
Manifestations of Preoperational Reasoning on Similar Programming

Tasks

Donna Teague
Queensland University of Technology,

Brisbane, QLD, Australia

Tel: +61 7 3138 2000

d.teague@qut.edu.au

Raymond Lister
University of Technology, Sydney,

Sydney, NSW, Australia

Tel: +61 2 9514 1850

Raymond.Lister@uts.edu.au

Abstract
1

In this research paper, we study a simple programming
problem that only requires knowledge of variables and

assignment statements, and yet we found that some early

novice programmers had difficulty solving the problem.

We also present data from think aloud studies which

demonstrate the nature of those difficulties. We interpret

our data within a neo-Piagetian framework which

describes cognitive developmental stages through which

students pass as they learn to program. We describe in

detail think aloud sessions with novices who reason at the

neo-Piagetian preoperational level. Those students exhibit

two problems. First, they focus on very small parts of the
code and lose sight of the "big picture". Second, they are

prone to focus on superficial aspects of the task that are

not functionally central to the solution. It is not until the

transition into the concrete operational stage that

decentration of focus occurs, and they have the cognitive

ability to reason about abstract quantities that are

conserved, and are equipped to adapt skills to closely

related tasks. Our results, and the neo-Piagetian

framework on which they are based, suggest that changes

are necessary in teaching practice to better support

novices who have not reached the concrete operational
stage.

Keywords: Neo-Piagetian theory, novice programming,
think aloud.

1 Introduction

It is a common source of frustration for computer science

educators that novices do not transfer to a second

programming problem the concepts taught on an initial

problem. For example, we posed to novice programmers
the tasks shown in Figures 1 and 2. We found that some

students who could do the first task could not do the

second task. We posed these questions to two classes, in

different semesters. Table 1 shows the performance of

both classes on the second task. In both semesters, the

percentage of students who answered the second task

incorrectly was worse than we expected, given the

number of weeks of instruction the students had received.

1Copyright (c) 2014, Australian Computer Society, Inc. This
paper appeared at the 16th Australasian Computing Education
Conference (ACE2014), Auckland, New Zealand, January
2014. Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 148. J. Whalley and D. D'Souza,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

Week of

Semester

No. of

Students

Percentage

wrong

10 51 37%

 6 113 53%

Table 1: Performance on the Task in Figure 2

To understand why so many students struggled with

such a simple task, we began the qualitative research

study described in this paper. In our study, we had 11

volunteer students complete the tasks in Figure 1 and 2,

while having those students think aloud as they did so.

Table 2 summarises the performance of the 11

students. The names shown in that table are all

Figure 1: The shift task with an explicit temp variable

Write code to move the values stored in the following variables

to the left, with the left most value ending up in the right most

variable - as depicted by this diagram:

For example, if variables w, x, y and z initially contained the

values 1, 2, 3 and 4 respectively, after the code executed those

variables should contain 2, 3, 4 and 1. Your first line of code

must be the line “int temp = y” given in the box.

Figure 2: The second shift task

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

65

pseudonyms. All of these students were in at least their

third week of learning to program. All 11 students

completed the first task successfully. In completing that

first task, those 11 students demonstrated that they
understood assignment statements, and that they

understood the English language instructions associated

with both tasks. However, 3 of the 11 students could not

then solve the second task, and a fourth student (Jim)

took much longer. (Those four students are in the shaded

region of Table 2.) This brings us to the research question

addressed in this paper:

Research Question: Why can some students answer

correctly only one of the two problems shown in Figures 1

and 2, when both tasks require functionally identical

code?

Note that our research question is not related to the

prevalence of this issue in the general population of

programming novices. Given the small group of students

we studied, and that those students are from a single

institution, it would not be appropriate to speculate on

prevalence. However, what we can do in a qualitative

study of this type is arrive at a possible explanation for

why some students find the second task to be

significantly harder than the first task. The type of micro-

genetic analysis that we carry out in this study has been

applied in many domains to test theories of cognitive

development (Siegler 2006) and has also been used
before in a study of novice programmers (Lewis 2012).

We were able to make sense of our research data via

neo-Piagetian theory. In the next section, we briefly

describe that theory. We then present our transcript data

from three students, two of whom struggled on the second

task while the third student was able to do both problems

quickly. We interpret that transcript data using the neo-

Piagetian theoretical framework.

2 The Neo-Piagetian Stages

Lister (2011) proposed, in accordance with neo-Piagetian
theory, that there are four main stages of cognitive

development in the novice programmer. At the least

mature stage, the sensorimotor stage, a novice

programmer cannot reliably trace a given piece of code

(i.e., manually execute it). The sensorimotor approach to

writing a trace on paper is ad hoc and often inconsistent.

Also, they commonly have misconceptions about what

various programming constructs do (Du Boulay 1989).

Furthermore, these novices often apply a misconception

at some points in a trace and then apply a correct
conception at other times.

The next neo-Piagetian stage is preoperational.

