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Abstract

This paper considers the realistic modelling of derivative contracts on exchange rates. We
propose a stochastic volatility model that recovers not only the typically observed implied
volatility smiles and skews for short dated vanilla foreign exchange options but allows one also
to price payoffs in foreign currencies, lower than possible under classical risk neutral pricing, in
particular, for long dated derivatives. The main reason for this important feature is the strict
supermartingale property of benchmarked savings accounts under the real world probability
measure, which the calibrated parameters identify under the proposed model. Using a real
dataset on vanilla option quotes, we calibrate our model on a triangle of currencies and find
that the risk neutral approach fails for the calibrated model, while the benchmark approach
still works.

KEYWORDS: Forex Market; Smile and Skew of Vanilla Options; 3/2 Stochastic Volatility Model;
Strict Local Martingale; Model Calibration; Benchmark Approach.

1 Introduction

The globalization of the world economy has reached a significant level over recent decades. By ex-
changing goods and services the different economies exchange also their currencies. Consequently,
the exchange rates between different currencies are key quantities in risk management and eco-
nomic analysis. Since the recent financial crisis, investors tend to search for products, including
foreign currency derivatives, with a long time horizon that are less sensitive to short-term market
fluctuations and, potentially, are less expensive than current products.

There exists a wide literature on modelling the dynamics of foreign exchange (FX) rates. The ma-
jority of papers aims at capturing the stochasticity of the volatilities of exchange rates to recover
typically observed derivative prices. Examples for this line of research are given by e.g. Beneder
and Elkenbracht-Huizing (2003), Clark (2011), Castagna (2010), Bakshi et al. (2008).

Our main goal will be to provide a highly tractable FX-rate model under the real world probability
measure, and to demonstrate how to price and hedge realistically short dated and long dated FX
derivative contracts. Most importantly, it will turn out that the proposed model does not fit under
the classical risk neutral approach. When the classical approach is still formally applied, it delivers
more expensive prices than are possible to hedge under the real world pricing of the benchmark
approach, see Platen and Heath (2010). The current paper seeks to construct an FX rate model
that may lead beyond the classical risk neutral paradigm. This gives the freedom to capture fea-
tures that are not present in the risk neutral models. By modeling purely under the real world
probability measure and by indentifying the minimal possible prices, less expensive prices for long
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dated derivatives than the risk neutral ones become possible. The proposed model is aimed to
be highly tractable, where we mean that we will favour a model structure where explicit or semi-
explicit Fourier transforms for option prices exist that can be conveniently numerically inverted.
Finally, we accept the fact that no model can ever shown to be the correct model. However, our
fit shall provide confidence that the model represents a clear progress in modeling FX rates.

We exploit throughout the paper the following fact: When interpreting the MSCI total return world
index as numéraire portfolio (NP) of a complete market model, it follows that the benchmarked
US dollar (USD) savings account represents the Radon-Nikodym derivative for the putative risk
neutral measure for the USD denomination of securities. Similarly, the benchmarked Euro (EUR)
savings account can be interpreted as Radon-Nikodym derivative for the EUR market denomi-
nation. Under classical risk neutral assumptions both benchmarked savings accounts should be
martingales. However, in both cases empirical evidence shows a systematic downward trend of
the benchmarked savings accounts, see e.g. Platen and Heath (2010). This hints at the fact that
these Radon-Nikodym derivatives may not be martingales and have to be potentially modelled as
strict supermartingales in any advanced long-term FX model, as suggested in Platen and Heath
(2010). We allow in this paper this possibility and let the data decide whether a risk neutral model
may be sufficiently realistic. The current paper aims to be probably the first paper to present
a stochastic volatility model that is calibrated to real market data without assuming that the
risk neutral measure exists and still applies a coherent pricing method. Several authors (see e.g.
Christensen and Larsen (2007), Delbaen and Schachermayer (1995), Hulley (2010), Karatzas and
Kardaras (2007), Loewenstein and Willard (2000)) have investigated models where an equivalent
martingale measure may fail to exist. In the absence of an equivalent martingale measure, many
of the usual results of mathematical finance seem to break down. However, the concept of market
completeness, namely the capability to replicate every contingent claim, must be kept distinct from
the existence of an equivalent martingale measure. Indeed, the financial market may be viable and
complete regardless of the existence of such measure (see Platen and Heath (2010)).

The model we propose is an advanced model that under the real world probability measure models
realistically benchmarked savings accounts also over extreme long periods of time. Consequently, it
recovers not only the typically observed implied volatility smiles and skews for short dated vanilla
FX options, but allows one also to hedge long dated payoffs in foreign currencies for a lower price
than possible under classical risk neutral pricing. As will become clear in the paper, the main rea-
son for this important phenomenon is the strict supermartingale property of benchmarked savings
accounts under the proposed model. Our new model reveals flexibility in capturing the typical
symmetries that must be verified in any advanced multi-currency market model. For instance, this
concerns the triangular relationship, which requires that products and ratios of exchange rates must
also be exchange rates. This is introducing some constraints on the relations among the modelling
processes. Moreover, we provide empirical evidence on the ability of this new framework to achieve
pricing results consistent with real market prices, including the smile and skew effects in option
prices. This results in a model that is able to simultaneously fit all the volatility surfaces, e.g. in
the triangle Euro (EUR), US dollar (USD), and Japanese Yen (JPY). We obtain a framework to
price consistently multi-asset claims by taking into account the skew of the three currency pairs, a
very challenging task for any stochastic volatility model. In fact, a simultaneous calibration to all
volatility smiles in the currency triangle is, in general, difficult to obtain, as a constant correlation
does not provide enough flexibility to match the smile of the FX cross (see e.g. De Col et al. (2013)).

We will accomplish our goal by using a new multi-asset stochastic volatility model under the
approach proposed in Heath and Platen (2006). Our model extends the minimal market model
(MMM) introduced by Platen (2001) to a multifactor framework by adopting the 3/2 model in-
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vestigated by Heston (1997), Platen (1997) and independently by Lewis (2000). The 3/2 model
assumes that the volatility factor is given by the inverse of a squared Bessel process. It has been
already applied in different contexts, for instance by Ahn and Gao (1999), Spencer (2003), Carr
and Sun (2007), Itkin and Carr (2009), Platen (1997), Chan and Platen (2011) and Drimus (2011).
Despite its non affine nature, the 3/2 specification is analytically tractable. This property provides
the high tractability of the proposed model. The model also enjoys empirical support in the equity
market, see e.g. Bakshi et al. (2006). Unlike the Heston model it leads to a variance that reverts
quickly when it is high. This important fact is critical since it is empirically well observed in reality.

This paper is closely related to the literature on bubbles, see e.g. Heston et al. (2007), Jarrow
et al. (2010), Jarrow and Protter (2010), and in particular Protter (2012) for a review article, to
name but a few references. In this stream of literature, the situation in which the Radon-Nikodym
derivative of the putative risk-neutral measure is a strict local martingale (that is supermartin-
gale) is referred to as a money market bubble. In particular, Jarrow and Protter (2010) address
a problem related to the one studied in this paper. In Section 2.3 we recall key concepts from
the literature on bubbles, and highlight the differences between our contribution and the one by
Jarrow and Protter (2010), who do not go beyond the classical risk neutral modelling.

