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Surface-type Classification Using RGB-D

Andrew Wing Keung To, Gavin Paul and Dikai Liu

Abstract—This paper proposes an approach to improve
surface-type classification of images containing inconsistently
illuminated surfaces. When a mobile inspection robot is
visually inspecting surface-types in a dark environment and a
directional light source is used to illuminate the surfaces, the
images captured may exhibit illumination variance that can
be caused by the orientation and distance of the light source
relative to the surfaces. In order to accurately classify the
surface-types in these images, either the training image dataset
needs to completely incorporate the illumination variance
or a way to extract colour features that can provide high
classification accuracy needs to be identified. In this paper
diffused reflectance values are extracted as new colour features
to classifying surface-types. In this approach, RGB-D data is
collected from the environment, and a reflectance model is
used to calculate a diffused reflectance value for a pixel in
each Red, Green, Blue (RGB) colour channel. The diffused re-
flectance values can be used to train a multi-class support vec-
tor machine classifier to classify surface-types. Experiments
are conducted in a mock bridge maintenance environment
using a portable RGB-Depth (RGB-D) sensor package with
an attached light source to collect surface-type data. The
performance of a classifier trained with diffused reflectance
values is compared against classifiers trained with other
colour features including RGB and L*a*b* colour spaces.
Results show that the classifier trained with the diffused
reflectance values can achieve consistently higher classification
accuracy than the classifiers trained with RGB and L*a*b*
features. For test images containing a single surface plane,
diffused reflectance values consistently provide greater than
90% classification accuracy; and for test images containing a
complex scene with multiple surface-types and surface planes,
diffused reflectance values are shown to provide an increase
in overall accuracy over RGB and L*a*b* by 49.24% and
13.66 %, respectively.

Note to Practitioners: This paper was motivated by the
problem of inspecting inconsistently illuminated steel surfaces
on a bridge structure using a robot manipulator. Existing ap-
proaches for colour-based surface classification are susceptible
to illumination variance. This paper proposes the use of dif-
fused reflectance values, which combines the use of colour and
depth data to improve accuracy. In this approach, the diffused
reflectance values of each image pixel are calculated by using
the distance and angle between the surface represented by
a pixel and the light source. The diffused reflectance values
are calculated in each colour channel (Red, Green, Blue) to
provide three features to classify different surface-types. This
proposed approach can be applied to surface classification
tasks where the light source does not uniformly illuminate
the scene in the image.

Index Terms—Surface-type classification, Lambertian dif-
fused reflectance, RGB-D
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I. INTRODUCTION

For a bridge maintenance robot manipulator (as shown
in Fig. 1) tasked to inspect for surface rust and grit-blasting
finish quality [1] [2] [3], the use of a machine vision system
may require the additional setup of lighting infrastructure
to operate successfully. Lighting infrastructure can either
be mounted directly onto the robot manipulator or placed
in carefully selected locations within the environment.
The main advantage of having carefully positioned light
source(s) within the environment is that the scene can be
consistently lit. However, the inconvenience of adding and
manually configuring lighting whenever the robot is repo-
sitioned within the bridge makes this option impractical,
particularly if the environment is structurally complex. For
practical use, the light source can be mounted onto the
end-effector of the manipulator. But as a result, surfaces
may appear inconsistently illuminated due to the robot
manipulator operating in a confined work space, where
the light source cannot be ideally positioned or orientated
because of obstacles and robot arm constraints.

Fig. 1. Bridge maintenance robot manipulator with directional light
source and camera mounted to the end-effector

Illumination inconsistency can lead to the appearance
change of surface-types described by texture and/or colour
features. This can cause variance in the extracted features
and adversely affect the classification accuracy if the train-
ing data set does not incorporate the variance. Therefore,
it is important to consider the feature variance caused by
illumination inconsistency, otherwise the classifier will fail
to accurately predict the classes. This paper proposes an
approach to improve surface-type classification accuracy
of images that contain illumination variance. The approach
assumes the use of a single light source to illuminate the
surfaces in the environment, such that the relative position
of the light source to the camera can be estimated using a
near-field light reflectance model. Based on the reflectance
model, the diffused (Lambertian) reflectance values for
each image pixel can be calculated and used as colour
features to classify different surface-types on inconsistently
illuminated surfaces.