Novices at this stage can trace code accurately, but they

struggle to reason about code. That is, they have

difficulty understanding how several lines of code work

together to perform a computation. At any point in time,

these novices tend to be focused on small parts of the

code, and ignore the implications of code they have

already considered. This is what neo-Piagetian theorists

refer to as spatial and temporal centration.

At the concrete operational stage, novices can reason

with abstractions of code (e.g., diagrams). They can also
reason about the concept of conservation which Flavell

(1977) describes as “… a quantitative invariant amid

transformations". We elaborate on the concept of

conservation in the following sub-section.

Finally, there is the formal operational stage, which is

the stage educators hope their students will reach. At this
stage, novices can reliably and efficiently “problem-

solve”; they understand and use abstractions, form

hypotheses and can make inductive and deductive

inferences.

By analysing students' answers in an end-of-semester

exam, Corney et al. (2012) provided indirect evidence

that novices pass through some of these neo-Piagetian

stages. However, such evidence does not provide a direct

indication of the actual thought processes of students.

Think aloud studies have also been undertaken with

students who were given programming code to hand trace
and explain in plain English (Teague, Corney, Ahadi, and

Lister 2013). The results provided evidence of

preoperational reasoning by some of the students.

In this paper we provide direct empirical evidence of

students' thought processes while solving code writing

tasks, specifically the tasks shown in Figure 1 and 2.

2.1 The Concept of Conservation

According to neo-Piagetian theory, it is only at the

concrete operational stage that a novice has developed the
ability to reason reliably about abstract quantities that are

conserved, and the novice is not deceived by superficial

appearances. For example, Flavell (1977) describes an

experiment where a preoperational child believes that

when clay is moulded into different shapes the amount of

clay changes. A child at the concrete operational stage is

not deceived by such perceptions. Lister (2011) proposed

that in a programming context, a novice at the concrete

operational stage should be able to easily make minor

changes to code while conserving what the code achieves,

while the preoperational novice programmer would

struggle to do the same. The contribution of this paper is
providing empirical evidence for that proposal.

Our objective was to see if any of our novices

demonstrated an ability to conserve a specification when

given a small change to the implementation. Specifically,

we wanted to see if any of our novices could solve either

the first or second task, but not both. Our hypothesis was

that students who are operating at the preoperational level

will struggle to apply consistently the abstract principal

common to both problems – that saving a variable to

temp makes it possible to overwrite that value in the

copied variable. In neo-Piagetian terminology, this

abstraction is referred to as the "invariant amid

transformations" (Flavell 1977).

2.2 Working with Cyclic Series

Our two programming tasks are analogous to an
experiment Piaget conducted where he asked children to

predict the next element in a cyclic series (Piaget 1971a).

To do so required the children to translate the elements

into a linear series. Piaget found that relationships of

order are operational. That is, people are not capable of

dealing with such a concept until the concrete stage.

CRPIT Volume 148 - Computing Education 2014

66

Alias

The First Shift Task (see Figure 1)

The Second Shift Task (see Figure 2)

Time

(minutes:seconds)

Help

Given

Weeks after first

think aloud

Time

(minutes:seconds)

Help

Given

John 2:03 0. none 4 1:04 0. none

Steve 1:48 1. clarify 3 1:12 0. none

Becki 1:05 0. none 0 2:40 0. none

Michael 1:24 1. clarify 0 2:30 0. none

Bobcat 14:36 3. hint 0 2:40 2. prompt

Lance 3:10 0. none 7 2:40 0. none

Johnstone 4:48 3. hint 2 2:51 0. none

Donald 3:44 2. prompt 0 8:49 2. prompt

Charlotte 7:45 3. hint 0 10:00 4. provide

Potato Man 19:02 3. hint 3 17:30 4. provide

Jim 5:43 1. clarify 2 21:37 4. provide

Table 2: Think Aloud Performance on Shift Tasks

At the sensorimotor stage, people are barely able to

manage translating a cyclic series into a linear series and

unable to foresee successive elements. At the
preoperational stage people have the ability to predict

successive elements in a cyclic series iff they start at the

first element. Towards the end of the preoperational stage,

people can cope with intermediate starting points, but still

fail to predict elements beyond the last.

Our programming tasks involved transforming a cyclic

series (the diagram) into a linear series of assignment

statements to achieve a ‘movement’ of values.

3 Think Aloud Results
At some point in time after performing a think aloud on

the first task, the 11 students performed a think aloud on

the second task. The elapsed time between think alouds

varied from student to student. Table 2 provides the

specific information for each student.
Table 2 also shows the total time taken to complete (or

abandon) each task. The data in Table 2 is sorted by

length of time spent on the second task. Thus the four

students at the bottom of Table 2 (i.e. in the more heavily

shaded section of the table) took the longest time to

complete the second task. According to the arguments we

have made above, those four students are likely to be at

the preoperational level of development.

Table 2 also shows the level of assistance provided to

each student by the person conducting the think aloud.

We have categorised that level of assistance using a scale

adapted from Perkins & Martin (1986):

0. none No intervention by interviewer.

1. clarify Clarification of the task requirements (e.g.,

explaining terminology in task text).

