
JOURNAL OF LATEX CLASS FILES 1

A Study of Neural-Network-Based Classifiers for

Material Classification

H.K. Lam, Senior Member, IEEE, Udeme Ekong, Hongbin Liu Member, IEEE, Bo

Xiao, Hugo Araujo, Sai Ho Ling, Senior Member, IEEE and Kit Yan Chan

Abstract

In this paper, the performance of the commonly used neural-network-based classifiers is investigated on

solving a classification problem which aims to identify the object nature based on surface features of the object.

When the surface data is obtained, a proposed feature extraction method is used to extract the surface feature

of the object. The extracted features are then used as the inputs for the classifier. This research studies eighteen

household objects which are requisite to our daily life. Six commonly used neural-network-based classifiers,

namely one-against-all, weighted one-against-all, binary coded, parallel-structured, weighted parallel structured

and tree-structured, are investigated. The performance for the six neural-network-based classifiers is evaluated

based on recognition accuracy for individual object. Also, two traditional classifiers, namely k-nearest neighbor

classifier and naive Bayes classifier, are employed for the comparison purposes. To evaluate robustness property

of the classifiers, the original clean data is contaminated with Gaussian white noise. Experimental results show

that the parallel-structured, tree-structured and the naive Bayes classifiers outperform the others under the

noise-free data. The tree-structured classifier demonstrates the best robustness property under the noisy data.
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OBJECT classification aims to classify an unknown object into a pre-determined group which

consists of a set of pre-classified objects with similar features to that unknown object. This is

a very important field of study that has a diverse number of applications such as risk management of

investment [1], hand-writing recognition [2] and speech recognition [3].

In the literature, the main methods of classification can be found as logic based method (e.g., decision

trees), perceptron based methods (e.g., single layer perceptrons [4] and neural networks [5]), statistical

approach (e.g., Bayesian classification [6]), instance-based methods (e.g., nearest neighbor algorithm

[7], [8]) and support vector machine (SVM) methods [9].

The decision tree technique is a subset of the logic based classification method, it performs clas-

sification by sorting the inputs based on the inherent feature values. The nodes in a decision tree

are representative of the feature values [10]. This method has been improving classification accuracy

and interpretability of loan granting decisions [1]. The decision tree can improve the classification

accuracy of the process, and also it is transparent and can be easily deciphered. Hence, for example,

it is attractive for investment bankers who are required by law to give reason for a loan denial. The

performance of the decision tree can be further improved by incorporating with neural networks, in

order to utilize the distinct nature of processing adopted by both approaches [11]. However, if the

splitting rule of the decision tree makes a wrong decision, it is impossible to return to the correct path

resulting in an accumulation of errors. Also, an increase in the number of learned rules leads to the

training algorithm trying to memorise the training set instead of discovering the rules that governing

the patterns of it resulting in poor predictions.

A single layer perceptron [4] introduced by Rosenblatt in 1962 has created revolution in the artificial

intelligence field, which has led to a number of perceptron-based techniques. A single layer perceptron

can be simply described as a component that computes the sum of weighted inputs which is then fed

to the output of the system. The outputs are then compared with the targets where the difference is

employed to adjust the weights until the desired level of accuracy is derived. This approach demonstrates

a major limitation that the single layer perceptron can only learn linearly separable problems, thus it is

incompatible on addressing non-linearity. Despite the limitation, the single layer perceptron has been

applied effectively on finger print matching [4] and image detection [12] applications.

Bayesian decision theory [6] is fundamental to statistical classification methods which provide a

model for the classification procedures. The Bayesian classifier is based on the assumption that equal
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prior probabilities exists for all classes [13] which help in resolving conflicts that occur when two

or more classes are not well separable resulting in improving the classification accuracy. However,

the posterior probabilities cannot be determined directly [5]. The Bayesian classifier was applied

successfully in weeds identification [6]. Recently, a hybrid Bayesian classifier [13] has been proposed,

and the results demonstrated that the classification capability can be improved.

Another classification method is based on the k-nearest neighbour technique (kNN) [7] which is good

in dealing with text based problems such as visual category recognition [8]. The basic principle is that

objects in a data set generally exists in the neighbourhood of other objects with similar properties. The

technique finds the “k” nearest objects to the particular input and determines its class by looking for the

most frequent class label. In this technique, the distance between objects is more important than their

individual positions. The main disadvantages of the kNN technique are the large memory requirements

and the lack of a logical way of choosing “k”, this would make it difficult in a classification application

as different data sets would require different optimized value of “k” in order to improve the performance

of this method [10]. Furthermore, the precision accuracy can be reduced when there are too many classes

or when an uneven density of training samples is presented. A clustering-based method is proposed in

[14] to solve this problem as training data is being pre-processed via a clustering algorithm and then

classified with a novel kNN algorithm that adjusts the value of “k” with each iteration.

Neural networks [5] consist of 3 distinct segments that the input units which have the primary

responsibility of receiving information; the hidden units which carry out the processing and the output

units which store the processed results [10]. The neural network is first trained on a set of data to

determine the input-output mapping. The weights of connections between neurons are then established

and the training network can then be used to classify a new set of data. The backpropagation algorithm

[5] is a widely used method for training the neural network and improving its accuracy. It is done by

calculating the error between the actual and desired output, adjusting the weights accordingly and then

repeating the process until an acceptable level of accuracy is achieved. Neural network is non-linear in

nature and demonstrates a universal approximation capability [15] which makes it ideal for dealing with

complex input-output relationships such as classification problems. One of the classification applications

of neural networks has been used in stock market prediction where different classification architectures

were applied in the classification of system input (for example, historical stock market price) into “buy”,

“sell” or “hold” advices for investing in the S&P 500 [16].
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Support vector machines (SVMs) [9] are supervised learning methods that can be used for various

data mining applications including classification and time-series analysis. The main concept of the

SVMs is to obtain a hyperplane to separate two data classes. Mature theory has been developed

to determine the optimal hyperplane by maximizing the distance between the hyperplane and the

support vectors for reduction of generalization error for both linearly and nonlinearly separable cases.

The solutions are unique and consistent and there are less occurrences of overfitting. However, it

demonstrates a high algorithmic complexity and results are not transparent [10]. A novel method was

proposed in [17] to tackle the problem of high complexity when large data sets are used. A two-phase

approach is adopted. In the first phase, clustering techniques are applied to obtain approximate classes

for all the input data, In the second phase, fine-tuning of the classified data by using the instances that

are in close proximity to the approximated hyperplane obtained from the first phase is then performed.

In this paper, we consider a classification problem in material surface recognition of an unknown

object using a contact sensing fingertip, which demonstrates a wide range of potential domestic and

industrial applications, such as on robot-assisted surgery [18]–[21], blind grasping application [22], [23],

pose classification [24], prosthetic limbs [25], quality assurance [26], shape extraction and industrial

inspection [27], [28], and brain-machine-brain interface [29]. The properties of the object surface

which are important for the aid of recognition are the frictional coefficients, texture, compliance

and roughness. The data is obtained through an active surface exploration [30], [31] with the aid

of contact-sensing fingertip which can accurately identify the normal and frictional force of the object.

During the experiments, the contact sensing fingertip slides along the object with short strokes whilst

increasing/decreasing the velocity as is appropriate. The properties of the vibrations caused by this

action are then used as the input data. A feature vector is extracted from the raw data to reduce the

number of data points used for the classification procedure. It is of utmost importance that the contact

sensing fingertip is able to differentiate between the objects and that is the basis of emphasis and

importance for the research being conducted in this paper.

In view of the superior learning and generalization capability of the neural networks, we are motivated

to implement classifiers using neural networks to deal with the material classification problem [32]–

[34]. In this study, the characteristics of the neural networks are considered for the implementation of

neural-network-based classifiers, demonstrating different levels of flexibility, scalability and complex-

ity. Six neural-networked-based classifiers, namely one-against-all, weighted one-against-all, binary
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coded, parallel structured, weighted parallel structured, tree-structured, are introduced for recognition

of materials touched by the robot finger. In order to make a comparison, two traditional classification

methods, namely k-nearest neighbor classifier and the naive Bayes classifier, are considered. Their

recognition performance is investigated thoroughly using the dataset collected from experiments. To

investigate the robustness property of the classifiers, Gaussian white noise is added to the test dataset

and the recognition performance is evaluated. By investigating the recognition performance of the

introduced classifiers, the most suitable classifier for the material surface classification problem can be

recommended.

This paper is arranged as follow: After the introduction, we present the basic principles and theory

behind the neural network in Section II. Section III presents the 6 neural network based classifiers and

comments on their flexibility, scalability and complexity. The robustness of all the classifiers are also

included. Section IV presents and discusses the results produced from the simulations under both the

original testing data case and noisy data case. A conclusion is then drawn in Section V.