The paper is organized as follows: In Section 2 we introduce our stochastic volatility model together
with some basic properties. In particular, we explicitly determine the parameter set for which the
model fits still under the classical risk neutral approach and the one where it does not admit any
longer an equivalent risk neutral martingale measure. This description involves an inequality that
can be easily checked on model parameters. In Section 3 we apply the benchmark approach in our
context and provide a semi-closed form formula for the price of vanilla options. In Section 4 we
calibrate the model on a dataset of real option prices. We find that the risk neutral methodology
often fails, in the sense that the risk neutral probability measure does not exist for some currency
denominations. Moreover, we find that the strict local martingality property of the benchmarked
savings account cannot be neglected even for very short maturities, which is in line with theoretical
results of Mijatovi¢ and Urusov (2012) and Bayraktar et al. (2012). This strongly emphasizes the
motivation of this paper, which aims to bring realistic long term FX rates modelling beyond the
risk neutral approach.

2 The Model

We introduce a filtered probability space (2, F, F,P), with filtration F = (F;)>0 satisfying the
usual conditions. There are N + 1 currencies in the model. The exchange rate between currencies
i and j is denoted by S%7, i,j = 0,.., N. That is, S*(¢) denotes the price of one unit of the j-th
currency at time ¢ € [0, 7], when measured in units of the i-th currency. We refer to the currency
with i = 0 as the domestic currency, so that S/ denotes the exchange rate for the j-th currency
from the point of view of the domestic currency.

With respect to the i-th currency denomination of prices, i = 0, ..., IV, the i-th money-market
account B* evolves, for simplicity, according to the constant risk free rate r*, namely

dB'(t) =r'B'(t)dt. (1)

We will now briefly recall some basic notions on the benchmark approach applied to the multi-
currency market (for a complete survey of this approach we refer to Heath and Platen (2006) and
Platen and Heath (2010)). We assume the existence of the Growth Optimal Portfolio (GOP), and
will denote by Di(t) the GOP denominated in the i-th currency, i = 0,..., N. It can be shown
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that the dynamics of the GOP denominated in the i-th currency satisfies the following stochastic
differential equation (SDE):

dD(t)
Di(t)

= ridt+ < 7'(t), 7' (t)dt + dZ(t) >, (2)

where < .,. > denotes the scalar product on R?. Z is a P-standard Brownian motion on R¢ and
the market prices of risk for the i-th currency denomination, 7, are F-measurable. Benchmarked
prices (i.e. prices denominated in terms of the GOP) are positive P-local martingales (hence
P-supermartingales by Fatou’s lemma). Since exchange rates can be expressed as ratios of two
currency denominations of the GOP (i.e. S%I(t) = D(t)/D%(t)) it follows that (see Heath and
Platen (2006))

dSHi(t)

549(t)
Our aim is to propose a highly tractable model, which allows parameter choices whose benchmarked
savings accounts are strict supermartingales. Therefore, in this paper we assume that the diffusion
coefficient or i-th market price of risk vector 7%(¢) is a projection of some common d-dimensional
volatility factor V(t) = (Vi(t),..,Va(t))" along a direction parametrized by a constant vector
a’ € R? according to the following relation:

= (r' = rl)dt+ < 7' (t) — 7 (8), 7 (t)dt + dZ(t) > . (3)

7' (t) = (Diag(V(t)))/?a’, i=0,..,N. (4)

Here (Diag(u))'/? denotes the diagonal matrix whose diagonal entries are the respective square
roots of the components of the vector u € R%. Under this assumption, the dynamics of the GOP
denominated in the i-th currency becomes

dD'(t)

R0 = ridt + (a')T (Diag(V(t)))a'dt + (a)) T (Diag(V (t)))/2dZ(t). (5)

Consequently, the dynamics of the exchange rate S%/ is given by

dS%I(t)
St (t)

= (' = 1))dt + (a' — &) (Diag(V())"/? ((Diag(V (1)) /a'dt + dZ(t)) . (6)

The common stochastic factor V(¢) € R is a vector whose components evolve according to the
following dynamics:

dVi(t) =k Vi () (0 — Vi (1)) dt + o Vi (8)3/2dWi(t), k=1, ..,d; (7)

where wy,, 0k, 0 € Ry, Kk > —02/2. Here W = (W1,..,W,) " is a P-standard Brownian motion
correlated with Z through d < Wy, Zy >¢= prdt (k = 1,..,d) and Vj(0) = vy € RT. The SDE
(7) involves the power 3/2 in the diffusion term and for this reason its solution is also called 3/2
process, independently introduced in finance by Heston (1997), Platen (1997) and Lewis (2000).
This process is obtained by taking the inverse of a square-root process of dimension strictly greater
than 2. In fact, defining X (t) = ﬁ, then

dXp(t) =(ki + 0% — kRO X1(2))dt — op/ X (t)dWi(2), (8)

and using Feller’s explosion test (see e.g. Karatzas and Shreve (1991) Chapter 5, Th. 5.29), it
follows that Vi remains strictly positive and does not reach +oco in finite time. Note that, the
stochastic volatility model obtained by choosing directly the solution of the SDE (8) as volatility
factors is intimately related to a Heston (1997) model, where the Feller condition is systematically
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satisfied. However, it is important to note that for our model the parameters x; and 6, do no
longer have the same interpretation and scaling as in the Heston model. In fact, the speed of
linear mean reversion in the 3/2 model is given by the one of X}, which is the product kp0x(t).
In particular, we find that the variance Vi (t) will mean revert in (7) more quickly when it is high.
This is a desirable empirically observed feature that is naturally expressed in the 3/2 model and
is not found e.g. in the Heston model.

For high tractability our model keeps the functional symmetry and triangular properties of the
Heston-based version of De Col et al. (2013), that in turn takes inspiration of the original idea in
Heath and Platen (2006). In particular, it is easily checked that the dynamics of the exchange
rate in the SDE (6) satisfies the triangular relation. Namely, for all ¢ > 0 and 4, 7,0l =0, .., N, the
dynamics of a cross d (S il Ghi ), computed by applying Ito’s rule to the product, gives the dynamics
of a process that shares the same functional form of both S%! and S%’ and is that of S%/. We
emphasize that this functional symmetry property is fundamental in order to have a model that is
consistent with a simultaneous fit of several implied volatility surfaces .

2.1 Strict Supermartingale Property

In this subsection, we investigate the conditions under which the benchmarked savings accounts,

Bl(t) = gzg, are strict P-local martingales, that is strict supermartingales, for all currencies
i=0,..,N. As argued in Platen and Heath (2010), for economic reasons, it is plausible to model
benchmarked saving accounts as strict supermartingales. Furthermore, we note that Bi(t), after
normalization to one at the initial time, corresponds to the candidate Radon-Nikodym derivative for
the putative risk neutral measure of the i-th currency. Should Ei(t) be a strict P-local martingale,
we note that risk neutral pricing is not applicable, but real world pricing still is, as we are going
to discuss in Subsection 2.2.

From the dynamics of Bi(t) given by the SDE

AB(t) = —Bi(t)(a") Diag(V (1) 2dZ (1),
it follows

B = Bi0) eXp{— /0 t(ai)TDiag(V(s))l/de(s)—% /0 t(ai)TDmg(V(s))aids}.