2. prompt Prompting to encourage progress (e.g.,
reflecting on what has been done so far and

asking what needs to happen next; intimating
there may be an issue; or suggesting that they

manually execute the code).

3. hint Hinting in order to provide some direction
(e.g., suggesting a programming construct or

indicating where an issue lies).

4. provide Providing a partial or complete solution if
progress seems unlikely; or the subject has

abandoned the task.

4 Dissection of Think Alouds

In this section, we dissect the think aloud sessions of
Charlotte, Jim and Steve. Because of space limitations,

we are unable to include the entire transcript for these

students, and we have therefore chosen a selection of

short excerpts which are representative of their attempts.

Charlotte and Jim are typical of all four students who

could solve the first task, but struggled with the second.

Our presentation of each excerpt is broken into three

subsections (summary, data, and analysis), following the

format used by Lewis (2012).

4.1 Charlotte

Charlotte was in her third week of learning to program
when she performed the following think aloud. This was

her second think aloud session, and she was comfortable

with the protocol of articulating her thoughts as she

solved programming tasks. Charlotte possesses excellent

language skills.

Charlotte took 7 minutes 45 seconds to solve the first

task, with hints, and then spent 10 minutes on the second
task before giving up. At the end of the think aloud, she

was shown the solution; hence the “4.provide” for the

level of help given.

4.2 Charlotte – The First Shift Task

4.2.1 Excerpt 1

Summary

Charlotte began by reading the problem. She initially
expressed a lack of familiarity with the nature of the task.

However, it was quickly established that she thought she

was required to provide code to move the boxes. (In

retrospect, not as bizarre an interpretation as we first

thought, given the GUIs that students are now

accustomed to experiencing.) The interviewer clarified

that the task was to write code to shift the values in the

variables according to the arrows in the diagram. To

establish that Charlotte did then understand the task, the

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

67

interviewer asked Charlotte to choose some initial values

for the variables and then determine the final values in the

variables after her code had executed.

Data

Charlotte: So, may I ask is it similar to last week?

Interviewer: Yes, but instead of swapping two variables

it’s …

Charlotte: … swapping 4. And I want them all to move to
the left. So I'm moving the values not the

variables. Ok good to know - makes more

sense.

Analysis

In this excerpt, Charlotte made a connection between

shifting and swapping values: where each requires
“movement” of values between variables using

assignment. Although she used the word “swap” which is

a reciprocated exchange of values between two variables,

she showed an understanding of the shifts required.

4.2.2 Excerpt 2

Summary

Charlotte made a first attempt to solve this task and
although each assignment statement in itself was correct

(apart from using a variable t instead of temp) the

sequence of her assignment statements was not correct.

She then traced the code using the values she had chosen

for each of the variables: 2,4,6,8 and 10 for a,b,c,d and

t. When she incorrectly concluded that the code worked

as required, she was challenged, and then decided to re-

read the question.

Data

<Charlotte wrote the code below>

 a = b

 b = c

 c = d

 d = t

 t = a

Charlotte: So it almost worked… Oh no! I think it did
work the way I wanted it to. So it says the

temp becomes 2. Yeah I think that

worked.

Interviewer: Where does the value 2 end up?

Charlotte: <quoting the problem description> “…with

the left most value ending in the right most

variable”. Ah! It was cute while it lasted!

Analysis

Each assignment statement in Charlotte’s solution was
correct, but they were out of order. That is, she focused

on parts of her solution while losing sight of the whole

task, which is characteristic of reasoning at the

preoperational stage. Neo-Piagetians refer to this

phenomena as "spatial and temporal centration", or more

colloquially, being unable to “see the forest for the trees”.

4.2.3 Excerpt 3

Summary

Charlotte then realised that a’s value must first be

temporarily stored so it will not be overwritten and lost.

She was not convinced that her subsequent solution

worked until she executed a trace of her code.

Data

Charlotte: Well we need d equal to…? Ok. So I'm

trying to figure out where the temporary best

comes in because what we really want at the

end of the day is t to equal a from the

beginning.. <Charlotte then wrote the code

below>

 t = a

 a = b

 b = c

 c = d

 d = t

 So that works! I think...

Analysis

Charlotte realised the importance of sequence and figured

out that a's value must be saved first, so that that value

can be assigned to d after d's value has been reassigned.

Charlotte made the leap from individually correct

assignment statements to correctly sequenced lines of

code in order to achieve the required effect. She was

however heavily reliant on tracing the sequence with

specific values to convince herself of the code's

correctness, a manifestation of the preoperational stage of

development.

4.3 Charlotte – The Second Shift Task

The second shift task was attempted by Charlotte in the
same think aloud session where she completed the first.

4.3.1 Excerpt 4

Summary

Charlotte made a connection between this task and the
previous task, but then had some doubt about their

similarity when she read the supplied line of code. She

established a set of initial values for each of the variables,

and the expected final values for each.