II. NEURAL NETWORKS

In this section, a brief discussion of a fully-connected feed-forward neural networks with one input

layer, nl hidden layers and one output layer is considered. The tth input of the neural network is given

by x(t) = [x1(t) x2(t) . . . xnin
(t)] and the tth output as y(t) = [y1(t) y2(t) . . . ynout(t)]

where nin denotes the number of input nodes in the input layer and nout denotes the number of output

nodes in the output layer. The output of the j-th node in the input layer is given as follows:

f
(0)
i (t) = xi(t), i = 1, 2, . . . , nin (1)

and the output of the j-th node in the nl-th hidden layer is given as follows:

f
(nl)
i (t) = tfnl

( n
(nl−1)
nh∑
j=1

w
(nl)
ij f

(nl−1)
j (t)− b

(nl)
j

)
, i = 1, 2, . . . , n

(nl)
h , (2)

where tfnl
(·) denotes the transfer function; n(nl)

h denotes the number of hidden nodes, b(nl)
i denotes

the bias in the nl-th hidden layer; and w
(nl)
ij denotes the weight between the j-th node in the n

(nl−1)
h -th

hidden layer and the i-th node in the n
(nl)
h -th hidden layer.
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The output of the neural network is given as follows:

yi(t) = tfnl+1

( n
(nl)
nh∑
j=1

w
(nl+1)
ij f

(nl)
j (t)− b

(nl+1)
j

)
, i = 1, 2, . . . , nout (3)

Here a simple 3-layer feed-forward fully-connected neural network is considered and is illustrated

in Fig. 1.

	
  
Fig. 1. 3-layer fully-connected feed-forward neural network.

III. MECHANISMS OF NN-BASED CLASSIFIERS

In this section, six NN-based classifiers namely one-against-all, weighted one-against-all, binary

coded, parallel-structured, weighted parallel-structured and tree-structured, are introduced to classify the

feature patterns. In the following, the input pattern is denoted as x(t) = [x1(t) x2(t) . . . xnin
(t)],
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which is considered as the feature vector of an object to be recognized. The purpose of these classifiers

is to group the feature patterns into M classes through supervised learning.

A. One-Against-All Classifier

A one-against-all classifier is shown in Fig. 2, which can be considered as a multiple-input-single-

output fully-connected feed-forward NN. It receives the feature pattern x(t) as input and produces a

single value y(t) as output. The target output yd(t) is set to be i when the input pattern x(t) belongs

to class i. In other words, the one-against-all classifier is trained such that the output y(t) is as close

as possible to yd(t) according to the class of the feature pattern x(t).

During the operation, the feature pattern is classified as of class j which is obtained by

j = argmin
i
{|y(t)− i| | i ∈ {1, 2, . . . ,M}}, (4)

where | · | is the absolute value operator. If the set j has more than one element, the first element is

considered as the recognized class label.

The one-against-all classifier has a simple structure. However, it is less flexible and retraining is

required when additional classes are introduced. Also, when the number of classes increases, the

training time increases accordingly. For a large-scale classification problem (for example, with large

dataset, large number of classes and/or high dimensional input features), the number of hidden nodes

and/or layers have to be increased to achieve an acceptable recognition accuracy.

Neural Network

x1(t)

x2(t)

xnin
(t)

y(t)

Fig. 2. NN-based one-against-all classifier.

B. Weighted One-Against-All Classifier

A weighted one-against-all classifier is shown in Fig. 3, which can be considered as a multiple-

input-multiple-output fully-connected feed-forward NN. It receives a feature pattern x(t) as input and
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produces a vector y(t) = [y1(t) y2(t) . . . ynout(t)] as output where nout is a non-zero positive

integer pre-determined by designers. The target output vector yd(t) =
[
yd1(t) yd2(t) . . . ydnout

(t)
]

is set to be wi = [wi1 wi2 . . . winout ], i = 1, 2, . . ., M , which is a predefined constant vector to

be determined, when the input pattern x(t) belongs to class i. During the operation, the input pattern

is classified as of class j which is obtained by

j = argmin
i
{‖y(t)−wi‖ | i ∈ {1, 2, . . . ,M}}, (5)

where ‖ · ‖ denotes the l2 norm (i.e. Euclidean norm). If the set j has more than one element, the first

element is considered as the recognized class label.

Compared with the one-against-all classifier, it offers a relatively higher flexibility to assign the

target output, which could improve the recognition accuracy by examining more than one output.

As weighted one-against-all classifier is based on the one-against-all classifier, it inherits the same

limitations in terms of flexibility, scalability and complexity as in one-against-all Classifier discussed

in Section III.B.

Neural Network

x1(t)

x2(t)

xnin
(t)

y1(t)

y2(t)

ynout(t)

Fig. 3. NN-based weighted one-against-all or binary-coded classifier.

C. Binary-Coded Classifier

A binary-coded classifier is shown in Fig. 3, which can be considered as a multiple-input-multiple-

output fully-connected feed-forward NN. It receives a feature pattern x(t) as input and produces a

vector y(t) = [y1(t) y2(t) . . . ynout(t)] as output where nout =
⌈
logM
log 2

⌉
, d·e denotes the ceiling

operator rounding up the argument to the nearest integer. To reduce the number of outputs of the NN,

binary string is employed to represent the class of the input patterns. Class i, i = 1, 2, . . ., M , is

represented by an nout-bit binary string. For example, assuming that M = 18, a 5-bit binary string
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is employed to represent the class of input patterns; class 1 is represented by ‘00001’, class 2 is

represented by ‘00010’ and so on. The target output vector yd(t) =
[
yd1(t) yd2(t) . . . ydnout

(t)
]

is

set to be wi = [wi1 wi2 . . . winout ], i = 1, 2, . . ., M , which is the binary representation of i.

The binary-coded classifier is a subset of the weighted one-against-all classifier. When the weight

wi of the weighted one-against-all classifier is chosen to be a binary string, the classifier is configured

as the binary-coded classifier. During the operation, the input pattern is recognized as of class j based

on (5).

D. Parallel-Structured Classifier

A parallel-structured classifier is shown in Fig. 4, which consists of M nin-input-nin-output fully-

connected feed-forward NNs. Fig. 4 shows that the purpose of the ith NN is to recognize the input

patterns of class i. To realize this purpose, the training objective is that the output of the NN cor-

responding to class i is the same as the input patterns of class i, i.e., the target output vector yd(t)

is set to be x(t) such that the characteristic of input patterns of class i can be learnt. Consequently,

it is expected that the difference between the input and output vector of the ith NN would be very

small if the input patterns are of class i but relatively larger if the input pattens are not of class i. The

class determiner in Fig. 4 will determine the input patten to be of class i if the ith NN produces the

least input-output difference. During the operation, the feature pattern is classified as class j which is

obtained by

j = argmin
i
{‖yi(t)− x(t)‖ | i ∈ {1, 2, . . . ,M}}. (6)

If the set j has more than one element, the first element is considered as the recognized class label.

The ith NN is trained with the feature patterns of class i implying that the complexity of the NN

is lower compared with those in one-against-all, weighted one-against-all and binary-coded classifier

that feature patterns of all classes are used for training the NN. Moreover, it is more flexible to add

extra classes and retraining of all existing NNs is not necessary. It is thus more suitable to handle

large-scale recognition problem.
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1st Neural Network

2nd Neural Network

rth Neural Network

Class
Determiner

x(t)
y1(t)

y2(t)

yr(t)

y(t)

Fig. 4. NN-based parallel-structured classifier.

E. Weighted Parallel-Structured Classifier

A weighted parallel-structured classifier is a variant of parallel-structured classifier, which consists

of dM
G
e nin-input-nin-output fully-connected feed-forward NNs. Each NN in the parallel-structured

classifier is able to learn the characteristic of one single class of input patterns and the recognition is

realized by looking into the least input-output difference. The weighted parallel-structured classifier

allows each NN to learn the characteristic of more than one class of feature patterns such that each NN

can classify more than one class. It reduces the number of NNs to implement the weighted parallel-

structured classifier.

Let G ≤ M be the number of classes recognized by each NN. The ith NN is trained such that

the target output vector yd(t) is set to be Wkx(t) where k = (i − 1)dM
G
e + 1, (i − 1)dM

G
e + 2,

. . ., (i − 1)dM
G
e + G, i = 1, 2, . . ., dM

G
e, when the feature pattern x(t) belongs to class k; Wk =

diag{wk1, wk2, . . . , wknin
} is a constant matrix determined by the designers. Consequently, when the

input pattern x(t) is input to the ith NN, the l2 norm of the difference between the weighted input

and output, i.e., ‖yi(t) −Wkx(t)‖ should be very small when x(t) belongs to class k, otherwise, a

relatively larger l2 norm of the difference should be obtained. The class determiner will determine the

class of the input pattern based on the least l2 norm of the difference.

During the operation, the feature pattern is classified as of class j which is obtained by

j = argmin
k
{‖yi(t)−Wkx(t)‖ | i ∈ {1, 2, . . . ,

⌈M
G

⌉
};

k ∈ {(i− 1)
⌈M
G

⌉
+ 1, (i− 1)

⌈M
G

⌉
+ 2, . . . , (i− 1)

⌈M
G

⌉
+G}}. (7)
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If the set j has more than one element, the first element is considered as the recognized class label.

F. Tree-Structured Classifier

A tree-structured classifier is shown in Fig. 5, which consists of a single group classifier and dM
G
e

sub-classifiers making a total of 1+ dM
G
e NNs. We firstly divide the total number of classes into dM

G
e

groups such that each group has G sub-classes. The group classifier is an nin-input-
⌈
M
G

⌉
-output NN.

The group classifier indicates which group the input pattern belongs to and then select the corresponding

sub-classifier to perform recognition. During the training, the target output zdk(t) for output zk(t), k =

1, 2, . . .,
⌈
M
G

⌉
, is set to be 1 if the input pattern belongs to group k, otherwise, 0. When output zk(t)

of the group classifier is closer to 1, which suggests that the input pattern belongs to group k, the kth

sub-classifier is selected to determine which sub-class the input pattern belongs to in this group.

