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Neural Network Based Diagonal Decoupling
Control of Powered Wheelchair Systems

Tuan Nghia Nguyen, Member, IEEE, Steven Su, Member, IEEE and Hung T Nguyen, Senior Member, IEEE

Abstract—This paper proposes an advanced diagonal decou-
pling control method for powered wheelchair systems. This
control method is based on a combination of the systematic
diagonalization technique and the neural network control design.
As such, this control method reduces coupling effects on a
multivariable system, leading to independent control design
procedures. Using an obtained dynamic model, the problem of
the plant’s Jacobian calculation is eliminated in a neural network
control design. The effectiveness of the proposed control method
is verified in a real-time implementation on a powered wheelchair
system. The obtained results confirm that robustness and desired
performance of the overall system are guaranteed, even under
parameter uncertainty effects.

Index Terms–Multivariable Control System, Diagonaliza-

tion Technique, Neural Network Control, Powered Wheelchair.

I. INTRODUCTION

Powered wheelchairs are increasingly important, as the

number of people with severe motor impairment increases.

However, safety control of a conventional power wheelchair

requires a significant level of skill, attention, judgment and

appropriate behavior. Furthermore, wheelchair users may also

encounter accidents and injuries, similar to automobile users.

Every year in the United States, around 85,000 serious

wheelchair accidents occur, and the trend is expected to

increase [1].

Much research has been conducted in the development of

autonomous and semi-autonomous capabilities for allowing a

wheelchair to perform independently, or in combination with

the user, to sustain automatic functionalities such as obstacle

avoidance, following corridors, or passing doors. These func-

tionalities aid in the provision of enhanced safety and comfort

for severely handicapped wheelchair users. Worldwide a lot

of progress has been made in the development of wheelchair

automatism. Nevertheless, the majority of research activity

focuses on the level of supervisory control. This supervi-

sory level is involved in developing navigation algorithms,

shared-control approaches, and hands-free control strategies.

Although low control level (or drive control level), which is

involved in precision motion control, guarantees the desired

performance and stability of the overall system, research on

control techniques for this level is still largely lacking.

A dynamic wheelchair model is required for developing

control algorithms in the low control level. However, due to

parametric variations caused by wheelchair mechanisms and

the operating environment, it is difficult if not impossible to
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obtain an exact dynamic model for the powered wheelchair.

Only a steering model (kinematic model), derived from geom-

etry constraints, is used to develop motion control algorithms.

These constraints state that the wheelchair can only move in

the direction which is normal to the axis of the driving wheels.

As a result, methods based on a kinematic model may not be

practical. This is because physical parameters, surface friction

coefficients, and mass, all significantly affect performance and

stability of the overall system. Furthermore, the literature on

robustness and control in the presence of uncertainties in the

dynamical model of such systems is meager [2].

In terms of low level control design, many advanced control

techniques have already been developed [3]–[8]. However,

most of these have not treated the powered wheelchair as a

multivariable system, and are therefore unlikely to be optimal.

Due to the interactions between different inputs and outputs,

the implementation of a control design task can be complicated

for a multivariable system. Decoupling techniques are very

effective solutions to the issues inherent in a multivariable

system. These techniques endeavour to simplify a multivari-

able control problem by reducing it to a series of scalar

control problems [9]. However, research investigating the

system robustness under the effects of uncertainty and external

disturbance, is relatively scarce.

Although neural networks have provided effective solutions

to complex and nonlinear control problems [10]–[12], they

face the problem of an unknown plant Jacobian, this being

defined as the partial derivative of a plant’s outputs with re-

spect to its inputs. This is applied when propagating the control

error using the back propagation method to the adjustable co-

efficients of the neural controller. This coefficients’ adjustment

leads to error reduction. Due to the complexity of an unknown

plant, it is difficult or even impossible to calculate a plant

Jacobian. Several methods have been proposed for finding a

plant Jacobian, though none have proven effectiveness. These

methods include the online approximation method [13], the

plant Jacobian sign calculation [14], direct calculation from

the plant model [15], the Inverse Transfer Matrix scheme [10],

gain layer schemes [16], and the use of trained neural networks

as an identifier [15].