By the usual decomposition of the Brownian motion it follows that

[ {ab [ Vi - i [ves)]

0

Il
Sy
2
=
o
~—

I
%
=
- T T

E [Bi(t)}

e [exp {~aie [ ) - Sk [ Vilsyas |

= B JIE[&®)] |

INote that if we start with a different specification of the model it may happen that taking the dynamics of
the product of a pair breaks the structure of the dynamics of the cross, namely the model cannot be functionally
symmetric. This is what happens for example to SABR or GARCH models, see the discussion in De Col et al.
(2013) for more insights.
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where we define the exponential local martingale process &i, = {ffc(t) ,t> 0} via

0 —exp{—akpk / V2 (s)dWi(s) — 1 / Vis } 9)

For a currency i, as soon as one of the processes £}, is a strict local martingale for some k = 1, ..,d,
the process Bi is also a strict local martingale. Therefore, in such a case the risk neutral probability
measure of the i-th currency denomination of prices will not exist. We now have the following result
about the strict local martingality or strict supermartingale property of ;.

Theorem 1. Given i =0,..,N and k = 1,..,d, the process & given by equation (9) is a P-strict
local martingale if and only if

Rk O i

Dk Zk o . 10

o 5 agPk (10)
Moreover, condition (10) is necessary and sufficient for & to be a strict local martingale on the
time interval [0,T] for any fized T € (0, 00).

Proof. See Appendix A. O

Remark 1. The inequality (10) has been independently found by Drimus (2011) in a single-factor
risk neutral framework, where he imposed some parameter restrictions on the model in order to
ensure the risk neutral approach (that is, (10) is not satisfied).

Remark 2. In De Col et al. (2013) the authors employ a multi Heston-based version of the model,
where the volatility factors evolve according to the following dynamics:

dVi(t) = k(0 — Vie(t))dt 4+ o4 (Ve () 2dWi(t), k=1,...,d.

When calibrating their model, De Col et al. (2013) found that the Feller condition is systematically
violated (a usual stylized fact in the Heston stochastic volatility models, see e.g. Da Fonseca and
Grasselli (2011)), which leads to inconsistency with the strict positivity of the volatility factors
and other uncomfortable effects like moment explosions. Nevertheless, we point out that even if

Vi can reach 0, the process Ez(t) = g:—gtt% remains always a martingale with the same specification

(4) for the market price of risk, so that risk neutral pricing is always applicable in the Heston-like
framework. This result is in line with observations in Andersen and Piterbarg (2007). To break
free from the risk neutral assumptions, we employ the 3/2 model, for which Bt can be also a strict
local martingale. Moreover, in the 3/2 model the volatility factors never reach zero since they are
inverses of square-root processes of dimension strictly greater than 2 and there are economic and
empirical reasons that support this type of model, see Platen and Rendek (2012b).

Remark 3. When using the fact that Ky, > ak/2 which ensures that Xy does not reach zero, we
find that we have explosion of Vk( ) as soon as —aj,pi > ”: +% > 0. This means that the explosion
is related to some negative correlation between D(t) and Vk(t). The GOP can be interpreted as a
well-diversified equity indez, see Platen and Rendek (2012a), and should exhibit the well-observed
leverage effect. To achieve this the above model can most likely only become realistic when Vi
explodes, and hence risk neutral pricing will not be applicable.

2.2 Real World Pricing

We focus on a particular currency denomination, say the domestic one (corresponding to ¢ = 0),
and recall the real world pricing formula, see e.g. Platen and Heath (2010). We fix a maturity
date T' of a contingent claim with nonnegative Fp-measurable payoff H in domestic currency. If
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E [ DOE({T)} < 400, the real world pricing formula defines the price process of the claim H at time
tel0,T

| by
H
— o
pl0) = DO 5 | ()
where E; [.] = E[.|F;]. Note that the benchmarked price p(t) = p(t)/D°(t) forms a martingale,

since p(T) = H/D°(T). Since all nonnegative self-financing benchmarked portfolios are super-
martingales, the real world pricing formula provides the minimal possible price process. It has
been shown in Platen and Heath (2010) in the case when a risk neutral probability measure exists,
that B forms a martingale, and the real world pricing formula gives exactly the same prices as
the risk neutral pricing formula. In this sense our approach generalizes the classical risk neutral
one, and we can let the data decide whether the risk neutral approach is suitable or needs to be
generalized.

We consider the pricing problem of a European call option on the exchange rate S19(T) =
DY(T)/D°(T), which can also be thought of as the ratio between the GOP denominated in the
foreign currency ¢ = 1 and in the domestic currency ¢ = 0. The payoff in the domestic currency
i =0 of a call with strike K in the currency ¢ = 1 and maturity 7" > 0 can be written as

1 1,0 D°(T) ( DYT " : DT
H = $"Y(T) ($"(T) - K)" = DlgT; (DOET§ —K> =1-mn (KDlET;’l)'

According to the real world pricing formula (11) applied to the domestic currency i« = 0, we are
then led to compute for the benchmarked call option the following quantities

00 ] 8 ] o 5 )

We turn now our attention to the pricing of put options. Having derived the pricing formulas
for call options and zero-coupon bonds, we can employ the fair put-call parity (see Platen and
Heath (2010)) to price put options, thus, obtaining the following equality for the corresponding
benchmarked put

(T Do)
= |51 + % ]

= 1% | =i (o oo )|

Of course, if both B® and B! were martingales, then the above equality would reduce to the
standard put-call parity.

B [5n) (- 510) o] = [0 (510 - ) ]

2.3 Connections with the Literature on Bubbles

Since the appearence of strict local martingales is critical for our model, we briefly recall some key
concepts from the literature on bubbles. In Heston et al. (2007), the authors define a money market
bubble as the situation in which the money market account can be replicated at a fixed future time
using a self-financing trading strategy whose setup cost is lower than the current value of the money
market account. Hence in our model, a money market bubble exists if and only if the benchmarked
savings account follows a strict local martingale that is a supermartingale. In our setup, condition
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(10) is a necessary and sufficient condition for the existence of a money market bubble with respect
to currency . This means that detecting money market bubbles is equivalent to detecting strict
local martingales in the benchmarked savings account processes. We furthermore remark that
if our model rules out money market bubbles, we can then investigate if under the risk neutral
measure the discounted well-diversified index follows a strict local martingale. Should the latter be
the case, one has detected an asset pricing bubble, using the terminology from Heston et al. (2007).

In Jarrow and Protter (2010), the authors investigate the existence of foreign currency bubbles. In
particular, they study the existence of such bubbles in a nominal economy and in a real economy.
Unlike in our setting, the authors assume the existence of an equivalent martingale measure and,
consequently, investigate the existence of asset pricing bubbles. Regarding the nominal economy,
having assumed the existence of an equivalent martingale measure, an asset pricing bubble exists if
the price process of the foreign savings account, expressed in units of the domestic currency, follows
a strict local martingale under this measure. Furthermore, an exchange rate exhibits a bubble if
the ratio of the foreign savings account expressed in units of domestic currency, and the domestic
savings account follows a strict local martingale. As Jarrow and Protter (2010) emphasize, a nec-
essary consequence of this approach is that the existence of bubbles, i.e. strict local martingales,
crucially depends on the equivalent martingale measure chosen and the corresponding numéraire.
Choosing a different currency as numéraire and hence a different equivalent martingale measure
impacts the characterization of bubbles.

Our approach is markedly different from Jarrow and Protter (2010), as we do not assume the
existence of an equivalent martingale measure. This has the following two important benefits:

e Though we model a nominal economy, our detection of strict local martingales, i.e. money
market bubbles, does not depend on the particular choice of the equivalent martingale mea-
sure and numéraire.

e In our analysis, exchange rates are defined as ratios of the GOP. We exclusively deal with
the real world measure for which the GOP is the numéraire.