During the operation, the feature pattern is classified as of group j which is obtained by

j = argmin
k
{|zk(t)− 1| | k ∈ {1, 2, . . . ,

⌈M
G

⌉
}}. (8)

If the set j has more than one element, the first element is considered as the recognized class label.

After the input pattern is recognized as of group j, the jth sub-classifier indicates which sub-class

the input pattern belongs to. The sub-classifier is an nin-input-G-output NN. The lth output of sub-

classifier being 1 is to indicate the input pattern belongs to sub-class l in group j so that the actual

class of the input pattern is (j − 1)G+ l. Based on this mechanism, the target output ydk(t) for output

yk(t), k = 1, 2, . . ., G, is set to be 1 if the input pattern belongs to sub-class k, otherwise, 0.

During the operation, the input pattern is classified as of sub-class l which is obtained by

l = argmin
k
{|yk(t)− 1| | k ∈ {1, 2, . . . , G}}. (9)

If the set l has more than one element, the first element is considered as the recognized class label.

The tree-structured classifier provides flexibility to add extra classes without retraining the sub-

classifiers, however, the group classifier has to be retrained. Furthermore, the number of levels can

be increased to deal with large-scale recognition problems. As the recognition error propagates to

the lower levels, the recognition performance of the upper-level classifiers, i.e., the group classifier,

plays an important role to the overall recognition performance of the tree-structured classifier. Unlike
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Classifier #NNs #outputs Flexibility Scalability Complexity
1 1 1 Low Low High
2 1 nout Low Low High

3 1
⌈
logM
log 2

⌉
Low Low High

4 M nout High High Low

5
⌈
M
G

⌉
nout High High Medium

6 1 +
⌈
M
G

⌉ ⌈
logM
log 2

⌉
or
⌈
M
G

⌉
Medium Medium Medium

TABLE I
COMPARISON OF VARIOUS NN-BASED CLASSIFIERS. CLASSIFIER 1: ONE-AGAINST-ALL CLASSIFIER, CLASSIFIER 2: WEIGHTED

ONE-AGAINSY-ALL CLASSIFIER, CLASSIFIER 3: BINARY-CODED CLASSIFIER, CLASSIFIER 4: PARALLEL-STRUCTURED CLASSIFIER,
CLASSIFIER 5: PARALLEL-STRUCTURED CLASSIFIER, CLASSIFIER 6: TREE-STRUCTURED CLASSIFIER.

other classifiers introduced above, the processing time for recognition is relatively longer as the lower-

level classifiers cannot start to work until result has been received from the upper levels. As the

sub-classifiers only need to deal with sub-classes, the complexity of NN is relatively lower compared

with the classifiers with a single NN.

1st Sub-classifier

2nd Sub-classifier

rth Sub-classifier

Group
Classifier

x(t)
z1(t)

z2(t)

zr(t)

y1(t)

y2(t)

yr(t)

Fig. 5. NN-based tree-structured classifier.

The properties of the NN-classifiers are summarized in Table I, which compares the number of NNs

used, number of outputs of NNs, flexibility adding extra classes, scalability in handling large-scale

recognition problems and complexity of NNs used in the classifiers.

IV. EXPERIMENTAL RESULTS

The recognition performance of the introduced NN-based classifiers is investigated using the data

collected from a robotic testing platform. The testing platform includes a robot arm Mitsubishi RV-
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Fig. 6. The test platform.

6SL, a 6-axis force/torque sensor ATI Nano17 (resolution = 0.003 N, sampling rate = 100 Hz) and a

hemispherical plastic fingertip as shown in Fig 1. During experiments, the fingertip which is rigidly

attached to the robot arm was commanded to slide on a selected object surface, keeping the normal

force around 2 N. The fingertip was kept perpendicular to the surface all the time. To obtain the

dynamic relationship of friction and velocity, within one stroke, the sliding velocity was increased

from zero to 15 mm/s with a constant acceleration rate of 3mm/s2. In total, surface of 18 materials

were investigated and the raw data of fractional force are collected through the force/torque sensor. The

18 materials used in this experiment are summarized in Table II. Each time the fingertip slides along

a material surface, 100 numerical values reflecting the material characteristics are collected. 60 sets

of data for each material were collected and each set of data contains 100 numerical values. Detailed

description of the experiment setup and technical details of raw data collection can be found in [35].

The objective of this experiment is to employ the introduced NN-based classifiers for classifying the

18 materials and comparing their recognition performance.

A. Feature Extraction

Before applying the introduced NN-based classifiers to recognize the materials, feature vector will

be extracted from the raw data consisting of 100 numerical values to reduce the number of data points

used for the classification processes. In these experiments, feature vectors of 3, 4 and 5 are extracted

from the raw data, which will be used as the input of the NN-based classifiers. As a result, the raw data
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Class label Material
1 Un-laminated wood
2 Fine polished aluminium
3 Unpolished aluminium
4 Polished brass
5 Ceramic plate
6 Cloth liner
7 Glass
8 Artificial leather
9 Mouse pad (liner surface)
10 A4 paper
11 Laminated book cover
12 Plastic PC mouse
13 Plastic CD cover
14 Polymer composite (smooth surface)
15 Kitchen sponge
16 Stainless steel knife
17 Rubber tape
18 Un-laminated paper package

TABLE II
18 MATERIALS USED IN THE EXPERIMENT.

of each pattern (100 numerical values) is represented by 3, 4 or 5 features, which significantly reduces

the dimensions of the input features, implying reduced computational demand and implementation

complexity.

Details of feature extraction are given below. The raw data of 100 numerical values of each pattern

is first divided into P portions where P = 4 is chosen in this experiment. Denote the raw data of

100 numerical values as p = [p1 p2 . . . p100], the first to the forth portions of raw data are

defined as: p1 = [p1 p2 . . . p25], p2 = [p26 p27 . . . p50], p3 = [p51 p52 . . . p75] and

p4 = [p76 p77 . . . p100]. Define

f1(z) =
1

S

S∑
i=1

zi, (10)

f2(p) =
4∑

i=1

|f1(pi+1)− f1(pi)|, (11)
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f3(z) =
1

S − 1

S∑
i=1

(zi − f1(z))
2, (12)

where z = [z1 z2 . . . zS].

Feature vectors of 3 to 5 feature points are defined as follows:

Feature vector with 3 points:

x =

[
4∑

i=1

f1(pi) 50f2(pi) 50
4∑

i=1

f3(pi)

]
. (13)

Feature vector with 4 points:

x =

[
4∑

i=1

f1(pi) 50f2(pi) 50
4∑

i=1

f3(pi) 20
4∑

i=1

√
f3(pi)

]
. (14)

Feature vector with 5 points:

x =

[
4∑

i=1

f1(pi) 50|f1(p2)− f1(p1)| 50|f1(p3)− f1(p2)| 50|f1(p4)− f1(p3)| 50
4∑

i=1

f3(pi)

]
.

(15)

It can be seen from (10) to (12) that f1(z) is the mean of z, f2(z) is the sum of the difference of

the mean of the consecutive portions of raw data, f3(z) is the variance of z.

B. NN-based Classification

The 6 NN-based classifiers are employed to recognize the 18 materials using the feature vectors of

3, 4, and 5 points. The introduced classifiers were implemented on Matlab.The Levenberg-Marquardt

back-propagation is used to develop the classifiers by minimizing the mean square error.

In this experiment, recalling that 60 sets of raw data being collected for each material, 40 of them

are be used for the training of NNs and 20 of them are used for testing. Various transfer functions and

different number of hidden nodes and hidden layers have been tried in this study. In the following, only

the appropriate configurations (number of hidden nodes, transfer functions, etc.) which can achieve

acceptable recognition accuracy are reported. The linear transfer function is used in the output layer

of all classifiers. For comparison purposes, the traditional kNN classifier and naive Bayes classifier

are employed for the classification problem. To investigate how the noise influences the recognition

performance of the classifiers, which is inevitable in real world, the test dataset contaminated by
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Gaussian white noise with variance of 0.005 is employed. It should be noted that the simulations for

all classifiers tested with noisy test dataset are conducted 10 times for fair comparison, as different

solutions can be obtained by the Levenberg-Marquardt back-propagation algorithm with different initial

guesses. Statistical information of the tests including the average recognition accuracy for individual

class, maximum and minimum recognition accuracy and standard deviation of the 10 tests is reported.

In the following, the recognition performance of the 6 NN-based classifiers, kNN classifier and naive

Bayes classifier for the classification problem subject to noise-free and noisy datasets is reported.

1) One-Against-All Classifiers: An NN with 3 layers as shown in Fig. 1 is employed to implement

the one-against-all classifier. The number of hidden nodes was chosen to be 30 and the transfer function

of hidden nodes was chosen to be a logarithmic sigmoid transfer function. The recognition accuracy in

percentage for the one-against-all classifier with feature vector of 3 to 5 feature points corresponding

to each material is summarized in Table V to Table VII.

Referring to these tables, it can be seen that the average testing recognition accuracy is about 96%

for the one-against-all classifier using feature vector of 3 to 5 feature points. However, looking into

the testing recognition accuracy of individual material, the one-against-all classifier using 3 feature

points offers 80% recognition accuracy for material 11 while the one-against-all classifier using 4 or

5 feature points offers 85% testing recognition accuracy in the worst case. It suggests that the feature

vector of 3 feature points may not work well with the one-against-all classifier.

The recognition accuracy for the test data subject to Gaussian white noise is shown in Table XXIX

to Table XXXI. It can be seen from the tables that the recognition accuracy of the one-against-all

classifiers subject to noisy data has declined to about 92%, 83% and 93% for 3, 4 and 5 feature

vectors, respectively. The classifier with 4 feature points performs the worst when the noise exists.