Recently, we have proposed a new advanced robust mul-

tivariable control strategy for a powered wheelchair system

[17]. This control strategy is based on a combination of the

systematic triangularization technique and the robust neuro-

sliding mode control approach. This strategy effectively copes

with parameter uncertainties and external disturbances in real-

time in order to achieve robustness and optimal performance

of a multivariable system. In this paper, we propose a new
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diagonalization technique, which completely eliminates the

decoupling effects in a multivariable system. Moreover, a new

neural network control design is also presented in this paper to

prove the effectiveness of the proposed control strategy. This

design utilizes the wheelchair dynamics model to calculate a

plant Jacobian directly from the transfer function matrix. Thus,

the problem of the plant Jacobian calculation is eliminated.

More detail of wheelchair dynamics modeling is also presented

in this paper.

In section II of this paper, a dynamic wheelchair system

model is obtained. The diagonal decoupling technique for a

multivariable system is described in Section III of this paper.

In section IV, the neural network control design is presented

in detail. Real-time experimental results and discussions are

presented in section V. The conclusion is found in section VI.

II. DYNAMICS MODELLING OF A POWERED WHEELCHAIR

A. Dynamic model of a powered wheelchair

Fig. 1. The wheelchair system.

The wheelchair system is shown in the Fig. 1. It consists of a

wheelchair with two driving wheels mounted in the same axis

and two front wheels. The driving wheels are independently

driven by two actuators to achieve motion and orientation.

Both wheels have the same radius denoted by r. The distance

between the two driving wheels is 2R. The center of mass

of the wheelchair is located at C; point P is located in the

intersection of a straight line passing through the middle of the

vehicle and a section which is an axis of the two wheels. The

distance between points P and C is denoted by d. The pose

of the wheelchair in the global coordinator frame {O,X, Y }
is completely specified by vector q = [xc yc θ]

T
, where

xc and yc are the coordinates of the point C in the global

coordinate frame and θ is the orientation of the local frame

{C,Xx, Yx} attached on the wheelchair platform measured

from the X axis. Denoting the wheelchair mass by m and

wheelchair inertia by I , the complete dynamic equation of the

wheelchair can be derived from [18] as follows[
m 0
0 I −md2

] [
v̇
ω̇

]
+

[
τ̄dr
τ̄dl

]
=

1

r

[
1 1
R −R

] [
τr
τl

]
(1)

where τr and τl respectively represent right and left wheel

torques, disturbance torque vector
[
τ̄dr τ̄dl

]T
is assumed to

be bounded, and velocity vector v =
[
v ω

]T
in which v is

linear velocity and ω is angular velocity. Assuming that both

driven actuator motors are dc motors and neglecting motor

inductance, the equation governing the actuator motors can be

written as [
τsr
τsl

]
=

[
KTrir
KTlil

]
(2)

where τsr and τsl are the torque generated by the respective

right and left motors, KTr and KTl are the right and left

motors’ torque constants, and ir and il are the current flowing

in the right and left motors’ coils,[
ur

ul

]
=

[
Rarir +Kbr θ̇rm
Ralil +Kblθ̇lm

]
(3)

where Rar and Ral are the respective right and left motors’

resistances, Kbr and Kbl are the right and left counter elec-

tromotive force coefficients, and θ̇rm and θ̇lm represent the

velocity of the right and left actuator motors, respectively.
The angular velocities of the actuator motors, θ̇rm and θ̇lm,

and the corresponding wheels’ angular velocities, φ̇r and φ̇l,

are related by gear ratio N as[
φ̇r

φ̇l

]
=

1

N

[
θ̇rm
θ̇lm

]
. (4)