3 Call Pricing in the Multivariate 3/2 Model

The 3/2 stochastic volatility model does not belong to the class of affine processes (see Duffie et al.
(2003)). Nevertheless, it is still highly tractable since it is possible to perform the Fourier analysis
in order to price options through the FFT methodology as for the affine Heston (1993) model.
In fact, the key point is that the moment generating function of log prices for the 3/2 stochastic
volatility model is known in closed form and it involves special functions (the hypergeometric con-
fluent and incomplete Gamma functions) that can be easily implemented.

Let us first introduce for j = 0,1 the log price Y7 (t) = log(D’(t)) of the GOP D’(t), which satisfies
the SDE

dY7(t) = (rj + ;(aj)TDiag(V(t))laj> dt + (a’) " Diag(V(t))~Y2dZ(t) .

Then, using the notation Y (T) := (Y(T),Y'(T))T, the price at time ¢ < T of the call option in

domestic currency can be decomposed as
DY(T) M|
DO(T) DY(T)

= D) (B [ D] — B, [FYO(T), V(1)) (13)

Cally, = D(t)E,

(12)
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where for y = (%, ') T € R? we have
F(y) = F(y°y") = min(exp (—3°) , K exp (—y'))-

The first term on the right hand side of (13) is already a Laplace transform and it will be obtained
analytically in the sequel. Let us focus on the second term: Using standard arguments, see e.g.
Da Fonseca et al. (2007), we obtain

1

E, [F(YY(T), Y (T))] = W]Et [ /Z ( /R . ei<>"y>F(y)dy> ei<)"Y(T)>d)\]

- (2;)2/ZF(,\)\IJt(—i/\)d>\, (14)

where i = y/—1. Here (-,-) denotes the scalar product in C2, A = (\°, \!)T € C? and Z denotes
the admissible domain of the Fourier transform of the payoff function F, which is defined as

EFO0 Y = / NV (e_yO,Ke_yl) dydyt .
]R2
The function ¥, is the two-dimensional (conditional) complex Fourier transform of the log GOP
prices under the two currencies, that is
W (i) = Eq [exp (1(A, Y(T)))] - (15)

Formula (14) states that the price can be computed by integrating numerically the product of two
Fourier transforms: The first one, F', depends on the payoff and is model independent. The second
one, ¥;, depends on the model and is payoff independent.

3.1 The Fourier Transform of the Payoff Function

We first compute the Fourier transform F of the payoff function, together with its admissible
domain, Z.

Proposition 1. The Fourier transform of F(y°,y*) = min (e’yo, Ke*yl,) is given by

Kl—i)\o

F( N = Y0

27160 (Re (A°) + Re (A1), (16)

where &y denotes the Dirac measure concentrated at 0 and the admissible domain is given by
z = {NeCANeC:Im\)+Im\')=-1,-1<Im(A\’) <0}. (17)
Proof. See Appendix A. O

3.2 The Characteristic Function of Log Prices
We now compute the second transform, Wy:
Ui(iX) = E¢[exp (i(A, Y(T)))] (18)
= f(t7 A? y7 V)7 (19)

where A = (A%, AN, Y(t) =y = (¥°,9")T and V(¢) = V. In addition, we are going to show that
the characteristic function W; is regular on Z, that is it does not contain discontinuities on the
integration region of formula (14).
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Proposition 2. Let f be given by equation (19). Then

d
fE, Ny, V) =exp (i()\, y) +1(T —t)(r°\° + 7"1)\1)) H Uk(%’ kO (T — 1)), (20)
k=1
where r
() = P (X o) M e P~ X 1),
with

X(z,t) = ﬁ; (21)
B = 1428 (22)

QCk
o = ”“i—i_?]%; (23)

1 2k 2ipk(aK, A)

S T I @4
k
ap = Putwv—1 (25)
Vi = —pg — O; (26)
1
i ORI |
o = — 52%(@)%3—5@1(,»2 ; (27)
j=
ak = (agvallc)—rv (28)

and where T is the (complex valued) Gamma function and M denotes the hypergeometric confluent
function (see e.g. Abramowitz and Stegun (1970)). Moreover, the solution f(t,X,y, V) does not
contain discontinuities on the integration region Z of formula (14).

Proof. See Appendix A. O

3.3 Strict Local Martingality of the Price Deflator

Let us now discuss when benchmarked savings accounts are strict local martingales, that is, strict
supermartingales. If we compute the characteristic function (19) with A\° = i and A\! = 0, then we
obtain the first term in the call price in (13), that is

U,(1,0) = E [e_YO(T)} (29)
BO(t)

We recall from relation (10) in Subsection 2.1, that
there exists k € {1,...,d}, such that

0 is a strict local martingale, if and only if

K Ok 0
— + - < —appk .
o 2 kPk

If we replace \° = i and A! = 0 in the solution given by Proposition 2, we get ¢, = 0 and § = |uy]|.

Since 1
Hi = 5(1 + 91@) )
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we get that
o K
Nk<0<:>7k+7k<_pkagv
2 Ok
where the latter condition is the one appearing in (10). Assuming that condition (10) is satisfied,
it follows v, = 0, dy = —p and o = B — 1. Consequently, using the properties of the confluent

hypergeometric function, one has

DBk —1) =T(Br — 1, X (yx, tr))
L(Br —1)
where I'(.,.) denotes the incomplete Gamma function (see e.g. Abramowitz and Stegun (1970)).

Alternatively, if condition (10) is not satisfied, then py = O, vy = —20; and ap = 0. In this case
we obtain from the properties of the confluent hypergeometric function

up(Yr, t) = <1,

uk(yk,tk) =1.

Since

1 e—ro(T—t) d
E =
|| = ooy [t

it follows that

& {D()l(T)} ezrvoo(;)t)’

0
that is, go—gg is a strict local martingale, if and only if there exists a k € {1,...d} so that

Ok K 0
-+ — <-pra
2 O pk k>

which is consistent with Theorem 1.

4 Model Calibration on Real Data

There are at least two ways of calibrating and fitting the model. The first one, discussed in this
paper, looks forward and uses derivatives data, which give a reflection of the market’s view about
the future evolution of the underlyings. The second one uses historical observations of the under-
lyings over long time periods. If the derivatives market is reasonably accurate, then both methods
should come to similar conclusions. However, one has to admit that the derivatives market has
been mistaken and is evolving. For instance, implied volatilities of (equity) index options showed
only after the 1987 crash a systematic negative skew, however, the leverage effect has been similar
in equity index dynamics before and after 1987. Therefore, let us finally spend a few words on the
second method for checking whether the Radon-Nikodym derivatives of the putative risk neutral
measures for the respective currency denominations are likely to be martingales or strict super-
martingales. For this purpose one could employ a proxy of the GOP, e.g. a well diversified total
return world index, see Platen and Rendek (2012a). In Platen and Rendek (2012b) the dynamics
of such benchmarked saving accounts have been statistically analyzed and modelled. It turned out
that a special case of our proposed model has been supported by that empirical analysis. Addi-
tionally, this study revealed some random market activity time. For long dated derivatives this
randomness does not matter much because of the ergodicity of the market activity process. For
short maturities, however, this extra source of uncertainty is important. It can be expected that
such random market activity would increase in our model the curvature of the implied volatilities
for short dated options. Forthcoming work on our model with random market activity time will
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demonstrate this effect in detail. It will also price and hedge long dated vanilla FX derivatives with
lower prices than the risk neutral approach would suggest by exploiting the strict supermartingale
property of the proposed model as it follows from the calibration of short dated options and long
term historical observations.