Also, it is found that materials 12 and 15 are very sensitive to the noise.

2) Weighted One-Against-All Classifiers: An NN with 3 layers is employed to implement the

weighted one-against-all classifier. The elements of the weighting vector wi were all chosen to be

di−9.5e, i = 1, 2, . . ., 18. The number of hidden nodes was chosen to be 30 and the transfer function of

hidden nodes was chosen to be hyperbolic tangent sigmoid transfer function. The recognition accuracy

in percentage for the weighted one-against-all classifier with the feature vector of 3 to 5 feature points

corresponding to each material is summarized in Table VIII to Table X for noise-free dataset and Table

XXXII to Table XXXIV for noisy dataset.
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Referring to Table VIII to Table X, the average testing recognition accuracy is about 96% for

the weighted one-against-all classifier using the feature vector of 3 or 4 feature points. However, the

average testing recognition accuracy is improved to about 98% for the feature vector of 5 feature points.

Looking into the worst individual testing recognition accuracy, the weighted one-against-all classifier

using feature vector of 3 feature points offers 80% for material 13 while the weighted one-against-all

classifier using 4 or 5 feature points offers 85% testing recognition accuracy in the worst case. Similar

conclusion that the feature vector of 3 feature points may not work effectively can be drawn.

Referring to Table XXXII to Table XXXIV the performance of weighted one-against-all classifier

under noisy data has declined to about 85%, 85% and 95% respectively. Similar observation is found

as in the results from one-against-all classifiers as the same mechanism is used on both one-against-all

and weighted one-against-all classifiers.

3) Binary-Coded Classifiers: An NN with 3 layers as shown in Fig. 1 is employed to implement

the binary-coded classifier. The number of hidden nodes was chosen to be 30 and the transfer function

of hidden nodes was chosen to be logarithmic sigmoid transfer function. The recognition accuracy in

percentage for the binary-coded classifier with feature vector of 3 to 5 feature points corresponding

to each material is summarized in Table XI to Table XIII for noise-free dataset and Table XXXV to

Table XXXVII for noisy dataset.

Referring to Table XI to Table XIII, the average testing recognition accuracy for the binary-coded

classifier with feature vector of 3 or 4 feature points is 98% while with feature vector of 5 feature

points is about 99%. The worst individual testing recognition accuracy is 95% for all binary-coded

classifier with feature vector of 3 to 5 feature points. Comparing with the one-against-all or the weighted

one-against-all classifier, the recognition performance of binary-coded classifier is less sensitive to the

number of feature points.

Referring to Table XXXV to Table XXXVII, the recognition performance of binary-coded classifier

under noisy data can be observered. The binary-coded classifier is able to offer a relatively higher

performance compared with the one-against-all and weighted one-against-all classifiers. Corresponding

to the number of feature points as 3, 4 and 5, the average recognition accuracy can achieve about 97%,

94% and 99%, respectively. It is again showing that the dataset with 4 feature points produces the

worst result. It is observed that materials 12 and 15 are the most difficult classes to be recognized

but their recognition accuracy can be significantly improved compared with the previous discussed
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classifiers.

4) Parallel-Structured Classifiers: In the parallel-structured classifier, all NNs are with 3 layers

where the number of hidden nodes was chosen to be 10 and the transfer function of hidden nodes

was chosen to be logarithmic sigmoid transfer function. Compared with the NNs used in the above

classifiers, the number of hidden nodes is significantly reduced, which supports the comment in Table I

that the complexity of NN is relatively lower. The recognition accuracy in percentage for the parallel-

structured classifier with feature vector of 3 to 5 feature points corresponding to each material is

summarized in Table XIV to Table XVI for noise-free dataset and Table XXXVIII to Table XL for

noisy dataset.

Referring to Table XIV to Table XVI, the individual training and testing recognition accuracy are

all 100% irregardless of the number of feature points used. Of all classifiers, the parallel-structured

classifier offers the best recognition performance. Based on the recognition accuracy, it suggests that

3 features points are sufficient for recognition purposes.

Referring to Table XXXVIII to Table XL the performance of parallel-structured classifier under

noisy data can be observed. It can be seen from these 3 tables that the parallel-structured classifier is

still able to offer a tolerable performance. Corresponding to the number of feature points as 3, 4 and

5, the average recognition accuracy can achieve about 94%, 93% and 96%, respectively. When the

noisy dataset is considered, the recognition performance is not as good as but comparable to that of

the binary-coded classifiers. Also, materials 12 and 15 are the most difficult classes to be recognized.

5) Weighted Parallel-Structured Classifiers Classifiers: In the parallel-structured classifier, all NNs

are with 3 layers where the number of hidden nodes was chosen to be 15, the transfer function of

hidden nodes was chosen to be hyperbolic tangent sigmoid transfer function and G = 3. The weighting

vector wi were chosen as follows.

Feature vector of 3 feature points:

wi = [−1 − 1 − 1] , i = 1, 4, 7, 10, 13, 16.

wi = [1 1 − 1] , i = 2, 5, 8, 11, 14, 17.

wi = [1 1 1] , i = 3, 6, 9, 12, 15, 18.
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Feature vector of 4 feature points:

wi = [−1 − 1 − 1 − 1] , i = 1, 4, 7, 10, 13, 16.

wi = [1 1 − 1 − 1] , i = 2, 5, 8, 11, 14, 17.

wi = [1 1 1 1] , i = 3, 6, 9, 12, 15, 18.

Feature vector of 5 feature points:

wi = [−1 − 1 − 1 − 1 − 1] , i = 1, 4, 7, 10, 13, 16.

wi = [1 1 1 − 1 − 1] , i = 2, 5, 8, 11, 14, 17.

wi = [1 1 1 1 1] , i = 3, 6, 9, 12, 15, 18.

The recognition accuracy in percentage for the weighted parallel-structured classifier with feature

vector of 3 to 5 feature points corresponding to each material is summarized in Table XVII to Table

XIX for noise-free dataset and Table XLI to Table XLIII for noisy dataset.

Referring to Table XVII to Table XIX, it can be seen that the weighted parallel-structured classifier

with feature vector of 5 feature points offers the best average testing recognition accuracy of about

99% with the worst individual recognition accuracy of 95%. Although the weighted parallel-structured

classifier with feature vector of 3 or 4 feature points does not have a bad performance with an average

testing recognition accuracy of about 98%, the individual testing recognition accuracy is 90% for 3

feature points and 80% for 4 feature points.

Referring to Table XLI to Table XLIII, the performance of weighted parallel-structured classifier

under noisy data can be observed. The weighted parallel-structured classifier is able to offer tolerable

average recognition accuracy of about 90%, 93% and 97%, corresponding to 3, 4 and 5 points of

feature vectors, respectively.

6) Tree-Structured Classifiers: In the tree-structured classifier, all NNs are with 3 layers where the

number of hidden nodes was chosen to be 20 for the group classifier, 5 for each sub-classifier, the

transfer function of hidden nodes was chosen to be logarithmic sigmoid transfer function for both the

group classifier and sub-classifiers. The number of sub-classes is chosen to be G = 3. Compared with
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the NNs used in the above classifiers, the number of hidden nodes in the sub-classifier is small as only

3 sub-classes need to be handled. The recognition accuracy in percentage for the parallel-structured

classifier with feature vector of 3 to 5 feature points corresponding to each material is summarized in

Table XX to Table XXII for noise-free dataset and Table XLIV to Table XLVI for noisy dataset.

Referring to Table XX to Table XXII, the tree-structured classifier with feature vector of 5 feature

points offers 100% training and testing recognition accuracy while the one with 3 or 4 feature points

offers about 99% testing recognition accuracy and the worst individual testing recognition accuracy of

90%.

It can be seen from Table XLIV to Table XLVI that the tree-structured classifier under noisy data is

still able to offer a relatively high recognition accuracy. Corresponding to 3, 4 and 5 points of feature

vectors, the average recognition accuracy of about 98%, 97% and 100%, respectively, can be achieved.

Among all NN-based classifiers, the tree-structured classifiers are more robust to the noisy input.

C. Traditional Classifiers

In order to show the superiority and adaptability of the NN-based classifiers, two traditional classi-

fiers, namely kNN classifier and the Naive Bayes classifier, are employed to accomplish the classifi-

cation of the 18 materials using the features vectors of 3, 4, and 5 points.

1) K-Nearest Neighbor Classifier: In this experiment, fixing the k-nearest to 1, the recognition

accuracy in percentage for the kNN classifiers with feature vectors of 3 to 5 feature points are

summarized in Table XXIII to Table XXV.

From Table XXIII to Table XXV, it can be seen that the average recognition accuracy for the training

dataset is 100% for 3, 4 and 5 points of feature vectors. However, when test dataset is considered, the

kNN classifiers with 3 feature points can achieve average recognition accuracy of about 96%, which

is higher than that of the kNN classifiers with 4 and 5 feature points, which can achieve only 94%

and 90% of average recognition accuracy.

From Table XLVII to Table XLIX, it can be found that the recognition performance of the kNN

classifiers with noisy dataset has declined to some extent. The best average recognition accuracy of

about 94% is obtained for the kNN classifier the feature vector of 3 points while the average recognition

accuracy is dropped to about 88% and 89% for the kNN classifiers with the feature vector of 4 and

5 points, respectively. It is interestingly observed that materials 12 and 15 can be recognized well.
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However, material 17 becomes the most difficult class to be recognized.