The motors’ torques, τsr and τsl, are related to the wheels’

torques, τr and τl, as [
τr
τl

]
= N

[
τsr
τsl

]
. (5)

The relationship between the angular wheel velocities and the

velocity vector v is given by[
φ̇r

φ̇l

]
=

1

r

[
1 R
1 −R

] [
v
ω

]
. (6)

Using equations (1)-(6), the dynamic equation of the

wheelchair system, including actuator dynamics, can be writ-

ten as[
m 0
0 I −md2

](
v̇
ω̇

)
+

(
τ̄dr
τ̄dl

)
= (7)

N.KT

Ra

1

r

[
1 1
R −R

](
ur

ul

)
− N2KTKb

Ra

1

r

[
1 1
R −R

](
v
ω

)
where KTr = KTl = KT ;Kbr = Kbl = Kb;Rar = Ral =
Ra.

Without loss of generality, the dynamic equation of the

wheelchair system, equation (7), can also be expressed by the

following {
v = g11(s)uv + g12(s)uω

ω = g21(s)uv + g22(s)uω
(8)

where uv and uω are reference input voltages and gij(s) with

i, j = 1, 2 is the element of system transfer matrix G(s).

G(s) =

[
g11(s) g12(s)
g21(s) g22(s)

]
+

[
Δg11(s) Δg12(s)
Δg21(s) Δg22(s)

]
(9)

with gij(s) =
Kij

(1+sTij)
e−τijs; Δgij(s) is system uncertainty.

The off-diagonal elements of the wheelchair dynamic model

are coupling effects between input and output, implying that

this model is non-symmetry. These coupling effects are subject

to elimination using the proposed diagonalization technique.
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B. Parameter verification procedure

To verify wheelchair dynamics parameters, a pair input

voltage is introduced to drive two corresponding direct-current

motors. For each input pair (uv and uω), the corresponding

outputs (velocities) are measured continuously for 10s. The

voltage inputs are varied so that the outputs are tested in

all their ranges. For each pair of input, the experiment is

conducted five times to measure variations of the dynamics

parameters. Due to the model variations, the responses of the

wheelchair dynamic model will vary from a lower-bounded

to an upper-bounded model. After intensively testing output

responses with different control input pairs, parameters of

wheelchair dynamics are obtained as in the following ranges:

K11 ∈ [1.0; 1.80] ;T11 ∈ [0.55; 1.05]; τ11 ∈ [0.1; 0.35]

K21 ∈ [0.1; 0.26] ;T21 ∈ [0.30; 0.40]; τ21 ∈ [0.1; 0.30]

K12 ∈ [0.1; 0.25] ;T12 ∈ [0.35; 0.45]; τ12 ∈ [0.1; 0.20]

K22 ∈ [1.0; 2.60] ;T22 ∈ [0.45; 0.55]; τ22 ∈ [0.1; 0.30].

As a result, equations for three dynamic model equations

of the wheelchair system are obtained as follows

G0(s) =

[
1.400

(1+0.800s)e
−0.225s 0.125

(1+0.400s)e
−0.150s

0.100
(1+0.350s)e

−0.200s 1.800
(1+0.500s)e

−0.200s

]

G1(s) =

[
1.800

(1+0.550s)e
−0.100s 0.220

(1+0.350s)e
−0.100s

0.250
(1+0.300s)e

−0.100s 2.600
(1+0.450s)e

−0.100s

]

G2(s) =

[
1.000

(1+1.050s)e
−0.350s 0.040

(1+0.450s)e
−0.200s

0.005
(1+0.400s)e

−0.300s 1.000
(1+0.550s)e

−0.300s

]

where G0(s) is the nominal dynamic model, and G1(s) and

G2(s) are the upper model and the lower model respectively.

Note that the model does not assume symmetry in the motors

and physical plant of the wheelchair.