4.1 General Methodology

We emphasize that it is not possible to confirm a model. According to Popper (2002) one can only
falsify a model. Still we can gain more and more confidence in the ability of a model to reflect
well the FX dynamics for our purposes, which is derivative pricing. We have so far developed a
stochastic volatility model that is potentially able to fit the implied volatility surface of the FX
market while maintaining a good level of analytical tractability. Moreover, our model is able to
reflect well the observed systematic downward long term trends of benchmarked savings accounts
as historically observed. It still works even in the absence of a risk neutral probability measure,
whose existence depends on the inequality (10). The aim in this section is to calibrate the model
to real options data and check on this basis if the market data support or reject the existence of
the risk neutral probability measure and, thus, the risk neutral approach. In a Heston-like frame-
work, the existence of the risk neutral measure is assumed by the choice of model for any value
of the parameters of the model (see Remark 2). Thus, the calibration exercise in De Col et al.
(2013) has no freedom to escape the classic risk neutral paradigm. What is of serious concern in
De Col et al. (2013) is that one finds that the Feller condition (assuming the strict positivity of the
volatility factors) is systematically violated by the calibrated parameters. This suggests that the
Heston specification for a stochastic volatility model leads to ambiguous results when calibrated
on real market data. Intuitively, the volatility spends too much time very close to zero under such
condition. We also recall the paper of Drimus (2011) who calibrates both the Heston and the
(single factor) 3/2 model on S&P500 European options. In the 3/2 model Drimus imposes some
constraint on the parameters (most importantly a negative correlation in analogy with the Heston
model) in order to enforce the existence of the risk neutral measure. The calibrated parameters
reveal a degenerate dynamics (p = —0.99) and indicate a severe problem in the specification of the
model. Our model does not suffer from any such preimposed restrictions.

We will calibrate our model freely without imposing any condition on the correlation and we will
let the data decide whether they lead us into the risk neutral world or into a more general mod-
elling world. In this respect, the current paper seems to present the first stochastic volatility model
that is calibrated on real market data without the (explicit or implicit) assumption that the risk
neutral measure exists but is still adopting a coherent pricing methodology. We also note a par-
ticular feature of our model in terms of estimation: Even that we work under the historical or real
world probability measure, we do not need to estimate the drift of the GOP, which would be an
extremely difficult task since an extremely long dataset would be needed.

Using a real dataset of options from a major provider, we consider the implied volatility surfaces
for USD/EUR, USD/JPY and EUR/JPY, as observed in the FX market on 22nd July 2010 and
2nd May 20132, that is N = 3 with i = USD, EUR, JPY. The volatility sample includes 4 expiry
dates ranging from 1 month to 1 year for the datasets. The quotes follow the standard Delta
quoting convention in the FX option market, we have quotes on DN (ATM), 25 Delta, and 10
Delta®. We recall that our model shares the functional symmetry of the one in Heath and Platen

2We chose trading days close to the ones considered in De Col et al. (2013). As in their sample, the implied
volatility surfaces as of 2 May 2013 are inverted with respect to the ones of 22 July 2010.

3In the FX market, implied volatilities surfaces are expressed in terms of maturity and Delta (see e.g. Wystup
(2006), Clark (2011), De Col et al. (2013)).
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(2006), and it is, therefore, potentially able to fit simultaneously all the implied volatility surfaces
of the triangle USD/EUR, USD/JPY and EUR/JPY in analogy with De Col et al. (2013).

The aim of this section is to investigate the inequality (10) for the three currencies under considera-
tion, USD, EUR, and JPY. We calibrate the two-factor version of our model (i.e. d = 2) to different
books on 22nd July 2010 including two different panels corresponding to the whole dataset (in-
cluding four maturities) and just one maturity. Since we deal with a time-homogeneous diffusion,
the martingale property should not depend on the maturity: This is in line with the theoretical
results of Bayraktar et al. (2012), who found that if the benchmarked saving accounts Bl is going
to loose its martingale property eventually, it must loose its martingale property immediately.

4.2 Calibration Results

In Table 1, we present the calibrated parameters for the dataset on 22nd July 2010 including all
the four maturities (1 month, 3 months, 6 months, 1 year) and display the quantity

P = %" + 5 4 peal i€ {USD,EUR,JPY}, k=1,2. (32)
ok
For example, pf°" (resp. pP°™) indicates the term o/2 + ki /oK + pral " (vesp. ok /2 + ki /o) +

praP®™) in (32) for the foreign (resp. domestic) currency. The corresponding benchmarked savings

account is a true martingale if and only if these terms are non negative for all £ = 1,2. We note
that for almost all currencies the quantity p’ is negative for at least some k. This shows that our
calibration leads beyond the risk neutral world, which is an extremely important finding. The risk
neutral measure may potentially exist for some currencies, so that the risk neutral pricing formula
may still be applicable for these currencies and short dated derivatives. However, in view of his-
torically observed benchmarked savings accounts, which seem to form strict supermartingales, the
risk neutral price may be not the minimal possible price for longer dated derivatives.

In Figures 1, 2 and 3 we plot the market implied volatilities against the model implied volatilities.
Market implied volatilities are denoted by crosses, model implied volatilities by circles. The model
yields overall a quite satisfactory fit what concerns the shape of the market implied volatility
curves. Table 2 shows the numerical differences between market implied volatilities and model
implied volatilities. The numerical error is in line with the usual performance of an advanced
stochastic volatility model as in De Col et al. (2013) and it is plotted in Figures 4, 5 and 6.

In Table 3, we present the calibrated parameters for the dataset on 22nd July 2010 including only
one maturity, where we consider separately the cases resp. 6 months and 1 year. We obtain quali-
tatively the same results as in the previous case, that is for almost all currencies the quantity p® is
negative for at least some k. This goes in the direction of the theoretical results of Mijatovi¢ and
Urusov (2012) and Bayraktar et al. (2012), who found that the strict local martingale property
does not depend on the maturity.

To gain further confidence in the proposed model, we repeated the calibration experiment for a
different dataset observed on 2nd May 2013, where the implied volatility surfaces are inverted
with respect to the previous trading day. In Table 4, we show the results of the calibration for
the 2-factor version of the model for the dataset that includes the following four maturities: 1
month, 3 months, 6 months, 1 year. Table 5 shows the numerical differences between market im-
plied volatilities and model implied volatilities. In Figures 7, 8 and 9 we plot the market implied
volatilities against the model implied volatilities, while the numerical errors are plotted in Figures
10, 11 and 12. We observe a failure of risk neutral pricing for most currencies.
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Summarizing the previous calibration results for options on exchange rates, we find that for most
currencies the respective benchmarked savings accounts turn out to be strict supermartingales.
This highlights the importance of being able to model and price claims under the real world
probability measure and not having to rely on an assumed risk neutral probability measure.

