convergency and efficiency for some sce-
narios

Assume that average l features are observed by robot at
each position. We show that when l is large, the benefit of
dimensionality reduction is clear. To show the comparison
results, let the robot move 10 steps, after dimensionality re-
duction as proposed in this paper, the SLAM problem can
be solved by minimizing objective function (45). For dif-
ferent l, Fig. 2 shows the comparison of total time required
to solve the original SLAM using Gauss-Newton algorithm
and that for solving the reduced dimension problem by New-
ton’s method, from which it can be seen that when l is small,
e.g., less than 60 in this example, the time used by dimen-
sionality reduction method is more than that used by origi-
nal SLAM problem, however, when l increases, e.g., more
than 60 in this example, dimensionality reduction method is
more efficient.
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Table 1
Average number of iterations (of 100 simulations) required
to solve the original SLAM and the reduced dimension prob-
lem for simulations with different noise levels (in bracket: the
number of simulations (out of 100) that the algoirthm does not
converge).

Noise level h 1 10 35 50 80

Original 6(0) 13(0) 78(4) 179(20) 233(45)

New 4(0) 5(0) 12(0) 18(0) 24(0)
Noise level h means adding Gaussian noises with mean 0
and standard deviation 0.1m × h to the observations of x, y.
“Original” denotes the original SLAM using Gauss-Newton algo-
rithm; “New” denote the new method which uses dimensionality
reduction followed by Newton’s method.

Furthermore, the solution to the original SLAM problem
may be affected much by noise level. Let l = 44 for example,
Table 1 shows the comparison of iteration numbers for dif-
ferent simulations with different noise levels, it can be seen
that when noise level increases (some of the noise levels are
significantly larger than those in practical SLAM problems),
Gauss-Newton algorithm for original SLAM problem does
not converge sometimes, while the Newton’s method after
dimensionality reduction always converges, and the iteration
number has also been reduced significantly.
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Fig. 2. Total time used by Gauss-Newton algorithm for solving
the original full dimensional SLAM problem (black dots) and that
using dimensionality reduction method (red crosses).

6.1.2 Comparison of Gauss-Newton algorithm and poly-
nomial method when sensor noises are large

Now we compare the Gauss-Newton algorithm for solving
the original two-step SLAM and the proposed polynomial
method (Algorithm 1) for the cases when the sensor noise
is large. We generate a number of datasets for the two-step
SLAM without orientation part in the odometry. By chang-
ing the maximum sensor range, the number of features ob-
served can be changed to get different simulation scenarios.
Different level of noises are added to the theoretical observa-
tions and odometries, for each noise level, we generate 100
datasets and compare the results of Gauss-Newton algorithm

Table 2
The number of datasets (out of 100) when Gauss-Newton al-
gorithm cannot converge to the global minimum within 10000
iterations (in bracket: the number of datasets that have two
minima) for simulations with different noise levels.

Noise level h 20 30 40 60 120

Sim. 1 (24 features) 0(0) 1(0) 5(0) 11(2) 7(5)

Sim. 2 (32 features) 0(0) 0(0) 0(0) 2(3) 10(3)

Sim. 3 (48 features) 0(0) 0(0) 0(0) 0(0) 3(1)
Noise level h means adding Gaussian noises with mean 0 and
standard deviation 0.1m× h to the observations of x, y.

for the original SLAM problem and the results of Algorithm
1. The comparison results are summarized in Table 2.

From Table 2, it can be seen that when noise level is not
too large, there is only one minimum and both methods give
the optimal solution. However, when the noise level is very
large, there is a chance that the Gauss-Newton algorithm
cannot converge to the global minimum and sometimes there
are two minima.

6.2 Experimental results using the Victoria Part dataset

6.2.1 Result of polynomial method for two-step SLAM

We consider the two-step SLAM problem using the first two
steps of the Victoria Park dataset (Guivant & Nebot 2001)
(without using the orientation part of the odometry, the co-
variance matrices are set as identity matrices). There are 9
features observed for these two steps in this dataset. For this
dataset, the contour of the two variable objective function
f(φ1, φ2) in (49) is shown in Fig. 3. The four stationary
points and the unique minimum obtained by Step 3 in Al-
gorithm 1 are shown as magenta circles and black cross,
respectively. These are consistent with the contour plot of
the function. The optimum result is the same as the solu-
tion obtained by using Gauss-Newton algorithm to solve the
original two-step SLAM problem.

6.2.2 Map joining result using Algorithm 1 and Linear
SLAM

For the whole Victoria Park dataset, directly applying the
dimensionality reduction results does not gain computational
efficiency due to the very low feature/pose ratio (299 features
and 6898 poses). However, we can apply Algorithm 1 to
build small local maps and apply the map joining techniques
to combine the local maps to build the global map.

Recently, a new map joining algorithm, Linear SLAM, was
proposed in Zhao, Huang & Dissanayake (2013) where only
solving linear least squares problems and nonlinear coordi-
nate transformations are required to solve the map joining
problem (source code available on OpenSLAM). Since Al-
gorithm 1 guarantees to obtain the globally optimal solution
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Fig. 3. Contour of the objective function f(φ1, φ2) in (49).

to the local map, combining these two approaches can pro-
vide a way to obtain the global map without being trapped
into a local minimum.

We first use Algorithm 1 to build 3449 local maps using
the Victoria Park dataset (assuming identity covariance ma-
trices, total time used is 112 seconds), and then use Linear
SLAM algorithm to join all the local maps (time used is 25
seconds), the result is compared with that obtained using
nonlinear least squares method (applied to the whole dataset
with original covariance matrices) in Fig. 4. The mean ab-
solute difference in x and y (for landmarks and robot poses)
are 0.6307 m and 0.6516 m, respectively. The mean absolute
difference in robot orientation is 0.0081 rad. Note that when
solving the full nonlinear least squares with original covari-
ance matrices, the Gauss-Newton algorithm cannot converge
correctly if odometry is used as the initial guess. Some other
means are needed to first get a good initial value, for exam-
ple, by solving the full least squares problem assuming iden-
tity covariance matrices (time used is 698 seconds, worked
for this dataset). With the good initial value, the time used
by Gauss-Newton algorithm is 150 seconds.

7 Conclusions and Future Works

This paper has proved that when the noise covariance ma-
trices are spherical, the m-step SLAM problem is equiva-
lent to an m-dimensional optimization problem where the
objective function has a simple form. Though dimensional-
ity reduction may not provide computational saving for all
nonlinear optimization problems, we can achieve benefits
such as improvement on time consumption and convergence
for some SLAM problems. As an application of the dimen-
sionality reduction result, an algorithm is developed for ob-
taining the globally optimal solution to the two-step SLAM
problem when the orientation of the odometry is not used.
Simulation and experimental dataset are used to demonstrate
some benefits of the dimensionality reduction and the al-
gorithm for two-step SLAM. Developing more efficient al-
gorithms for solving the reduced dimensional optimization
problem such as using the variable projection method (Golub

−100 −50 0 50 100 150 200 250
−50
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50

100

150

200

250

X(m)

Y
(m

)

Fig. 4. Result of map joining using Algorithm 1 and Linear
SLAM for Victoria Park dataset compared with full nonlinear least
squares result with original covariance matrices. Red circles and
black dots denote the features and robot positions obtained using
least squares method, while black dots and red crosses denote
features and robot positions obtained using map joining.

& Pereyra 2003), more detailed comparisons between solv-
ing the reduced dimensional problem and solving the origi-
nal SLAM problem using modern solvers, and the extension
of the dimensionality reduction results to the cases of non-
spherical noise covariance matrices and 3D scenarios are the
next steps of research.
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