III. DIAGONALIZATION TECHNIQUE

When designing a controller for a multivariable feedback

system, it is crucial to consider the following four criteria:

ease of the design procedure; computational burden in the

design procedure; the complexity of the compensator; and

the quality of a closed-loop performance. In consideration of

these criteria, a diagonalization technique aims at reducing the

multivariable design problem to a series of independent scalar

closed-loop design problems. The diagonalization technique

consists of two phases: triangularization phase and diagonal-

ization phase.

A. Triangularization with TDD property

For a given proper (nxn) square plant G(s), the purpose of

this stage is to search for the compensation scheme so that the

compensated plant is triangular-diagonal-dominant (TDD).
A uni-modular pre-compensator matrix U(s) can always be

constructed over the principal ideal domain Γ of a proper plant

transfer function matrix G(s) such that

T (s) = G(s).U(s) (10)

where T (s) is triangular.

The following steps are used to construct T (s)
Step 1: Move the lowest degree element in the first row to

the (1-1) position,

Step 2: Subtract a multiple of the first column from the

second, third, · · · , n-th column to guarantee δ(g1i) < δ(g11),
with i > 1,

Step 3: If one or more of g1i(s) is nonzero, then return to

step 1, otherwise move to step 4,

Step 4: Temporarily delete the first row and column,

Step 5: Repeat the procedure of step 1 to step 4 on the

remaining matrix until a lower triangular structure is obtained.

This leaves the temporarily deleted rows and column unaltered.

After obtaining T (s), we need to check whether T (s) is a

TDD matrix. Sufficient conditions for guaranteeing the TDD
property are outlined in the Lemma 6 in [19].

B. Diagonalization

In this phase, the row-normalized matrix A(s) of the trian-

gular matrix T (s) is designated as follows

A(s) = T̃−1(s)T (s) (11)

where T̃ = diag[t11(s), t22(s), · · · , tnn(s)].
Theorem 1: Let G(s) be a proper transfer function matrix

and T (s) be the compensated plant with triangular structure

derived from G(s) above. If the row-normalized matrix A(s)
for the triangular matrix is stable (not necessary proper) then

there exists a pre-compensator V (s) such that

D(s) = G(s)U(s)V (s)

with D(s) is proper and diagonal, and V (s) is found as

V (s) =

{
A−1(s) if A(s) is stable and proper

A−1(s)X−1(s) if A(s) is stable and not proper

where X(s) is a diagonal polynomial matrix chosen so that

A−1(s)X−1(s) is stable and proper.

Proof
If A(s) is stable and proper then

D(s) = G(s)U(s)V (s) = T (s)
[
T̃−1(s).T (s)

]−1

= T̃ (s).

If A(s) is stable and not proper then

D(s) = G(s)U(s)V (s) = T (s)
[
T̃−1(s).T (s)

]−1

X−1(s)

= T̃ (s).X−1(s).

Therefore, it is clear that D(s) has the required properties.

IV. NEURAL NETWORK CONTROL DESIGN

Consider an uncertain discrete-time system with a single

input and single output as follows{
x(k + 1) = (Ad +ΔAd)x(k) + (Bd +ΔBd)u(k)
y(k) = Cdx(k);x(0) = x0.

(12)

where uncertainty matrices, ΔAd and ΔBd, are assumed to

be bounded.



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

The optimal neural network control scheme for system (12) is

proposed as follows in Fig.2. For a given (n,m, 1) structure

in Fig.3 with n input nodes, m hidden nodes and 1 output

node, the output of the neural network can be calculated as

follows

Fig. 2. Neural network control scheme for an uncertain scalar system.

Fig. 3. Neural Network control structure.