2) Naive Bayes Classifier: The recognition accuracy in percentage for the naive Bayes classifier

with feature vector of 3 to 5 points is summarized in Table XXVI and Table XXVIII for noise-free

dataset. From these 3 tables, it can be seen that the recognition accuracy of the naive Bayes classifier

for training dataset can be achieved as 100% for 3, 4 and 5 points of feature vectors, the recognition

accuracy for the data set are, 99%, 100% and 100%.

When noise is considered in the test dataset, the recognition performance is given in Table L and

Table LII. The best recognition accuracy for the best is about 93.9% which is achieved by the classifier

with the feature vector of 5 points. The worst is about 93% which is achieved by the classifier with

the feature vector of 4 points.

D. Discussion

Giving an overall picture of the recognition performance, Table III summarizes the overall recognition

performance of the 6 NN-based classifiers and two traditional classifiers and Table IV summarizes the

overall recognition performance under noisy test dataset. In these two tables, the average recognition

accuracy is the overall recognition accuracy, which is the average recognition accuracy of all classes;

the worst recognition accuracy is the worst recognition accuracy in the 18 classes.

It can be seen from Table III that in general the classifiers with 5 feature points perform better

in terms of the worst individual training and testing recognition accuracy, and the average training

and testing recognition accuracy. When 5 feature points are considered, the parallel-structured, tree-

structured classifier and naive Bayes classifer are able to offer the training and testing recognition

accuracy of 100%. The second best is the binary-coded classifier which is able to offer the training

and testing recognition accuracy around 99%. The worst one is the one-against-all classifier which is

only able to offer a testing recognition accuracy around 96%. When considering the kNN classifier,

the overall recognition accuracy for the training dataset is 100%. However, among all classifiers, the

kNN classifier offers the worst recognition accuracy for the test dataset.

Under the noisy test dataset, referring to Table IV, in general, the recognition performance declines

for all classifiers. The overall average recognition accuracy drops below 90% for weighted one-against-

all classifier when feature vector of 3 points is employed; for one-against-all classifier, weighted one-

against-all classifier and kNN classifier when feature vector of 4 points is employed; for kNN classifier
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when feature vector of 5 points is employed. It is observed that majority of classifiers can obtain better

recognition accuracy when feature vector of 5 points is employed. By looking into the details, it can

be seen that the tree-structured classifier can obtain the best recognition accuracy. In particular, when

feature vector of 5 points is employed, the tree-structured classifier is able to achieve overall average

recognition accuracy of 99.7778%, outperforming the rest classifiers. It can also been seen that the

tree-structured classifier demonstrate consistent recognition performance subject to noisy input with

the smallest standard deviation among all classifiers. The second best is the binary-coded classifier

which can obtain the overall average recognition accuracy of 98.8611% but the standard derivation

is more or less 5 times higher than that of the tree-structured classifier. The worst one is the kNN

classifier which can obtain the overall average recognition accuracy of 88.6389% with a significant

higher standard deviation. It is interestingly found that the parallel-structured classifier is less sensitive

to the number of feature points used, which is able to offer more or less the same overall average

recognition accuracy regardless of the number of feature points under noise-free and noisy conditions.

From the summary tables, it can be concluded that the binary-coded classifier and tree-structured

classifier are more suitable for the application of material recognition when feature vector of 5 points

are used.

V. CONCLUSION

This paper has introduced 6 neural-network-based classifiers (namely one-against-all, weighted one-

against-all, binary coded, parallel structured, weighted parallel structured, tree-structured classifier)

and two traditional classifiers (namely k-nearest neighbor classifier and naive Bayes classifier) to deal

with a material classification problem where the data was collected from a robot finger installed with

tactile sensors. In total 18 materials have been considered in the experiment. The properties of each

classifier have been discussed and its mechanism of performing classification has been detailed. To

perform the classification, feature vectors of size 3, 4 and 5 are extracted for each material. Supervised

learning approach has been adopted to train the neural-network-based classifier, kNN classifier and

naive Bayes classifier for the recognition of materials. The performance of each classifiers has been

fully investigated and compared with each other in terms of recognition accuracy. In the noisy-free case,

the results has shown that the parallel-structured classifier produces the best performance among all 8

classifiers when 3, 4 and 5 feature points are used. However, under the noisy case, the tree-structured
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Recognition Accuracy (%)
#feature points Classifier Worst (Training) Average (Training) Worst (Testing) Average (Testing)

3 1 100 100 80 96.9444
3 2 92.5 98.8889 80 96.3889
3 3 97.5 99.7222 90 98.6111
3 4 100 100 100 100
3 5 95 99.3056 90 98.0556
3 6 97.5 99.8611 90 99.1667
3 7 100 100 80 95.8333
3 8 100 100 90 99.4444
4 1 100 100 85 96.3889
4 2 97.5 99.8611 85 96.3889
4 3 97.5 99.5833 90 98.8889
4 4 100 100 100 100
4 5 87.5 99.0278 80 98.3333
4 6 100 100 90 98.6111
4 7 100 100 70 93.6111
4 8 100 100 100 100
5 1 100 100 85 96.1111
5 2 100 100 95 98.3333
5 3 97.5 99.8611 95 99.7222
5 4 100 100 100 100
5 5 97.5 99.8611 95 99.1667
5 6 100 100 100 100
5 7 100 100 40 89.7222
5 8 100 100 100 100

TABLE III
SUMMARY OF RECOGNITION PERFORMANCE OF THE 6 NN-BASED CLASSIFIERS, KNN CLASSIFIER AND NAIVE BAYES CLASSIFIER

UNDER NOISE-FREE DATASET. CLASSIFIER 1: ONE-AGAINST-ALL CLASSIFIER, CLASSIFIER 2: WEIGHTED ONE-AGAINSY-ALL
CLASSIFIER, CLASSIFIER 3: BINARY-CODED CLASSIFIER, CLASSIFIER 4: PARALLEL-STRUCTURED CLASSIFIER, CLASSIFIER 5:
PARALLEL-STRUCTURED CLASSIFIER, CLASSIFIER 6: TREE-STRUCTURED CLASSIFIER. CLASSIFIER 7: K-NEAREST NEIGHBOR

CLASSIFIER, 8: NAIVE BAYES CLASSIFIER

classifier has achieved the best performance among all the classifiers when 3, 4 and 5 feature points

are used.
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Recognition Accuracy (%)
#feature points Classifier Worst Average Best Std

3 1 88.3333 92.9722 96.3889 2.7212
3 2 80.0000 85.2500 89.4444 3.4430
3 3 94.4444 96.6944 98.8889 1.4593
3 4 90.0000 93.9722 96.3889 2.2056
3 5 86.9444 90.1944 92.5000 1.9889
3 6 96.3889 97.8611 99.1667 0.9679
3 7 88.6111 93.8889 98.3333 3.3120
3 8 92.5000 93.5278 94.1667 0.5826
4 1 78.6111 83.0000 86.6667 2.8315
4 2 81.6667 85.3889 88.6111 2.3061
4 3 90.0000 93.9444 96.3889 2.1650
4 4 91.1111 92.7778 93.8889 1.0273
4 5 90.2778 93.1667 95.2778 1.9215
4 6 95.5556 97.3611 99.1667 1.0499
4 7 83.6111 87.5926 92.2222 4.5695
4 8 92.2222 93.0278 94.1667 0.6887
5 1 87.7778 93.0278 97.2222 3.2587
5 2 92.2222 94.8333 97.5000 1.9245
5 3 96.6667 98.8611 99.7222 1.1066
5 4 94.7222 95.8056 96.6667 0.6879
5 5 92.5000 96.5833 98.8889 2.1120
5 6 99.1667 99.7778 100.0000 0.2869
5 7 83.3333 88.6389 92.7778 3.0588
5 8 93.3333 93.9167 94.4444 0.4086

TABLE IV
NOISE:SUMMARY OF RECOGNITION PERFORMANCE OF THE 6 NN-BASED CLASSIFIERS, KNN CLASSIFIER AND NAIVE BAYES

CLASSIFIER. CLASSIFIER 1: ONE-AGAINST-ALL CLASSIFIER, CLASSIFIER 2: WEIGHTED ONE-AGAINSY-ALL CLASSIFIER,
CLASSIFIER 3: BINARY-CODED CLASSIFIER, CLASSIFIER 4: PARALLEL-STRUCTURED CLASSIFIER, CLASSIFIER 5:

PARALLEL-STRUCTURED CLASSIFIER, CLASSIFIER 6: TREE-STRUCTURED CLASSIFIER. CLASSIFIER 7: K-NEAREST NEIGHBOR
CLASSIFIER, 8: NAIVE BAYES CLASSIFIER
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APPENDIX

TRAINING AND TESTING RECOGNITION ACCURACY

Recognition Accuracy (%)
Material Training Testing

1 100.0000 95.0000
2 100.0000 90.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 95.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 80.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 95.0000
15 100.0000 100.0000
16 100.0000 95.0000
17 100.0000 95.0000
18 100.0000 100.0000

Average 100.0000 96.9444

TABLE V
NN-BASED ONE-AGAINST-ALL CLASSIFIER USING 3 FEATURE POINTS. NUMBER OF HIDDEN NODES: 30, TRANSFER FUNCTION OF

HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 90.0000
3 100.0000 100.0000
4 100.0000 85.0000
5 100.0000 95.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 95.0000
9 100.0000 100.0000