5 Conclusion and Future Research

In this paper we have introduced a novel stochastic volatility model that is able to replicate styl-
ized facts in vanilla FX options and allows one also to hedge payoffs in foreign currencies for a
lower price than possible under classical risk neutral pricing. This has been achieved by using
a multivariate version of the 3/2 model that can generate strict local martingales where one has
classically martingales. When the model has been calibrated for standard market days, we found
that the risk neutral approach is not feasible for typical traded maturities, which constitutes a
strong warning for the long standing practice to adopt the risk neutral pricing paradigm. Our
contribution opens the door to further research, which is obvioulsy necessary in order to get a
more detailed and global picture for the likely unsuitability of the risk neutral paradigm in other
situations, in particular for derivatives with longer maturities.
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6 Appendix A: Proofs

Proof of Theorem 1. Let us first recall that from (8), it follows that V} does not explode
under the real world probability measure P. We now check if V}, explodes under the candidate risk
neutral measure with strictly positive putative risk neutral probability: If this is the case, then
the real world probability measure would not be equivalent to the putative risk neutral measure
by Theorem 2.1 in Mijatovi¢ and Urusov (2012) (see also Section 3 in Bayraktar et al. (2012)). To
check this we study the process

dv;, (t) = ki Vi (t) (0 — Vi (t))dt — ai.kakQ (t)ordt + O’ka% (t)de (t), (33)

where R . R
AWk (t) = dWi(t) + abpr (Vi () 2dt

is the stochastic differential of the process Wk, which should be a Wiener process under the putative
risk neutral measure. Using the Feller explosion test as in (8) to the process Vi (t) we find that
for —ajpr > % + o the process Vi(t) can explode, hence there is no equivalent risk neutral
probability measure, which proves the first part of the theorem. The second part easily follows

from the remark in Mijatovi¢ and Urusov (2012) following Theorem 2.1.

Proof of Proposition 1. For fixed y' one has

iX0y® = =t 7,0 vk 0ix0—y! 4 0 ~ (ix°-1) 7. 0
e ym1n<ey,Key)dy = KeY Ydy® + e¥ dy” .
R — 00 yl—In K
Now, it follows
y'—In K K120 oyt (1A°-1)
A0, e
/ el)\oyOKe_yldyO = )0 )
s i\
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subject to Im(A°%) < 0. Also, we find

y (1IN0 =1) g, 0 _
yl=In K ¢ Y iN0—1

)

/oo o K1—i,\°ey1(i,\0—1)

subject to Im(A\) > —1. Hence

1—1iX° gyt (1A% —-1)
iA00 . 0 oyt o K e
/Re ymln(ey,Key)dy =— SUCUSE

subject to —1 < I'm(\g) < 0. We are now ready to compute the function F(A%, A):

FOO N\ = /2 AV iy (e_yo, Ke_yl) dydy?
R
1-iX°
- _ K ei)\ly1 eyl(i)\ofl)d 1
N0 (IN0 — 1) Y

1—iX°
_ Of(( i )/eyl(iRe()\O)JriRe()\l))e(—[m(/\o)—lm()\l)—l)yldyl
iAO(AN0 — 1) Ji ’

so that we require Im(A\°) + Im(\') = —1. Since
/ eV HREOHREAD) gyt = 276 (Re(A°) + Re(A1))
R
the proof is complete.

Proof of Proposition 2. By the Feynman-Kac formula, f satisfies the following PDE:

9 - 1 )
a{ = Z (r + 2(aJ)TDzag(V)aj)8?‘Jf]

3=0
d o2 f
2
—&—Z/{ka( - Vi) ——i— Z Vk 3V2 +720’;ak0kkak By
1 0%f

-
+ Z (a?)" Diag(V)a a0y

le

with boundary condition
£(T, )\0, /\1,Y0(T), Yl(T),V) _ ei)\OYO(T)+i)\1Y1(T).
We guess the following separable form for the solution:
f(t,)\o, )\17yo,y1,v) _ ei/\0y0+i>\1yl+i(T—t)(r0>\0+7‘1)\1)L(t7A7V)7 (34)
so that L satisfies the following PDE

1 1

f%f = [ 305 @) Diag(V)i (V) — 3 L (@) Diag(V)a¥ X' | I
=0 4,1=0
d d
oL 1 91,3 0°L
+ Z: ki Vi (O — Vk)aT/k T3 kZ:lng" V2
1 d
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with boundary condition
L(T,A\, V)=

Now we note that (a’) " Diag(V)a! = ZZ:1 ainai, and hence

"

Z (a) " Diag(V)a! M\ = ka ag, )",

7,0=0

where for k =1,..,d, ax = (a?,al)’ € R? and (ay, A\)? = Zjl Oak/\Jak)\l
Also, we have

1 d 1
(a’) T Diag(V)alN = Vial al N 35
k%%
=0 k=1 j*O
k=1 j= O
and hence
OL 1 4 38 L oL
= = 0, —V; A
T ; ( o Vi 8V2 + (5 Vi (0k ) + ipror( ak>Vk> v,
i
+LVk: 5 Z ak7 A>2
7=0

Now weset 7 =T —t, ¢, = — (% Zl ola ) N — 2(ay, /\>2) and we guess that the solution of the
PDE is of the form

d
= H Ly
k=1

where
oLy 1 3 Ly oLy
o = ( or Vi v + (BeVi(Or — Vi) + ipror(X a) Vi) v, Lkack> :
Set s, = =%, and Ly(Vi, 7) = fi(Vk, sk), then
afk 3a fk A 2 ~ afk ~
Gk _ _h Yk _
Dy Vi vz + (=0 Vi +wkvk)8Vk xVir
where
G = 25’“2’“
O
~ QIik 2ipk<)\,ak>
O = —— ——mF—=
O Ok
. 2c¢y,
Cr = 5
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We now employ similar changes of variables as in Lewis (2000) p. 332, that is

_ W
Y = V.
ty = WSk,
and set ug(yk, tx) = fi(Vk, sk), to get
6uk 82u;€ ~ 8uk ék
S = Uk T2+ —yp)m— — —u,
Oty oy ( )3% Yk

subject to uy(yk,0) = 1. Next, we let up(yr,tx) = y.* exp ((1 — vk)tk) 9x(Yk, tr), choosing vy to
satisfy the equation R
V§+(1+0k)yk — ¢ =0.

We take
Ve = —Hk — Ok,
where 1 A
P = 5(1+9k),5k = /Ui + 2,
and g satisfies the equation
% — (gl — (0 + B0 (1)

subject to gx(yx,0) =y, ”*, where 5 = 1 + 20,. Equation (37) can be solved as in Lemma 1 in
Feller (1951), to obtain

vp—1
e )) k (1+zp(e™ — 1)),

Gr(ak, tr) = T(1 = vg) (ka(et_l

where -
Gr(zk, ty) = / e " ar(y, tr)dy .
0

This Laplace transform is easily inverted to obtain the following result for uj, which matches with
the univariate result from Lewis (2000), p. 54 (see also , Carr and Sun (2007), Theorem 3.1):

I'(Br — ax) ( Yk
L(Bk) efr —

which completes the first part of the proof.