Data

<As Charlotte uttered what follows, she wrote the initial
and expected values in the boxes of the supplied

diagram.>

 Variables: w x y z

 Initial: 2 4 6 8

 Expected: 4 6 8 2

Charlotte: So it’s the same as the first one. And then …

here that temp equals y, now I'm really

sceptical. Um, I don't think it actually is, so

we'll find out. 2,4,6,8 <values for variables

w,x,y, and z respectively> and we want to

move everything to the left and the left most

one ends up in the right most variable.

CRPIT Volume 148 - Computing Education 2014

68

Analysis

Charlotte manifests preoperational behaviour by setting
up specific variable values with which she intends to

reason about her code. Another preoperational behaviour

is her focus on the superficial aspect of the task, that is,

the initial assignment to the temp variable.

4.3.2 Excerpt 5

Summary

Charlotte paused to question the reason for the supplied
line of code, but after not being able to come up with an

answer, started to implement a solution. With the first

assignment of y to temp, she articulated its new value, 6.

When she had finished writing the remaining assignment
statements (shown below), she was not confident that her

answer was correct, and expressed frustration. To the left

of each of her lines of code, she wrote the value being

assigned to the variable on the left of the assignment.

When the values didn’t match those expected, she

realised her code must be incorrect.

Data

Charlotte: But you have to start with the temp as y.

Why? Interesting question. … Fine. If you

insist, temp is y, so temp becomes 6. …

Where do I want it to go? Hmm. … Brain -

wake up! … So … x to be y … Does that

make sense? Ok for now it does. w to be x

…z to be w. No we don't. Nnnnn, yes we

do. … Aaargh!

 6 temp = y;

 6 x = y;

 4 w = x;

 4 z = w;

 z becomes 4 which we do not want! Think

I’m breaking the thing I realised before.

Analysis

Although incomplete, most of Charlotte’s assignments

were independently correct. However, the sequence of

these assignments was not correct. She did not relate this
second task to the approach she had successfully

developed to solve the first task, but instead constructed

assignment statements according to the diagram, in what

appeared to be a random order. Charlotte was unable to

make an accurate determination of the code’s correctness

until she traced it with specific values. Charlotte did not

even trace her code accurately (in the third line she failed

to take into account the updated value of x), and it was

evident through utterances of contradiction ("No we

don't. Nnnnn, yes we do.") and frustration ("Aaargh") that

she was cognitively overloaded. Because Charlotte said

“Think I’m breaking the thing I realised before”, we

hypothesise she had some hazy notion of the invariant

amid transformations in this exercise, that is, that saving

a variable’s value to a temporary location makes it

possible to overwrite that value in the original variable.

This was the “thing” that her current solution was
“breaking”.

4.3.3 Excerpt 6

Summary

Charlotte made her final attempt before running out of
time. On this occasion, she started reassigning from the

far right of the line of variables in the diagram and again

recorded the value being assigned at each statement.

Data

Charlotte: z equals w, which basically becomes 2. y …

becomes x so that's 4. <Expletive> Sorry, x

equals y. So if x equals y, that becomes 6.

 6 temp = y;

 2 z = w;

 y = x;

 6 x = y;

 Um. Start over. z becomes w, that's good

because that's 2. x becomes y which

becomes 6 so that’s good. … Too confused

… We have to back off here a little bit.

 6 temp = y;

 2 z = w;

 6 x = y;

 So we want w to equal x … which basically

becomes 4. I haven’t removed x, the value of

x yet. … I think that's where things were

trying to click in because then x becomes y

… and that becomes 6. y becomes z which

becomes 8. … Well … wait - what's wrong

with that? Why doesn't that work?

 6 temp = y;

 2 z = w;

 4 w = x;

 6 x = y;

 8 y = z;

 Ok and z because we said z is w up here, so

why is that a problem? … because that's the

problem! Grrrr! Ok, I think I have to go <to

another appointment> …

Analysis

Charlotte’s piecemeal approach to solving this task was

not effective. She was focused on individual assignment

statements and lost sight of the bigger picture (shifting all
of the values without losing any of them). She was unable

to work with the cyclic series of variables starting from

an intermediate point. For all the reasons given with these

excerpts, Charlotte is clearly at the preoperational stage

of development.

4.4 Jim

It was the third week of semester when Jim performed the

following think aloud on the first task. Furthermore, in an

earlier semester, Jim had successfully completed a course
that included about 6 weeks of programming in Python.

In his think aloud sessions, Jim demonstrated adequate

language and communication skills. Jim had completed

one think aloud session with us prior to completing the

first shift task which is described below.

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

69

4.5 Jim – The First Shift Task

4.5.1 Excerpt 7

Summary

Jim read the question text and then proceeded to select

values for each of the five variables.

Data

Jim: So we can say that a is 1, b is 2, c is 3, d is 4.

And following what this diagram says, we also

have a fifth variable which we will call e,

though in the diagram it's called temp. That will

be the value of 5. Though it doesn't matter.

Analysis

The diagram stipulated that the temporary variable was

called temp. It is odd that he chose to rename it e. When

later queried, he said he was opting for consistency: the

other variables had one letter identifiers, so he chose a

one letter identifier for the temporary variable. Also odd

was his subsequent use of capital letters for the other

variable names, instead of the lower case used in the

diagram. In any event, as will be shown below, his

unusual choice of variable names had no effect on

achieving the desired outcome on this first task.