UNN = f2

⎛
⎝ m∑

j=1

Wjf1

(
n∑

i=1

W̄ijZi + b̄j

)
+ b

⎞
⎠ (13)

where Wj is the weight between a jth hidden node and an

output node, W̄ij is the weight between a ith input node and

a jth hidden node, b̄j is the jth bias of the hidden layer, b is

the bias of the output layer, and f1 and f2 are the activation

function of the output-hidden layer and hidden-input layer,

respectively.

f1(n) =
1− e−2n

1 + e−2n
; f2 (n) = n. (14)

Updating rules for optimal neural network controller:
The objective here is to design a control law so that the

output y(k + 1) tracks the reference yd(k + 1) with the

greatest accuracy. In other words, the control objective is

to construct a control law which enables the system error,

e(k + 1) = yd(k + 1) − y(k + 1), to converge to zero, or

at least to an acceptable tolerance with a desired finite time

of T0. The cost function of the neural network controller is

designated by the following equation:

E =
1

2
(yd(k + 1)− y(k + 1))

2
=

1

2
e2(k + 1). (15)

To minimize the cost function E, it is necessary to change

the weights of the neural network controller to the direction

of a negative gradient. Applying the chain rule, the resulting

functions are obtained as

Δθ = −η
∂E

∂θ
= −η

∂E

∂y

∂y

∂u

∂u

∂UNN

∂UNN

∂θ
= ηe(k)Ku

∂y

∂u

∂UNN

∂θ
(16)

where θ is neural network weights and η is learning rate.

The Jacobian of the plant is defined and calculated directly

from the plant as follows:

J(k) =
∂y(k)

∂u(k)
= −Cd(Ad +ΔAd)

−1
(Bd +ΔBd) . (17)

Define

S0 = f1

(
n∑

i=1

W̄ijZi + b̄j

)
;S1 = f1

′
(

n∑
i=1

W̄ijZi + b̄j

)

S2 = f ′
2

⎛
⎝ m∑

j=1

Wjf1

(
n∑

i=1

W̄ijZi + b̄j

)
+ b

⎞
⎠ .

For a given neural network structure, updating rules for its

weights are shown as follows:

W j(k + 1) = Wj(k) + αδ(k)S2S0

bj(k + 1) = bj(k) + αδ(k)S2

W̄ i,j(k + 1) = W̄i,j(k) + ηδ(k)S2S1WjZi

b̄j(k + 1) = b̄j(k) + ηδ(k)S2S1Wj , (18)

where the small positive α and η represent the learning

rates for the output-hidden layer and the hidden-input layer,

respectively, and δ(k) = e(k)Ku
∂y(k)
∂u(k) .

V. REAL-TIME EXPERIMENTAL RESULTS AND DISCUSSION

A. Diagonal Decoupling Control Design

Triangularization of wheelchair system
Step 1: In the first row, the element (1,1) already has the

lowest degree (δ = 2).

Step 2: Subtract a multiple of the first column from the

second to ensure δ(g12) < δ(g11)

0.125

(1 + 0.4s) (1 + 0.15s)
= a

(
1.4

(1 + 0.8s) (1 + 0.225s)

)
+ b

where

a =

(
0.125

1.4

)(
(1 + 0.8s) (1 + 0.225s)

(1 + 0.4s) (1 + 0.15s)

)
; b = 0.

The compensator is therefore chosen as

U(s) =

[
1 − (

0.125
1.4

) ( (1+0.8s)(1+0.225s)
(1+0.4s)(1+0.15s)

)
0 1

]
.

The resulting decoupled transfer function matrix T (s) can be

calculated as follows

T (s) = G0(s).U(s) =[ 1.4
0.18s2+1.025s+1 0

0.18
0.07s2+0.55s+1

17.06s+117.1
s3+13.67s2+56.67s+66.67

]
.
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Diagonalization of wheelchair system
Using theorem 1, the row-normalized matrix A(s)

A = T̃−1T =

[
1 0

9 100s3+1367s2+5667s+6667
(853s+5855)(7s2+55s+100) 1

]
.