(Y, te) =

akM(Olk Bl — Yk )
1 b b etkfl 9

Let us now turn our attention to the regularity of the characteristic function on Z. Note that for
pricing, we are interested in the function

Uy(—iA) = E; (exp (—iAY(T) — iA'Y (1)) (38)
Therefore, we have to replace A by —A in the formula (27) giving ¢;. The discontinuity occurs

along the imaginary axes, so ' .
M =iIm(N), j=0,1.
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We arrive at the following formula:

o = %Z(a@%m +% > alag(=N) (=)

0 4,1=0

1
) ) 1 . .
(a)*(—iIm(N)) + 5 Z ajali2Im(N)Im(\')
Jj=0 7,1=0

(i%WMM+iNMMMMMw
=0 4,1=0
((a)*Im(A°) + (az)*Im(A")

+(ag)*(Im(A%))? + 2azap Im(A") Im(AY) +(ag,)*(Im(A1))?) .
Substituting Im(A°) + Im(\!) = —1, which defines the admissible domain in (17), we get

i = 3 Im() (1 + Tm(\?)) (af — a})?. (40)

From (17) we have Im(\°) + 1 > 0, and hence ¢, > 0. Then the argument in Lewis (2000) (see
page 55) applies, i.e. #* is real along the imaginary axes, A = iIm(\), j = 0,1, i.e. d is real
and satisfies 6 > |ug|. Consequently, o > 0 and S, > 1. Therefore, no discontinuities occur on
Z since the boundary flux at the origin vanishes (see Lewis (2000) page 333).

7 Appendix B: Images and Tables
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Figure 1: Calibration of the USD/EUR implied volatility surface. Market data as of 22nd July 2010. Market
volatilities are denoted by crosses, model volatilities are denoted by circles. We include 4 maturities: 1 month, 3
months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting convention in the FX option market.
DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model parameters are given in Table 1.
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Figure 2: Calibration of the JPY/EUR implied volatility surface. Market data as of 22nd July 2010. Market
volatilities are denoted by crosses, model volatilities are denoted by circles. We include 4 maturities: 1 month, 3
months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting convention in the FX option market.

DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model parameters are given in Table 1.
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Figure 3: Calibration of the JPY/USD implied volatility surface. Market data as of 22nd July 2010. Market
volatilities are denoted by crosses, model volatilities are denoted by circles. We include 4 maturities: 1 month, 3
months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting convention in the FX option market.

DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model parameters are given in Table 1.

EURUSD - Squared errors in volatility

Figure 4: Squared error for the USD/EUR implied volatility surface. Market data as of 22nd July 2010. We
include 4 maturities: 1 month, 3 months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting
convention in the FX option market. DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model
parameters are given in Table 1.
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Figure 5: Squared error for the JPY/EUR implied volatility surface. Market data as of 22nd July 2010. We
include 4 maturities: 1 month, 3 months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting
convention in the FX option market. DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model

parameters are given in Table 1.

USDJPY - Squared errors in volatility

Figure 6: Squared error for the USD/JPY implied volatility surface. Market data as of 22nd July 2010. We include
4 maturities: 1 month, 3 months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting convention
in the FX option market. DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model parameters are
given in Table 1.
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Figure 7: Calibration of the USD/EUR implied volatility surface. Market data as of 2nd May 2013. Market

volatilities are denoted by crosses, model volatilities are denoted by circles. We include 4 maturities: 1 month, 3

months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting convention in the FX option market.

DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model parameters are given in Table 4.
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Figure 8: Calibration of the JPY/EUR implied volatility surface. Market data as of 2nd May 2013. Market
volatilities are denoted by crosses, model volatilities are denoted by circles. We include 4 maturities: 1 month, 3
months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting convention in the FX option market.

DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model parameters are given in Table 4.
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Figure 9: Calibration of the JPY/USD implied volatility surface. Market data as of 2nd May 2013. Market
volatilities are denoted by crosses, model volatilities are denoted by circles. We include 4 maturities: 1 month, 3
months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting convention in the FX option market.

DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model parameters are given in Table 4.

EURUSD - Squared errors in volatility

Figure 10: Squared error for the USD/EUR implied volatility surface. Market data as of 2nd May 2013. We
include 4 maturities: 1 month, 3 months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting
convention in the FX option market. DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model
parameters are given in Table 4.
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EURJPY - Squared errors in volatility

Figure 11: Squared error for the JPY/EUR implied volatility surface. Market data as of 2nd May 2013. We
include 4 maturities: 1 month, 3 months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting
convention in the FX option market. DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model

parameters are given in Table 4.

USDJPY - Squared errors in volatility

Figure 12: Squared error for the USD/JPY implied volatility surface. Market data as of 2nd May 2013. We
include 4 maturities: 1 month, 3 months, 6 months, 1 year. Moneyness levels follow the standard Delta quoting
convention in the FX option market. DC and DP stand for ”Delta call” and ”Delta put”, respectively. Model

parameters are given in Table 4.
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Parameters EURUSD EURJPY USDJPY

1 0.771355  1.055712  1.636934
Vs 1.093255  1.298630  1.202518
K1 -1.330424 -1.663447 -1.728106
Ko 0.792380 0.93503  -0,030107
o1 3.657986 3.62715 3.26299
o9 1.395227 1.43802 1.158547
01 -2.260868  -2.40059  -2.193273
0o 0.98374 1.18666 0.110921
p1 -0.36164 -0.44632  -0.465384
02 -0.740197  -0.74939  -0.394187
a‘liom 1.110667  1.253862  1.385031
ag"m 1.756288  1.836335  1.473142
a{or 0.975045  1.118780  1.325870
agf” 1.735402  1.800107  1.406883
Res. norm. 1.39e-05 2.39¢e-05 2.48e-5
plor 1.112671  0.795337 0.48485
pher -0.01900 -0.00691  -0.001289
pPom 1.063624  0.855627  0.457320
pPom -0.034463  0.020238  -0.027407

Table 1: This table reports the results of the calibration of the model in the two factor case with market data as
of 22nd July 2010. We include 4 maturities: 1 month, 3 months, 6 months, 1 year. For each column we show the
calibrated parameters corresponding to a different pair of the triangle EUR/USD/JPY. We follow the convention
FORDOM (e.g. EURUSD means that USD is the domestic currency, EUR is the foreign one). Strikes range in the
set 10DP (i.e. 10 Delta Put), 25DP, ATM, 25DC, 10DC (for the market convention we refer to De Col et al. (2013)).
The reference exchange rates are SEURUSD (0)=1.2903, SEVRJIPY (0)=112.29, SUSPJPY (0) =87.026. Res. norm.
is the residual of the objective function for the given set of parameters. pgor (resp. kaom) indicates the term
ok/2 + K)ok + pkaf’”' (resp. ok /2 + Ki/ok + pkakD"m) in (32) for the foreign (resp. domestic) currency. The
corresponding benchmarked savings account is a true martingale if and only if these terms are non negative for all
k=1,2
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Vol Differences for EURUSD

1m 3 m 6 m ly
10DP -0.00057  -0.00039 -0.00137 4.61e-05
25DP 0.00095 0.00153 0.00152  0.00088
ATM -0.00055  -0.00059  5.54e-05 -0.00086
25DC -0.00064 -0.001281  2.54e-05 -0.00042
10DC 0.001008 -3.52e-05  0.00068  0.00011

Vol Differences for EURJPY

1m 3m 6 m ly
10DP -0.00027  -0.00125 -0.00129  0.00023
25DP 0.00192 0.00087 0.00096  0.00104
ATM -4,53e-05  0.00049 0.00130  -0.00069
25DC -0.00174  -0.00126  -0.00013 -0.00194
10DC -0.00024 0.00039  0.001655  0.00045

Vol Differences for USDJPY

1m 3m 6 m ly
10DP -8.02¢-05 -0.00126  -0.00142 -0.00013
25DP 0.00249 0.00091 0.00119  0.00030
ATM -0.00027  -0.00045 0.00099  0.00037
25DC -0.00150  -0.00127  0.00051 -0.00054
10DC -0.00134 0.00050 0.00169  -0.00130