Jim’s reliance on specific values when reasoning about

and writing code is characteristic of preoperational
behaviour.

4.5.2 Excerpt 8

Summary

Jim articulated a logical sequence of assignment
statements to complete the task, but was then not

confident about his solution.

Data

Jim: So we want to move A first. So we want e

to take the value of … A. Um. ... then we

can say … that A can take the value of B.

Um. C, uh B can take the value of C. C can

take the value of D. And ... D can take the

temp value. <Jim had written the

following>

 e = A

 A = B

 B = C

 C = D

 D = 5

 ...whoops. Going the wrong way around

Interviewer: Have you?

Jim: Oh no I haven't. So we want to go one more
time around.

Interviewer: Do you?

Jim: To be … well, we want A to be stored over

here <indicating D>

Interviewer: What's in D at the moment?

Jim Um, in D at the moment is a 5.

Interviewer: Why did you hard-code … the number 5?

Jim: Um. I just assigned it a value.

 … I put 5 into D. I want A to go in there. So

... but A is now in e. Oops … that should

be e. <He then changed the code to the

following.>

 e = A

 A = B

 B = C

 C = D

 D = 5 e

Interviewer: Are you finished?

Jim: Um, well I want A to be in D.

Interviewer: What's in D at the moment?

Jim: 5

Interviewer: Are you sure?

Jim: Yes

Analysis

Jim’s first attempt is punctuated with hesitation, changes
of mind, self-correction and finally an error he overlooks

(the omission of the reassignment of the temporary

variable’s value). This behaviour is indicative of someone

operating at the preoperational level. Jim rectifies his

mistake, but only after prompting. Although his solution

is correct, Jim did not reason about it accurately, as he

thought that the original value of e (5) was assigned to D.

4.5.3 Excerpt 9

Summary

Jim was then asked to trace his code using the values he
had already chosen. As he recounted each assignment

statement’s effect with specific values, it was only then

that he articulated the temporary storage and subsequent

reassignment of A which convinced him that the code was

indeed correct.

Data

Jim: So, e equals A so e will equal 1. A equals B so A

will equal 2. Um B equals C, so B will equal 3.

Um C equals D so C will equal 4 and D equals e

so D will equal … 1. Because e is equal to 1,

that we'd gotten first at the top. … Ok. So it's not

5, it's 1. I see. So we have 1 in here <e> so that

means we're going to have a 1 in here <D> now.

Analysis

Once Jim traced his code with specific values, he

confirmed that his code was correct. Like most

preoperational novices, Jim was not able to clearly reason

in an abstract way about his code. He needed to trace the

code with specific values in order to feel confident about

its correctness.

4.6 Jim – The Second Shift Task

The second shift task was completed by Jim two weeks
after he had done the first task. He took an enormous

amount of time (more than 21 minutes) and several

attempts to complete it. The following excerpts are only a

small sample of Jim’s articulations for this task, but are

representative of the difficulties he had.

CRPIT Volume 148 - Computing Education 2014

70

4.6.1 Excerpt 10

Summary

After reading the question, Jim immediately recognised
this task as familiar. He expressed scepticism about the

given initial assignment statement. He then allocated

values to each of the variables, including temp (both in

the diagram and in the given line of code) and then

worked his way through the diagram, writing an
assignment statement to match each shifting value. He

then attempted to formulate the correct sequence of those

assignment statements.

Data

Jim: temp is assigned y. … This seems slightly

unnecessary …

 Ok um. So temp's got the value of y ... So ...

where are we... we've got ... let's say w equals 1,

x equals 2, y equals 3, z equals 4. <He wrote the

following set of initial values.>

 w = 1

 x = 2

 y = 3

 z = 4

 So we want to move... we've got 1,2,3,4 … 3. No

it’s easy, we get rid of that y value because

we've got two 3's. That means. So ... um we can

just say … Ok ... so we want. ... start <with> the

y. ... um …so we want ... so we want …1 …we

want over here so we don't want z to equal, z

equals 1 then the 4's going to disappear. If w

equals x, the 2 is going to disappear. … If x, x

equals y, the 3's still going to ... stay, so we can

say... no the 2's going to disappear so we can say

y equals z. ... So y equals z. <He wrote the

following single line.>

 y = z

 So y equals z, so y will equal 4 now. So we've

got 4 here … We can say… just wait. So still the

left most variables ... why would we want to do

that, why wouldn't we just say y equals … We

need 3 so y equals… w. Going to move them all

now. Um. What are we doing with this? I like to

confuse myself a little bit. … And then we can

have the 3 here, so it <z> is going to be ... um 4

<recorded z as now having the value 3>. …

Yep. Ok. ... Um ... So we want x.... we want the

z to equal w, we want w to equal z. … We want

x to equal y, and we want y to equal z. <He had

written the following statements, separate from

the previous single line of code.>

 z = w

 w = z

 x = y

 z = z

 So we've got y is equal to 4. So z is 3. So we

want z to equal ... 1, want w to equal 2, we want

x to equal 3, we want z … z to equal w. <He

revised the statements as follows>

 z = w

 w = z x

 x = y

 z y = z

 So ... z is 4 so there we go <wrote 4 under the y

of y = z>. That's a bit … that's a bit better. So y

to equal z. It's annoying because it's so simple,

but not. [laugh]. Just messes with your mind!