Obviously, A(s) is stable and proper. Thus, the pre-

compensator V (s) = A−1(s) is obtained as

V (s) =

[
1 0

−9 100s3+1367s2+5667s+6667
(853s+5855)(7s2+55s+100) 1

]
.

The nominal compensated model for the wheelchair is de-

picted as

D0(s) = G0(s)U(s)V (s) = T (s)V (s) = T̃ (s)

=

[ 1.4
0.18s2+1.025s+1 0

0 17.06s+117.1
s3+13.67s2+56.67s+66.67

]
.

Finally, the wheelchair dynamics are decoupled into two

uncertain scalar systems presented in (12) with following

parameters:

The discrete linear velocity system with Ts = 25ms:

Ad =

[
0 −0.8673
1 1.8641

]
;Bd =

[
0.00221109
0.00231854

]
;Cd =

[
0 1

]
;

ΔAd =

[
0 ±0.123
0 ±0.129

]
; ΔBd =

[±0.064
±0.072

]
.

The discrete angular velocity system with Ts = 25ms

Ad =

⎡
⎣0 0 0.710526
1 0 −2.39155
0 1 2.68015

⎤
⎦ ;Bd =

⎡
⎣−0.00401019

0.0005167
0.00503874

⎤
⎦

Ad =

⎡
⎣0 0 ±0.011
1 0 ±0.250
0 1 ±0.135

⎤
⎦ ; ΔBd =

⎡
⎣±0.00075
±0.00095
±0.0100

⎤
⎦ ;Cd =

⎡
⎣00
1

⎤
⎦
T

.

B. Dynamic control

Since the wheelchair dynamics is decoupled into two in-

dependent uncertain scalar systems, two neural network con-

trollers are required to provide desired closed-loop control

criteria: settling time Ts ≤ 3 s, overshoot Mp ≤ 5%, and

zero steady error to step inputs.

The training procedure presented in the previous section is

used to train NNCv and NNCω controllers. The output of

the neural controllers are limited in the interval [−2.5, 2.5],
and the constant Ku is chosen to be 2.5. The data used for

training neural network controllers are actual data acquired

from various experiments. The training epoch consists of 400
iterations, equivalent to 10s with sampling time Ts = 25
ms. The data are divided into three sets: the training set, the

validation set and the test set. The validation set is used to

ensure that overtraining would not occur. The optimal structure

of the neural network controllers and their corresponding

weights are determined off-line. The optimal learning rates

for the NNCv controller are chosen as α = 0.015; η = 0.01,

and its optimal structure is (3,4,1), which is equivalent to 3
input nodes, 4 hidden nodes and 1 output node. Similarly,

the optimal learning rate values for the NNCω controller are

chosen as α = 0.015; η = 0.02, and its optimal structure is

(3,5,1).
For validation, real-time experiments are implemented on

the wheelchair system as shown in Fig. 4 using NI LabWin-

dows CVI 2010. The linear velocity and angular velocity are

filtered and measured using the USB4 Encoder Data Acqui-

sition system from USDigital. We use the Ascension Flock

of Birds magnetic position tracking system to measure the

wheelchair position. The outputs of the neural controllers are

sent autonomously to control the wheelchairs speed using the

NI USB6009 interface. The asynchronous timers and multi-

threading technique are used to ensure real-time sampling of

25 ms can be achieved for the control loops. Although some

human manipulated input such as joystick or head movement

control exists, all of the experiments described below are

autonomous driving experience against various set points and

predefined desired paths.

Fig. 4. Wheelchair system for real-time experiments.

Fig. 5. Closed-loop responses of linear velocity and angular velocity loops.
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Fig. 6. Real-time closed-loop responses of linear velocity and angular
velocity loops with different set-points.

Fig. 7. Real-time closed-loop responses of wheelchair dynamics, element
(1,2) and element (2,1) show the decoupling effects between two loops are
substantially reduced.