10 100.0000 90.0000
11 100.0000 90.0000
12 100.0000 95.0000
13 100.0000 95.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 100.0000 96.3889

TABLE VI
NN-BASED ONE-AGAINST-ALL CLASSIFIER USING 4 FEATURE POINTS. NUMBER OF HIDDEN NODES: 30, TRANSFER FUNCTION OF

HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 90.0000
2 100.0000 85.0000
3 100.0000 95.0000
4 100.0000 95.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 85.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 95.0000
14 100.0000 100.0000
15 100.0000 95.0000
16 100.0000 100.0000
17 100.0000 95.0000
18 100.0000 95.0000

Average 100.0000 96.1111

TABLE VII
NN-BASED ONE-AGAINST-ALL CLASSIFIER USING 5 FEATURE POINTS. NUMBER OF HIDDEN NODES: 30, TRANSFER FUNCTION OF

HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 97.5000 95.0000
2 92.5000 90.0000
3 100.0000 95.0000
4 97.5000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 95.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 95.0000
12 100.0000 100.0000
13 100.0000 80.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 95.0000 90.0000
17 100.0000 100.0000
18 97.5000 95.0000

Average 98.8889 96.3889

TABLE VIII
NN-BASED WEIGHTED ONE-AGAINST-ALL CLASSIFIER USING 3 FEATURE POINTS. NUMBER OF HIDDEN NODES: 20, TRANSFER

FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 97.5000 90.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 95.0000
7 100.0000 95.0000
8 100.0000 90.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 90.0000
12 100.0000 95.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 95.0000
17 100.0000 85.0000
18 100.0000 100.0000

Average 99.8611 96.3889

TABLE IX
NN-BASED WEIGHTED ONE-AGAINST-ALL CLASSIFIER USING 4 FEATURE POINTS. NUMBER OF HIDDEN NODES: 20, TRANSFER

FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 95.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 95.0000
8 100.0000 95.0000
9 100.0000 100.0000

10 100.0000 95.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 95.0000
16 100.0000 100.0000
17 100.0000 95.0000
18 100.0000 100.0000

Average 100.0000 98.3333

TABLE X
NN-BASED WEIGHTED ONE-AGAINST-ALL CLASSIFIER USING 5 FEATURE POINTS. NUMBER OF HIDDEN NODES: 20, TRANSFER

FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 97.5000 95.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 97.5000 90.0000
12 100.0000 100.0000
13 100.0000 95.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 95.0000
18 100.0000 100.0000

Average 99.7222 98.6111

TABLE XI
NN-BASED BINARY-CODED-OUTPUT CLASSIFIER USING 3 FEATURE POINTS. NUMBER OF HIDDEN NODES: 30, TRANSFER

FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 97.5000 100.0000
2 100.0000 100.0000
3 97.5000 100.0000
4 97.5000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 95.0000
12 100.0000 100.0000
13 100.0000 90.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 95.0000
18 100.0000 100.0000

Average 99.5833 98.8889

TABLE XII
NN-BASED BINARY-CODED-OUTPUT CLASSIFIER USING 4 FEATURE POINTS. NUMBER OF HIDDEN NODES: 30, TRANSFER

FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 95.0000
18 97.5000 100.0000

Average 99.8611 99.7222

TABLE XIII
NN-BASED BINARY-CODED-OUTPUT CLASSIFIER USING 5 FEATURE POINTS. NUMBER OF HIDDEN NODES: 30, TRANSFER

FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 100.0000 100.0000

TABLE XIV
NN-BASED PARALLEL-STRUCTURED CLASSIFIER USING 3 FEATURE POINTS. NUMBER OF HIDDEN NODES: 10, TRANSFER

FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 100.0000 100.0000

TABLE XV
NN-BASED PARALLEL-STRUCTURED CLASSIFIER USING 4 FEATURE POINTS. NUMBER OF HIDDEN NODES: 10, TRANSFER

FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 100.0000 100.0000

TABLE XVI
NN-BASED PARALLEL-STRUCTURED CLASSIFIER USING 5 FEATURE POINTS. NUMBER OF HIDDEN NODES: 10, TRANSFER

FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 95.0000 95.0000
2 100.0000 100.0000
3 100.0000 95.0000
4 95.0000 95.0000
5 97.5000 95.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 90.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 95.0000
18 100.0000 100.0000

Average 99.3056 98.0556

TABLE XVII
NN-BASED WEIGHTED PARALLEL-STRUCTURED CLASSIFIER USING 3 FEATURE POINTS. NUMBER OF HIDDEN NODES: 15,

TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 95.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 87.5000 80.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 95.0000 95.0000
18 100.0000 100.0000

Average 99.0278 98.3333

TABLE XVIII
NN-BASED WEIGHTED PARALLEL-STRUCTURED CLASSIFIER USING 4 FEATURE POINTS. NUMBER OF HIDDEN NODES: 15,

TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 95.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 97.5000 95.0000
5 100.0000 100.0000
6 100.0000 95.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 99.8611 99.1667

TABLE XIX
NN-BASED WEIGHTED PARALLEL-STRUCTURED CLASSIFIER USING 5 FEATURE POINTS. NUMBER OF HIDDEN NODES: 15,

TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 97.5000 90.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 95.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 99.8611 99.1667

TABLE XX
NN-BASED TREE-STRUCTURED CLASSIFIER USING 3 FEATURE POINTS. NUMBER OF HIDDEN NODES: 20, TRANSFER FUNCTION OF

HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 90.0000
12 100.0000 100.0000
13 100.0000 90.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 95.0000
18 100.0000 100.0000

Average 100.0000 98.6111

TABLE XXI
NN-BASED TREE-STRUCTURED CLASSIFIER USING 4 FEATURE POINTS. NUMBER OF HIDDEN NODES: 20, TRANSFER FUNCTION OF

HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 100.0000 100.0000

TABLE XXII
NN-BASED TREE-STRUCTURED CLASSIFIER USING 5 FEATURE POINTS. NUMBER OF HIDDEN NODES: 20, TRANSFER FUNCTION OF

HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 95.0000
2 100.0000 95.0000
3 100.0000 100.0000
4 100.0000 95.0000
5 100.0000 95.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 95.0000

10 100.0000 100.0000
11 100.0000 85.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 95.0000
17 100.0000 80.0000
18 100.0000 90.0000

Average 100.0000 95.8333

TABLE XXIII
K-NEAREST NEIGHBOR CLASSIFIER USING 3 FEATURE POINTS.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 90.0000
3 100.0000 100.0000
4 100.0000 70.0000
5 100.0000 95.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 95.0000
11 100.0000 90.0000
12 100.0000 100.0000
13 100.0000 95.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 80.0000
17 100.0000 70.0000
18 100.0000 100.0000

Average 100.0000 93.6111

TABLE XXIV
K-NEAREST NEIGHBOR CLASSIFIER USING 4 FEATURE POINTS.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 90.0000
3 100.0000 100.0000
4 100.0000 95.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 70.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 80.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 70.0000
17 100.0000 40.0000
18 100.0000 70.0000

Average 100.0000 89.7222

TABLE XXV
K-NEAREST NEIGHBOR CLASSIFIER USING 5 FEATURE POINTS.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 90.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 100.0000 99.4444

TABLE XXVI
NAIVE BAYES CLASSIFIER USING 3 FEATURE POINTS.

Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 100.0000 100.0000

TABLE XXVII
NAIVE BAYES CLASSIFIER USING 4 FEATURE POINTS.
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Recognition Accuracy (%)
Material Training Testing

1 100.0000 100.0000
2 100.0000 100.0000
3 100.0000 100.0000
4 100.0000 100.0000
5 100.0000 100.0000
6 100.0000 100.0000
7 100.0000 100.0000
8 100.0000 100.0000
9 100.0000 100.0000

10 100.0000 100.0000
11 100.0000 100.0000
12 100.0000 100.0000
13 100.0000 100.0000
14 100.0000 100.0000
15 100.0000 100.0000
16 100.0000 100.0000
17 100.0000 100.0000
18 100.0000 100.0000

Average 100.0000 100.0000

TABLE XXVIII
NAIVE BAYES CLASSIFIER USING 5 FEATURE POINTS.