Analysis

Jim determined that the reassignment of y should be the

first step, only after testing the effect of first reassigning

to z, then to w and finally to x.

Jim has so far made hard work of this task by

recording four separate sets of data. First, he allocated

integer values to each of the variables by writing what

appeared to be assignment statements. Second, he wrote

the beginning of an ordered sequence using those

assignment statements. Third, he wrote an assignment

statement for each “shift”, starting from the right hand

side of the diagram. In addition, Jim kept current trace

values recorded under several variable names in the code.

Jim is dependent on reasoning with specific values in

variables. With his trace notation interspersed in the code
it was very difficult for him to follow on paper what he

had written, let alone keep track of what he had left to do.

When speaking, he repeatedly intermingled variables and

values when referring to what needed to be assigned

where. He made several contradictions by saying one

thing and writing another. He showed some confusion

about assignment direction, repeatedly changed his mind

and made tracing errors throughout.

Jim was clearly cognitively overloaded, unable to

manipulate the abstraction of the diagram in such a way

that it represented a solution that started with the

reassignment of y, and unable to design an effective

trace of his code. These are all indicative behaviours of

someone at the preoperational stage of development.

Indeed, his haphazard approach to tracing is a

characteristic of the sensorimotor stage. Although he did

articulate an abstraction beyond the code itself, the need

to “get rid of that y value because we’ve got two 3’s”, he

did not continue to apply that principal to the remaining

variables, as he had successfully done in the first task.

Not applying an abstraction consistently and completely

is characteristic of a preoperational novice.

4.6.2 Excerpt 11

Summary

At this stage, Jim had established expected final values
for each of the variables, using the initial values he had

chosen. After having painfully determined by trial and

error what the first assignment should be, he struggled to

establish a workable sequence of the remaining

assignment statements.

Data

Jim: We want … x to equal the…3 so it currently

holds the third value in temp. So we can say x

equals temp. … So x has now got the third

value. … temp is still empty so we can say... so

we've got x and y sorted. Just need w. What do

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

71

we want w to equal? Whoops! <he exclaims

while crossing out the third row below>. That

shouldn't be there because it gets rid of my 2

value.

 temp = y

 y = z

 x = temp

 So we need to store ... w in the temp. …

temp's got the value of w so now we can ... that

w value. … So that w value we want to equal 2...

so we want w to take the value of x. So the w

value's been wiped ... being stored in temp, so

the w value is given the value of 2 that should

still be 2

 temp = y

 y = z

 temp = w

 w = x

 [sigh] … I think I just lost my ... lost my 3 then.
Yeah, I've lost my 3 [sigh] Ah, it's frustrating!

Analysis

Jim correctly dealt with the reassignment to y after which

he focused attention on the start of the series rather than

continuing from that intermediate point. He struggled to

implement the logic that he used successfully two weeks

earlier on the first shift task.

In the first line of this excerpt, Jim refers to the "third"

value, so we suspect that he saw the ordering of the

variables in the diagram as significant. After dealing with

the reassignment of y as required, he found it necessary

to continue at the start of the diagram. This may explain

his comment in Excerpt 10 that he found the forced

assignment of y to temp as "slightly unnecessary". As a

preoperational novice, he was unable to effectively apply

the invariant of saving a variable’s value for subsequent

reassignment. He had completed the first task

successfully, but was unable to mentally manipulate the

new diagram in such a way that it replicated the first, that

is with y at the beginning of the reassignment sequence,

rather than in the middle.

4.6.3 Excerpt 12

Summary

Jim made several other failed attempts at this task,

experimenting with different values stored in temp, but

each time articulating a trace of the real values he had

chosen. At a point where he was clearly frustrated, the
interviewer suggested that he stop concurrently tracking

the variables' values while developing the code, thus

eliminating what seemed to be a distraction.

Data

Jim: This is starting to frustrate me a little bit.

[laugh] I'm not going to lie. Seems so much

more um... I don't know ... difficult. When

you're not doing it on the computer. What

I'm saying is that ... like... if you don't have
the numbers there... you can ... I think

numbers helps so you don't accidentally

clear them.

Interviewer: when you did this last week you … stored
one of the values away to start with. Why?

Jim: ...Um, well I don't remember [laugh]

Interviewer: You don't remember why?

Jim: Um, just so it didn't get cleared. Ah, I see!
…Same as last week. I see ... But I'm just

… See what I'm trying to do, I'm trying to

rearrange the numbers because I'm saying

if its 1,2,3,4 and we've got the 3 in here

<i.e. in temp>...

Interviewer: So WHY do you have a 3 in there?

Jim: Because the y is equal to temp. So, if I

call <y> 3, then <temp>'s going to be 3

Interviewer: So then what's your first step?