Experiment 1: This real-time implementation demonstrates

the performance of the controlled system. The linear velocity

and angular velocity are set to be 0.8 m/s and 0.8 rad/s
respectively, and the wheelchair carries a 75 kg person and

travels on a wooden surface. Real-time results of the two

velocity loops in Fig. 5 show that the proposed controllers

achieve the desired performance (Ts ≤ 3 s, Mp ≤ 5%, and

zero steady-state error). The results also show that real-time

responses of the two control loops are within the boundaries

set by the upper bound and lower bound models.

Experiment 2: This real-time experiment shows the

wheelchair performance when it travels on various surfaces

while carrying a 60 kg person. Specifically, it travels on a

wooden surface with a set-point pair (0.4 m/s, 0.4 rad/s), on

a cement surface (0.6 m/s, 0.6 rad/s) and on a carpet surface

(0.9 m/s, 0.9 rad/s). Fig. 6 confirms that using the proposed

controllers, optimal performances are achieved on various

surfaces. The real-time implementation on a cement surface

shown in Fig. 7 also demonstrates that the coupling effects

between the two control loops are substantially reduced.

Experiment 3: A multivariable PID (MPID) method based

on a combination of PID controllers and diagonalization tech-

nique has been introduced for comparison. Two PI controllers

are independently designed for the linear velocity loop and

angular velocity loop. Using the root-locus technique, the

Fig. 8. Real-time circular path following tasks.

Fig. 9. Real-time adaptive line tracking tasks on uneven and rough surface.

PI parameters for the linear velocity loop are chosen as

(Kp=0.22;Ki=0.55) while those for the angular velocity loop

are (Kp=0.15;Ki=0.25). In this task, the wheelchair carrying

an 85 kg person travels on a rough cement surface (outdoor

environment). Compared to the MPID method, the real-time

results in Fig. 8 show that the performance obtained by the

proposed method is better in terms of response time, tracking
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accuracy and robustness.

Experiment 4: This real-time experiment aims to test the

robustness of the controlled system against external distur-

bances. In this experiment, the wheelchair carrying a 75 kg
person and travels on an uneven and rough surface. Compared

to the MPID method, the results in Fig. 9 confirm that the pro-

posed approach achieves better and more robust performance.

VI. CONCLUSION

In this paper, an advanced neural-network-based diagonal

decoupling control method has been developed and imple-

mented for a powered wheelchair system. This control method

is based on a combination of diagonalization technique and

neural network control design. The advantage of this novel

approach is that it removes the interaction in the nominal

multivariable model, and provides a robust solution for both

parameter uncertainties and external disturbances. Using the

diagonalization technique, a stable multivariable decoupler is

found and this multivariable system is reduced to a series of

scalar control problems. These scalar control problems are

then solved using an optimal neural network control design

technique.

For this wheelchair, an uncertain multivariable model is ob-

tained using a parameter verification procedure. This consists

of a nominal dynamic model, completed with upper bound

and lower bound models. A multivariable decoupler and two

independent optimal neural network controllers are developed.

Essentially, using the obtained dynamic model, the problem

of the plant’s Jacobian calculation is eliminated in this neural

network controller design.

The real-time experimental results show that the interactions

between the two subsystems are eliminated for the nominal

system with the implementation of the multivariable decoupler.

This is particularly important as the control performance of the

wheelchair will be consistent even when this system diverts

from its nominal condition, including when it is operating

on an uneven environment. It can be seen that the control

robustness of the system has been achieved, as although

the actual performance of the wheelchair diverts from the

performance effected by the expected nominal model, it is

still contained within those generated by the lower bound

and upper bound models. The results also show that excellent

overall system performance is achieved for an adaptive line-

path tracking task when the wheelchair operates on different

surfaces with external disturbances. In addition, excellent

circular path-following control capability of the system is

validated employing users with various weights. Therefore,

real-time experimental results confirm that the robust perfor-

mance of this multivariable wheelchair control system can

be achieved under model uncertainties and unknown external

disturbances.
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