Recognition Accuracy (%)
Material Average Min Max Std

1 99.5000 95.0000 100.0000 1.5811
2 85.5000 80.0000 90.0000 2.8382
3 90.5000 75.0000 100.0000 7.2457
4 97.0000 90.0000 100.0000 3.4960
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 92.5000 90.0000 95.0000 2.6352
9 99.5000 95.0000 100.0000 1.5811

10 95.5000 90.0000 100.0000 3.6893
11 82.0000 75.0000 90.0000 4.2164
12 59.5000 45.0000 75.0000 9.5598
13 100.0000 100.0000 100.0000 0.0000
14 99.5000 95.0000 100.0000 1.5811
15 80.5000 70.0000 90.0000 7.9757
16 95.0000 95.0000 95.0000 0.0000
17 97.0000 95.0000 100.0000 2.5820
18 100.0000 100.0000 100.0000 0.0000

Average 92.9722 88.3333 96.3889 2.7212

TABLE XXIX
NN-BASED ONE-AGAINST-ALL CLASSIFIER USING 3 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES: 30,

TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Average Min Max Std

1 96.0000 90.0000 100.0000 3.9441
2 87.0000 80.0000 95.0000 6.7495
3 75.5000 65.0000 80.0000 4.9721
4 64.5000 50.0000 75.0000 7.9757
5 96.0000 95.0000 100.0000 2.1082
6 99.0000 95.0000 100.0000 2.1082
7 100.0000 100.0000 100.0000 0.0000
8 95.0000 95.0000 95.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 82.0000 75.0000 95.0000 5.8689
11 86.5000 75.0000 95.0000 5.2967
12 19.0000 10.0000 25.0000 6.1464
13 95.0000 95.0000 95.0000 0.0000
14 99.0000 95.0000 100.0000 2.1082
15 0.5000 0.0000 5.0000 1.5811
16 100.0000 100.0000 100.0000 0.0000
17 99.0000 95.0000 100.0000 2.1082
18 100.0000 100.0000 100.0000 0.0000

Average 83.0000 78.6111 86.6667 2.8315

TABLE XXX
NN-BASED ONE-AGAINST-ALL CLASSIFIER USING 4 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES: 30,

TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 84.5000 75.0000 90.0000 4.9721
2 91.5000 85.0000 100.0000 4.7434
3 86.5000 75.0000 90.0000 5.2967
4 96.5000 90.0000 100.0000 3.3747
5 99.5000 95.0000 100.0000 1.5811
6 100.0000 100.0000 100.0000 0.0000
7 98.5000 95.0000 100.0000 2.4152
8 86.0000 80.0000 90.0000 3.9441
9 95.0000 90.0000 100.0000 4.0825

10 100.0000 100.0000 100.0000 0.0000
11 95.0000 85.0000 100.0000 5.2705
12 99.0000 95.0000 100.0000 2.1082
13 97.5000 95.0000 100.0000 2.6352
14 100.0000 100.0000 100.0000 0.0000
15 56.5000 40.0000 85.0000 12.4833
16 98.5000 95.0000 100.0000 2.4152
17 95.0000 95.0000 95.0000 0.0000
18 95.0000 90.0000 100.0000 3.3333

Average 93.0278 87.7778 97.2222 3.2587

TABLE XXXI
NN-BASED ONE-AGAINST-ALL CLASSIFIER USING 5 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES: 30,

TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Average Min Max Std

1 76.5000 70.0000 85.0000 5.2967
2 80.5000 70.0000 90.0000 6.4334
3 82.0000 75.0000 85.0000 3.4960
4 97.0000 95.0000 100.0000 2.5820
5 98.5000 95.0000 100.0000 2.4152
6 94.0000 90.0000 100.0000 3.9441
7 100.0000 100.0000 100.0000 0.0000
8 96.0000 90.0000 100.0000 3.9441
9 67.5000 45.0000 80.0000 11.1181

10 99.5000 95.0000 100.0000 1.5811
11 95.5000 90.0000 100.0000 3.6893
12 89.0000 80.0000 95.0000 5.1640
13 86.0000 85.0000 90.0000 2.1082
14 100.0000 100.0000 100.0000 0.0000
15 0.0000 0.0000 0.0000 0.0000
16 89.5000 85.0000 90.0000 1.5811
17 97.5000 95.0000 100.0000 2.6352
18 85.5000 80.0000 95.0000 5.9861

Average 85.2500 80.0000 89.4444 3.4430

TABLE XXXII
NN-BASED WEIGHTED ONE-AGAINST-ALL CLASSIFIER USING 3 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN

NODES: 20, TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 78.0000 70.0000 85.0000 4.2164
2 87.5000 85.0000 90.0000 2.6352
3 71.5000 60.0000 80.0000 5.2967
4 100.0000 100.0000 100.0000 0.0000
5 96.5000 95.0000 100.0000 2.4152
6 99.0000 95.0000 100.0000 2.1082
7 99.0000 95.0000 100.0000 2.1082
8 92.5000 90.0000 95.0000 2.6352
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 95.5000 90.0000 100.0000 2.8382
12 38.5000 20.0000 55.0000 11.5590
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 0.0000 0.0000 0.0000 0.0000
16 95.5000 95.0000 100.0000 1.5811
17 83.5000 75.0000 90.0000 4.1164
18 100.0000 100.0000 100.0000 0.0000

Average 85.3889 81.6667 88.6111 2.3061

TABLE XXXIII
NN-BASED WEIGHTED ONE-AGAINST-ALL CLASSIFIER USING 4 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN

NODES: 20, TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Average Min Max Std

1 91.5000 80.0000 100.0000 5.7975
2 99.0000 95.0000 100.0000 2.1082
3 96.0000 85.0000 100.0000 5.1640
4 100.0000 100.0000 100.0000 0.0000
5 97.5000 95.0000 100.0000 2.6352
6 100.0000 100.0000 100.0000 0.0000
7 96.5000 95.0000 100.0000 2.4152
8 95.5000 95.0000 100.0000 1.5811
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 98.0000 95.0000 100.0000 2.5820
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 96.5000 95.0000 100.0000 2.4152
15 43.0000 35.0000 60.0000 7.5277
16 100.0000 100.0000 100.0000 0.0000
17 93.5000 90.0000 95.0000 2.4152
18 100.0000 100.0000 100.0000 0.0000

Average 94.8333 92.2222 97.5000 1.9245

TABLE XXXIV
NN-BASED WEIGHTED ONE-AGAINST-ALL CLASSIFIER USING 5 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN

NODES: 20, TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 100.0000 100.0000 100.0000 0.0000
2 94.0000 90.0000 100.0000 3.1623
3 90.5000 80.0000 100.0000 5.9861
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 99.5000 95.0000 100.0000 1.5811
8 94.5000 90.0000 95.0000 1.5811
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 96.5000 95.0000 100.0000 2.4152
12 100.0000 100.0000 100.0000 0.0000
13 95.0000 95.0000 95.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 74.5000 65.0000 90.0000 6.8516
16 100.0000 100.0000 100.0000 0.0000
17 97.0000 95.0000 100.0000 2.5820
18 99.0000 95.0000 100.0000 2.1082

Average 96.6944 94.4444 98.8889 1.4593

TABLE XXXV
NN-BASED BINARY-CODED-OUTPUT CLASSIFIER USING 3 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES:

30, TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Average Min Max Std

1 92.0000 80.0000 100.0000 5.3748
2 99.5000 95.0000 100.0000 1.5811
3 64.5000 50.0000 75.0000 7.9757
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 98.0000 90.0000 100.0000 3.4960
12 75.0000 60.0000 90.0000 11.0554
13 95.0000 95.0000 95.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 72.5000 60.0000 80.0000 7.9057
16 100.0000 100.0000 100.0000 0.0000
17 94.5000 90.0000 95.0000 1.5811
18 100.0000 100.0000 100.0000 0.0000

Average 93.9444 90.0000 96.3889 2.1650

TABLE XXXVI
NN-BASED BINARY-CODED-OUTPUT CLASSIFIER USING 4 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES:

30, TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 97.5000 95.0000 100.0000 2.6352
2 100.0000 100.0000 100.0000 0.0000
3 99.5000 95.0000 100.0000 1.5811
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 99.5000 95.0000 100.0000 1.5811
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 96.5000 90.0000 100.0000 3.3747
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 94.0000 80.0000 100.0000 6.5828
16 98.0000 95.0000 100.0000 2.5820
17 95.0000 95.0000 95.0000 0.0000
18 99.5000 95.0000 100.0000 1.5811

Average 98.8611 96.6667 99.7222 1.1066

TABLE XXXVII
NN-BASED BINARY-CODED-OUTPUT CLASSIFIER USING 5 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES:

30, TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Average Min Max Std

1 99.5000 95.0000 100.0000 1.5811
2 97.5000 95.0000 100.0000 2.6352
3 72.0000 60.0000 85.0000 6.7495
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 97.0000 95.0000 100.0000 2.5820

10 100.0000 100.0000 100.0000 0.0000
11 99.0000 95.0000 100.0000 2.1082
12 75.0000 55.0000 90.0000 11.7851
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 51.5000 25.0000 60.0000 12.2588
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 93.9722 90.0000 96.3889 2.2056

TABLE XXXVIII
NN-BASED PARALLEL-STRUCTURED CLASSIFIER USING 3 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES:

10, TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 95.5000 85.0000 100.0000 4.3780
2 97.5000 95.0000 100.0000 2.6352
3 80.5000 75.0000 85.0000 4.3780
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 100.0000 100.0000 100.0000 0.0000
12 99.0000 95.0000 100.0000 2.1082
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 2.5000 0.0000 5.0000 2.6352
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 95.0000 90.0000 100.0000 2.3570

Average 92.7778 91.1111 93.8889 1.0273

TABLE XXXIX
NN-BASED PARALLEL-STRUCTURED CLASSIFIER USING 4 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES:

10, TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.