Jim: So the first step ... I can move the z to <y>

... And then I can move <x> to <w>...

sorry, no I can move <w> to the temp. …

Interviewer: … when you did this last week, how many

temp variables did you use?

Jim: One

Interviewer: So why should this be any different?

Jim: I don't know. … These <tasks> ... they're

like a lot easier than the programming that

I'm doing, but they're a lot harder at the

same time. It's just different - it's weird.

[laugh] It's not nice. It confuses me.

Analysis

Jim continued to have trouble with this task which forced
him to start from an intermediate point, that is, the

required initialisation of temp. In the first task he

appeared to have demonstrated an understanding of the
process required to shift the values in four variables as

well as the programming skills to implement it. However,

without prompting by the interviewer, he had an

enormous amount of difficulty transferring that (possible)

understanding of a very similar task. His level of ability

in terms of abstract reasoning was clearly preoperational.

4.7 Steve

Steve’s think aloud sessions were indicative of concrete

operational reasoning. Steve was in his first semester of
learning to program. He completed his first think aloud

session in week 3 of semester.

4.7.1 Excerpt 13

Summary

After needing initial clarification of the diagram, Steve
completed the first task in a matter of seconds.

Data

Steve: So a will become d and d will become a

Interviewer: Ah, the value in a will go into d - like this
diagram shows, the value of a eventually

goes to d.

Steve: and d eventually goes to a.

Interviewer: ...c goes into b, b goes into a...

CRPIT Volume 148 - Computing Education 2014

72

Steve: Ah, so shuffle it along.

Interviewer: Yeah. Move everything up to the left
Steve: Ok so. ... temp equals a. a equals b. b

equals c. c equals d. d equals temp.

Analysis

Steve’s initial interpretation of the first task was that the

values in variables a and d were to be swapped, with the

top arrows in the diagram indicating the passing of d’s

value through c and b, and finally ending up in a. His

understanding was quickly corrected, confirmed by his

articulation of the task as a ‘shuffle’ and then

immediately writing a correct solution.

4.7.2 Excerpt 14

Summary

Steve then attempted the second task, and completed it

without hesitation:

Data

Steve: Ok. temp equals y so we've stored the y
value. So then we can replace it with the z

value. Yes. y equals z. Then you replace the

z value with w. w value with x ... And then.

Ah yeah, then x value with the temp

Analysis

Steve had clearly identified the invariant: “temp equals y

so we’ve stored the y value”. He applied the same
process of storing a value before overwriting the variable

with what was to replace it, for the remainder of the

variables. With concrete operational skills, Steve had no

problem applying the skills he used in the first task to the

slightly different second task.

5 Discussion

During these think aloud sessions, we noticed variation in

the way that some students articulated assignment

statements. For example, with respect to the following
assignment statement:

a = b

some students articulated the statement from left to right,
thus:

“a is assigned the value of b”

others read from right to left, that is:

“the value of b is assigned to a”

while others articulated assignments both ways:
sometimes left to right and sometimes right to left. We

conjecture that such variation in articulation is indicative

of novices at a neo-Piagetian stage lower than concrete

operational.

During the think aloud sessions, it also became
apparent that some students struggled to process the

diagrammatic depiction of the problem. One possible

problem was the direction of value "shifts", as the

majority of the values passed between variables right to

left, but the value originally in the leftmost variable

moved left to right. Some of the students even expressed

confusion over the meaning of the arrows. Apparently it
was not immediately clear (as it was to us, and probably

to any experienced programmer) that the arrows indicate

the direction of movement of the values.

The think aloud students who struggled with the

second shift problem tended to look at a small part of the

diagram and implement it. Next they would return to the

diagram and find another piece to implement, without
much thought to the consequences of sequential

execution. They had not developed an overall design for

their solution, but instead focussed on the functionality

for each independent piece of the problem, in the hope

that they would somehow all fit together in the end.

Being distracted from the most salient aspects of the

problem by individual elements is characteristic of

preoperational reasoning.

Even some students who completed the second task

quickly expressed some awkwardness about it. Lance said

"That felt weird. I didn't really like having to start there.

Don't know why." Becki said that the second task was
“very sneaky” and it had ruined her plan to start from the

end as she had in the first task. She also said that it would

not have made a fundamental difference had the diagram

depicted the variables in a circle as the variable names

were ordered and she tended to work on the variables in
lexicographic order. However, despite some initial and

brief confusion, these students were able to complete the

task. Students like Lance, Becki and Steve thus

manifested concrete operational skills.

6 Conclusion

In this paper, we have presented data from a think aloud
study which demonstrates that some novice programmers

manifest behaviours characteristic of the preoperational

stage in neo-Piagetian theory. One such behaviour is that

they tend to focus on parts of a programming task and

lose sight of the task as a whole. Students who struggled

with the second “shift” task tended to examine a portion

of the diagram and implement it, then return to the

diagram and find another portion to implement, and so

on, without considering the overall sequence of
execution.