Table 2: This table reports the differences between market implied volatilities and model implied volatilities
in the two factor case with market data as of 22nd July 2010 corresponding to a different pair of the triangle
EUR/USD/JPY. We include 4 maturities: 1 month, 3 months, 6 months, 1 year. We follow the convention FORDOM
(e.g. EURUSD means that USD is the domestic currency, EUR is the foreign one). Strikes range in the set 10DP
(i.e. 10 Delta Put), 25DP, ATM, 25DC, 10DC (for the market convention we refer to De Col et al. (2013)). The
reference exchange rates are SEURUSD (0)=1.2903, SEURIPY (0)=112.29, SUSPJIPY (0) =87.026.
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Parameters EURUSD 6m EURUSD 1y EURJPY 6m EURJPY ly USDJPY 6m USDJPY ly

Vi 1.694192 1.706194 1.715061 1.715432 1.77986 1.63301
Vs 1.052543 0.678113 0.740801 0.657344 1.467089 1.271879
K1 0.169056 0.223676 0.253533 0.253377 -1.511631 -1;73456
K2 0.394588 0.52102 0.309121 0.338675 -0.19086 0.096019
o1 3.126389 3.13396 3.15722 3.156955 4.045071 3.23359
02 1.554624 1.143817 1.168906 1.08465 1.527235 1.36443
0 -0.00399 -0.00298 0.000646 0.00068 -2.31880 -2.18475
02 0.050109 0.01489 0.044354 0.039707 0.104962 0.111806
p1 -0.07963 -0.01811 -0.98946 -0.991027 -0.789816 -0.63741
P2 -0.96265 -0.89118 -0.94283 -0.865760 -0.412228 -0.49477
afom 1.477788 1.503462 1.379132 1.375549 0.91261 1.39159
agom 1.435051 1.363557 1.492297 1.48240 1.541205 1.45855
a{or 1.364904 1.332386 1.419632 1.423707 0.810048 1.338211
agor 1.376103 1.289862 1.31580 1.29736 1.458585 1.354850
Res. norm. 1.01e-9 2.02e-5 3,65e-06 1,45e-8 8.6e-8 2,02e-5
pler 1.50856 1.614220 0.254246 0.247804 1.00904 0.22738
pher -0.29358 -0.122083 -0.391689 -0.2686420 0.03737 0.08225
pPom 1.49957 1.611122 0.29431 0.295530 0.928042 0.19335
phom -0,35033 -0.18775 -0.55809 -0.428834 0.003314 0.03093

Table 3: This table reports the results of the calibration of the model in the two factor case with market data
as of 22nd July 2010. For each column we show the calibrated parameters corresponding to a different pair of the
triangle EUR/USD/JPY by including only one maturity, where we consider separately resp. 6 months and 1 year.
We follow the convention FORDOM (e.g. EURUSD means that USD is the domestic currency, EUR is the foreign
one). Strikes range in the set 10DP (i.e. 10 Delta Put), 25DP, ATM, 25DC, 10DC (for the market convention
we refer to De Col et al. (2013)). The reference exchange rates are SEURUSD(0)=1.2903, SEURJPY (0)=112.29,
SUSDJPY (0) =87.026. Res. norm. is the residual of the objective function for the given set of parameters. kaW
(resp. ka"m) indicates the term oy /2 + ki /o) + pkakF‘”' (resp. ok/2 + ki/ok + pkakDom) in (32) for the foreign
(resp. domestic) currency. The corresponding benchmarked savings account is a true martingale if and only if these

terms are non negative for all k =1, 2.
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Parameters EURUSD EURJPY USDJPY

Vi 1.641952  0.836130  1.717215
Vs 0.439494  1.050021  0.745681
K1 0.181556  -0.680380  0.235865
Ko 0.10280  0.472494  0.643794
o1 3.065151  2.010454  3.147204
o2 0.794530  0.564713  1.228448
01 0.028176  -0.819852 -0.013523
0o -0.218581  0.533048  -0.330641
p1 -0.87744  -0.16380  -0.155919
P2 -0.43356  -0.617496  -0.944246
afom 1.432145  1.813486  1.45799
agom 1.533578  1.816593  1.394977
al’" 1.422160  1.685392  1.375851
al’” 1.403402  1.782033  1.19359
Res. norm. 3.45e-4 2.05e-05 2.77e-4
Py 0.343937  0.39072  1.434024
pyer -0.081807  0.018654  0.011245
pPem 0.335176  0.369745  1.421217
ppom -0.13827  -0.002685 -0.178907

Table 4: This table reports the results of the calibration of the model in the two factor case with market data as
of 2nd May 2013. We include 4 maturities: 1 month, 3 months, 6 months, 1 year. For each column we show the
calibrated parameters corresponding to a different pair of the triangle EUR/USD/JPY. We follow the convention
FORDOM (e.g. EURUSD means that USD is the domestic currency, EUR is the foreign one). Strikes range in the
set 10DP (i.e. 10 Delta Put), 25DP, ATM, 25DC, 10DC (for the market convention we refer to De Col et al. (2013)).
The reference exchange rates are SEURUSD (0)=1.3169, SEVEJIPY (0)=128.205, SUSPJPY (0) =97.35. Res. norm.
is the residual of the objective function for the given set of parameters. pgor (resp. kaom) indicates the term
ok/2 + K)ok + pkaf‘”' (resp. ok /2 + Ki/ok + pkakD"m) in (32) for the foreign (resp. domestic) currency. The
corresponding benchmarked savings account is a true martingale if and only if these terms are non negative for all
k=1,2
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Vol Differences for EURUSD

1m 3 m 6 m ly
10DP -0.0065 -0.0002 -0.0015 -0.0046
25DP -0.0067 -0.0003 0.0005  0.0001
ATM -0.0038 0.0016  0.0028  0.0040
25DC 0.0023  0.0036  0.0026  0.0034
10DC 0.0089  0.0031 -0.0011 0.0082

Vol Differences for EURJPY

1m 3m 6 m ly
10DP 0.0005 0.0004 0.0016 -0.0000
25DP -0.0004 -0.0018 -0.0010 -0.0017
ATM -0.0003 -0.0004 0.0006 0.0016
25DC 0.0013  0.0010 0.0014 -0.0004
10DC -0.0009 -0.0002 -0.0012 0.0002

Vol Differences for USDJPY

1m 3m 6 m ly
10DP -0.0040 -0.0019 0.0036  0.0054
25DP -0.0049 -0.0049 -0.0022 -0.0003
ATM -0.0045 -0.0056 -0.0039 -0.0028
25DC 0.0002 -0.0010 -0.0001 -0.0015
10DC 0.0057 0.0048 0.0052 -0.0016

Table 5: This table reports the differences between market implied volatilities and model implied volatilities in the
two factor case with market data as of 2nd May 2013 corresponding to a different pair of the triangle EUR/USD/JPY.
We include 4 maturities: 1 month, 3 months, 6 months, 1 year. We follow the convention FORDOM (e.g. EURUSD
means that USD is the domestic currency, EUR is the foreign one). Strikes range in the set 10DP (i.e. 10 Delta
Put), 25DP, ATM, 25DC, 10DC (for the market convention we refer to De Col et al. (2013)). The reference exchange
rates are SEURUSD(0)=1.3169, SFURIPY (0)=128.205, SUSPTPY (0) =97.35.