JOURNAL OF LATEX CLASS FILES 43

Recognition Accuracy (%)
Material Average Min Max Std

1 100.0000 100.0000 100.0000 0.0000
2 100.0000 100.0000 100.0000 0.0000
3 100.0000 100.0000 100.0000 0.0000
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 99.5000 95.0000 100.0000 1.5811
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 25.0000 10.0000 40.0000 10.8012
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 95.8056 94.7222 96.6667 0.6879

TABLE XL
NN-BASED PARALLEL-STRUCTURED CLASSIFIER USING 5 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES:

10, TRANSFER FUNCTION OF HIDDEN NODES: LOGARITHMIC SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 67.5000 55.0000 75.0000 6.7700
2 99.0000 95.0000 100.0000 2.1082
3 75.0000 70.0000 80.0000 3.3333
4 91.0000 80.0000 100.0000 5.6765
5 95.0000 90.0000 100.0000 2.3570
6 99.0000 95.0000 100.0000 2.1082
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 94.5000 90.0000 100.0000 4.3780
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 5.5000 0.0000 10.0000 4.3780
16 99.0000 95.0000 100.0000 2.1082
17 98.0000 95.0000 100.0000 2.5820
18 100.0000 100.0000 100.0000 0.0000

Average 90.1944 86.9444 92.5000 1.9889

TABLE XLI
NN-BASED WEIGHTED PARALLEL-STRUCTURED CLASSIFIER USING 3 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF

HIDDEN NODES: 15, TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Average Min Max Std

1 99.5000 95.0000 100.0000 1.5811
2 97.5000 95.0000 100.0000 2.6352
3 96.5000 95.0000 100.0000 2.4152
4 99.0000 95.0000 100.0000 2.1082
5 96.5000 90.0000 100.0000 4.1164
6 99.0000 95.0000 100.0000 2.1082
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 99.5000 95.0000 100.0000 1.5811
11 86.5000 80.0000 95.0000 6.2583
12 10.5000 0.0000 25.0000 7.6194
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 100.0000 100.0000 100.0000 0.0000
16 99.5000 95.0000 100.0000 1.5811
17 93.0000 90.0000 95.0000 2.5820
18 100.0000 100.0000 100.0000 0.0000

Average 93.1667 90.2778 95.2778 1.9215

TABLE XLII
NN-BASED WEIGHTED PARALLEL-STRUCTURED CLASSIFIER USING 4 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF

HIDDEN NODES: 15, TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 90.0000 85.0000 100.0000 4.7140
2 99.0000 95.0000 100.0000 2.1082
3 98.5000 95.0000 100.0000 2.4152
4 89.0000 75.0000 95.0000 6.5828
5 99.5000 95.0000 100.0000 1.5811
6 97.5000 95.0000 100.0000 2.6352
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 100.0000 100.0000 100.0000 0.0000
12 91.5000 70.0000 100.0000 8.8349
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 73.5000 55.0000 85.0000 9.1439
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 96.5833 92.5000 98.8889 2.1120

TABLE XLIII
NN-BASED WEIGHTED PARALLEL-STRUCTURED CLASSIFIER USING 5 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF

HIDDEN NODES: 15, TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Average Min Max Std

1 100.0000 100.0000 100.0000 0.0000
2 100.0000 100.0000 100.0000 0.0000
3 89.5000 85.0000 95.0000 3.6893
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 95.0000 90.0000 100.0000 2.3570
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 80.5000 65.0000 90.0000 8.9598
16 96.5000 95.0000 100.0000 2.4152
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 97.8611 96.3889 99.1667 0.9679

TABLE XLIV
NN-BASED TREE-STRUCTURED CLASSIFIER USING 3 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES: 20,

TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 95.0000 90.0000 100.0000 2.3570
2 95.5000 90.0000 100.0000 2.8382
3 75.5000 65.0000 90.0000 6.8516
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 96.0000 90.0000 100.0000 3.1623
12 99.5000 95.0000 100.0000 1.5811
13 91.0000 90.0000 95.0000 2.1082
14 100.0000 100.0000 100.0000 0.0000
15 100.0000 100.0000 100.0000 0.0000
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 97.3611 95.5556 99.1667 1.0499

TABLE XLV
NN-BASED TREE-STRUCTURED CLASSIFIER USING 4 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES: 20,

TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.
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Recognition Accuracy (%)
Material Average Min Max Std

1 100.0000 100.0000 100.0000 0.0000
2 96.0000 85.0000 100.0000 5.1640
3 100.0000 100.0000 100.0000 0.0000
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 100.0000 100.0000 100.0000 0.0000
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 100.0000 100.0000 100.0000 0.0000
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 99.7778 99.1667 100.0000 0.2869

TABLE XLVI
NN-BASED TREE-STRUCTURED CLASSIFIER USING 5 FEATURE POINTS OF NOISY TEST DATASET. NUMBER OF HIDDEN NODES: 20,

TRANSFER FUNCTION OF HIDDEN NODES: HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION.

Recognition Accuracy (%)
Material Average Min Max Std

1 93.0000 90.0000 100.0000 4.2164
2 88.5000 75.0000 100.0000 8.8349
3 93.0000 85.0000 100.0000 4.8305
4 92.0000 85.0000 100.0000 4.2164
5 95.0000 90.0000 100.0000 3.3333
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 94.5000 90.0000 100.0000 2.8382

10 98.5000 95.0000 100.0000 2.4152
11 84.0000 75.0000 90.0000 5.1640
12 91.0000 80.0000 100.0000 6.1464
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 91.0000 75.0000 100.0000 7.3786
16 92.5000 90.0000 95.0000 2.6352
17 84.5000 75.0000 90.0000 4.9721
18 92.5000 90.0000 95.0000 2.6352

Average 93.8889 88.6111 98.3333 3.3120

TABLE XLVII
K-NEAREST NEIGHBOR CLASSIFIER USING 3 FEATURE POINTS OF NOISY TEST DATASET.
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Recognition Accuracy (%)
Material Average Min Max Std

1 86.6667 80.0000 90.0000 5.7735
2 71.6667 65.0000 80.0000 7.6376
3 66.6667 55.0000 80.0000 12.5831
4 90.0000 90.0000 90.0000 0.0000
5 91.6667 85.0000 100.0000 7.6376
6 96.6667 95.0000 100.0000 2.8868
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 96.6667 95.0000 100.0000 2.8868

10 90.0000 85.0000 100.0000 8.6603
11 88.3333 85.0000 90.0000 2.8868
12 81.6667 75.0000 90.0000 7.6376
13 95.0000 95.0000 95.0000 0.0000
14 96.6667 95.0000 100.0000 2.8868
15 75.0000 65.0000 85.0000 10.0000
16 76.6667 75.0000 80.0000 2.8868
17 75.0000 70.0000 80.0000 5.0000
18 98.3333 95.0000 100.0000 2.8868

Average 87.5926 83.6111 92.2222 4.5695

TABLE XLVIII
K-NEAREST NEIGHBOR CLASSIFIER USING 4 FEATURE POINTS OF NOISY TEST DATASET.

Recognition Accuracy (%)
Material Average Min Max Std

1 96.5000 90.0000 100.0000 3.3747
2 92.5000 90.0000 95.0000 2.6352
3 99.5000 95.0000 100.0000 1.5811
4 93.0000 90.0000 100.0000 3.4960
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 71.5000 65.0000 75.0000 3.3747
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 97.5000 90.0000 100.0000 3.5355
12 94.5000 85.0000 100.0000 4.3780
13 81.5000 75.0000 90.0000 4.7434
14 100.0000 100.0000 100.0000 0.0000
15 90.5000 75.0000 100.0000 8.3166
16 66.0000 50.0000 75.0000 8.0966
17 39.5000 35.0000 50.0000 4.3780
18 73.0000 60.0000 85.0000 7.1492

Average 88.6389 83.3333 92.7778 3.0588

TABLE XLIX
K-NEAREST NEIGHBOR CLASSIFIER USING 5 FEATURE POINTS OF NOISY TEST DATASET.
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Recognition Accuracy (%)
Material Average Min Max Std

1 100.0000 100.0000 100.0000 0.0000
2 99.5000 95.0000 100.0000 1.5811
3 86.0000 80.0000 90.0000 3.1623
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 98.0000 95.0000 100.0000 2.5820

10 100.0000 100.0000 100.0000 0.0000
11 99.5000 95.0000 100.0000 1.5811
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 0.5000 0.0000 5.0000 1.5811
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 93.5278 92.5000 94.1667 0.5826

TABLE L
NAIVE BAYES CLASSIFIER USING 3 FEATURE POINTS OF NOISY TEST DATASET.

Recognition Accuracy (%)
Material Average Min Max Std

1 100.0000 100.0000 100.0000 0.0000
2 97.0000 95.0000 100.0000 2.5820
3 77.0000 65.0000 90.0000 8.2327
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 100.0000 100.0000 100.0000 0.0000
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 0.5000 0.0000 5.0000 1.5811
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 93.0278 92.2222 94.1667 0.6887

TABLE LI
NAIVE BAYES CLASSIFIER USING 4 FEATURE POINTS OF NOISY TEST DATASET.
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Recognition Accuracy (%)
Material Average Min Max Std

1 100.0000 100.0000 100.0000 0.0000
2 100.0000 100.0000 100.0000 0.0000
3 90.0000 80.0000 95.0000 5.7735
4 100.0000 100.0000 100.0000 0.0000
5 100.0000 100.0000 100.0000 0.0000
6 100.0000 100.0000 100.0000 0.0000
7 100.0000 100.0000 100.0000 0.0000
8 100.0000 100.0000 100.0000 0.0000
9 100.0000 100.0000 100.0000 0.0000

10 100.0000 100.0000 100.0000 0.0000
11 100.0000 100.0000 100.0000 0.0000
12 100.0000 100.0000 100.0000 0.0000
13 100.0000 100.0000 100.0000 0.0000
14 100.0000 100.0000 100.0000 0.0000
15 0.5000 0.0000 5.0000 1.5811
16 100.0000 100.0000 100.0000 0.0000
17 100.0000 100.0000 100.0000 0.0000
18 100.0000 100.0000 100.0000 0.0000

Average 93.9167 93.3333 94.4444 0.4086

TABLE LII
NAIVE BAYES CLASSIFIER USING 5 FEATURE POINTS OF NOISY TEST DATASET.
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