Another characteristic of these preoperational novices

is that they are prone to focus on superficial aspects of a

specific task that are not salient to solving a general class

of tasks. In neo-Piagetian terms, preoperational novices

do not focus upon aspects of tasks that are "invariant

amid transformations" (Flavell 1977). In the “shift” tasks,

the invariant is the idea of duplicating a variable, so that

the value in the original variable might then be

overwritten, while the superficial aspect of the task is the

initial assignment to the temp variable.

These two characteristics lead preoperational novices

to adopt an approach that might be called programming

by permutation. On very small tasks, that approach may

indeed lead the novice to a correct solution, especially if

they are completing that small task on a computer and

thus receive feedback by running their code. However,
novices who adopt that approach do not learn abstractions

that they can then transfer to a very similar task.

The two “shift” tasks we gave our students are very

simple programming tasks, the solution for which is near-

identical in most imperative languages. The problems

experienced by some of our novices are therefore not

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

73

caused by the particular programming language in which

they write.

Piaget (1971b) described reasoning at the

preoperational stage as that “... which consists simply in

retracing ... events just as they were perceived, instead of

imagining an alteration ... ”. It is only at the concrete
stage of development that novices develop the ability to

work with cyclic series, to reason about abstract

quantities that are conserved, and transfer a general

approach to a slightly different task.

When students demonstrate difficulties with

programming, it may not be a reflection of their innate

ability to learn programming, but rather an indication of

their current state of cognitive development. Struggling

students may not have yet developed the mental schemas

necessary to perform at the concrete operational level of

reasoning required by certain programming tasks.

On the basis of our qualitative work, we cannot draw
firm conclusions about the commonality of preoperational

reasoning. However, given that four of our eleven think

aloud volunteers manifested this difficulty, it is possible

that preoperational reasoning may be common. Further

quantitative work is warranted. If future studies confirm

that this is a widespread issue among novice

programmers, then it suggests that our teaching practices

should change. The change would place the focus on

identifying the current neo-Piagetian stage of a novice,

and provide tuition appropriate to moving that novice to

the next stage. Current pedagogical practice places little
emphasis on the sensorimotor stage and completely

ignores the preoperational stage. That is, current

pedagogical practice assumes that the basic programming

constructs are learnt easily, and then students

immediately begin to reason about programs at the

concrete operational stage.

7 Acknowledgments

The authors thank the students who volunteered for this

study. Support for this research was provided by the
Office for Learning and Teaching, of the Australian

Government Department of Industry, Innovation,

Science, Research and Tertiary Education. The views

expressed in this publication do not necessarily reflect the

views of the Office for Learning and Teaching or the

Australian Government.

8 References

Corney, M., Teague, D., Ahadi, A. and Lister, R. (2012):

Some Empirical Results for Neo-Piagetian Reasoning
in Novice Programmers and the Relationship to Code

Explanation Questions. Proc. of 14th Australasian

Computing Education Conference (ACE 2012),

Melbourne, Australia. 123:77-86, ACS.

Du Boulay, B. (1989): Some Difficulties of Learning to

Program. In E. Soloway & J. C. Sphorer (Eds.),
Studying the Novice Programmer 283-300. Hillsdale,

NJ: Lawrence Erlbaum.

Flavell, J. H. (1977): Cognitive Development. Englewood

Cliffs, NJ: Prentice Hall.

Lewis, C. M. (2012): The importance of students'
attention to program state: a case study of debugging

behavior. Proc. of 9th Annual International

Conference on International Computing Education

Research (ICER 2012), Auckland, New Zealand. 127-

134, ACM.

Lister, R. (2011): Concrete and Other Neo-Piagetian
Forms of Reasoning in the Novice Programmer. Proc.

of 13th Australasian Computer Education Conference

(ACE 2011), Perth, WA. 114:9-18, ACS.

Perkins, D. N. and Martin, F. (1986): Fragile Knowledge
and Neglected Strategies in Novice Programmers. In E.

Soloway & S. Iyengar (Eds.), Empirical Studies of

Programmers. Norwood, New Jersey: Ablex

Publishing Corporation.

Piaget, J. (1971a): Order of Succession Inherent in Cyclic
Movements. Chapter 2 of The Child's Conception of

Movement and Speed 37-60. New York: Ballantine

Books.

Piaget, J. (1971b): Problem of Alternative Directions of

Travel. Chapter 1 of The Child's Conception of
Movement and Speed 3-36. New York: Ballantine

Books.

Siegler, R. S. (2006): Microgenetic Analyses of Learning.

In W. Damon & R. M. Lerner (Series Eds.) & D. Kuhn

& R. S. Siegler (Vol. Eds.) Handbook of Child
Psychology (6th ed) Vol. 2: Cognition, Perception and

Language, 464-510. Hoboken, NJ: Wiley.

Teague, D., Corney, M., Ahadi, A. and Lister, R. (2013):

A Qualitative Think Aloud Study of the Early Neo-

Piagetian Stages of Reasoning in Novice Programmers.

Proc. of 15th Australasian Computing Education
Conference (ACE 2013), Adelaide, Australia. 136:87-

95, ACS.

CRPIT Volume 148 - Computing Education 2014

74