Machine vision systems have been successfully demon-
strated in factory environments to assess quality and detect
defects in manufacturing processes such as marble slabs [4]
and steel sheets [5] using image analysis and classification
approaches. Typically, image classification is performed
using uniformly illuminated images, and demonstrated ap-
plications include classifying insect wings [6], rust on sign
posts [7], and aerial images [8]. But in order to accurately
classify different surface-types in an environment where
illumination consistency cannot be guaranteed, the imple-
mented approaches must take into account illumination
variance. For images of a single surface, invariance to
illumination inconsistency has been demonstrated using
local binary patterns (LBP) to extract greyscale invariant
texture [9], and using L*a*b* colour space to extract
colour consistent features that are tolerant to different light-
ing directions and intensities [10]. For images containing
multiple surfaces, image adjustment techniques based on
reflectance models have been proposed to directly reduce
the illumination variance. For example, light attenuation
adjustment is applied to images captured underwater to
improve colour consistency in image stitching [11], and
to provide better colour matching with images captured
in a clean air environment [12]. The use of reflectance
characteristics to classify different surface-types has been
demonstrated in [13] and [14] based on bidirectional re-
flectance distribution function (brdf) parameters. The brdf
parameters of a surface are estimated by illuminating the
surface with multiple lights at different calibrated positions.
Currently, this approach can be used for a small surface
piece that is positioned within a specially designed non-
portable lighting array [15].

In this paper, we propose an approach to estimate the
diffused reflectance values of each pixel from an image
using a reflectance model, and RGB-D data. The advantage
of the proposed approach is improved portability and the
capability to classify larger surface areas in an indoor
environment that has low or no ambient lighting. A portable
RGB-D sensor package with a light source has been
designed and implemented to practically demonstrate the
use of diffused reflectance values as colour features for
classifying surface-types.

This paper is organised as follows. Section II provides the
proposed surface-type classification approach describing
the reflectance model, the process to estimate the light
source position, the technique to estimate the diffused
reflectance values, the process to extract alternative colour
features for comparison, and the training and classifying
of features using a multi-class Support Vector Machine
(SVM) classifier. Section III presents the results from exper-
iments conducted in a laboratory environment. Section IV
discusses the results and Section V provides a conclusion.

II. METHODOLOGY

The proposed approach to classify surface-types using
RGB-D data is shown in Fig. 2. In order to estimate the
diffused reflectance values, a reflectance model is defined

and the position of the light source is calibrated with
the RGB-D sensor package. Calibration RGB-D data is
collected to estimate the camera-to-light source position.
Upon completing calibration, the diffused reflectance values
of pixels can be calculated and use to train a SVM classifier
to classify surface-types. In addition, RGB and L*a*b
colour space features are also extracted to train SVM clas-
sifiers to provide a comparison with the proposed diffused
reflectance values. The classification results produced by
each classifier trained with different colour features are
compared to show the relative classification performance
achieved.
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Fig. 2. RGB-D surface-type classification approach overview

A. Reflectance Model

A reflectance model defines parameters that describe
the irradiance characteristics of light when reflected off
a surface including attenuation, specularity and diffusion.
These reflectance parameters are independent of the light
source and are proposed as the features to classify surface-
types. In order to estimate the diffused reflectance values
of each image pixel, a reflectance model is defined and
the parameters calibrated for the light source and camera
setup. An overview of the implemented reflectance model
is discussed in this section and the estimation of the model
parameters based on [16] are presented henceforth in the
subsequent two sections.

Light reflected off a surface consists of the diffused
reflection and the specular reflection. The diffused reflection
describes the light rays that are scattered within the surface,
and the specular reflection describes the light rays directly
reflected from the surface. The Torrance-Sparrow reflection
model [17] describes the reflected light intensity off a
surface point as a combination of both diffused and specular
reflections. In this model, the Fresnel reflectance is assumed
to be constant and the geometric attenuation factor for a
clean air environment is 1. Thus, the reflected light intensity
off a surface point is expressed as:
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Fig. 3 illustrates the geometric model of reflection, where
the light source intensity is I, surface-to-camera distance is
l, light source-to-surface point distance is r, reflected light
intensity off the surface is I, the light source direction
vector is E the surface normal vector is N , the viewing
direction vector is V/, the angle between the light source
direction vector and the surface normal vector is 6;, the
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angle between the viewing direction vector and the surface
normal is 6., the angle between the surface normal with
the bisector of the viewing direction vector and the light
source direction vector is «, the surface roughness is o,
the position vectors for a surface point is P, and the light
source point is S.
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Fig. 3. Geometric model of light reflection

The reflectance ratios (kg, ks) and the light source inten-
sity (I5) in (1) cannot be simultaneously estimated given
only the observation of I,.. Therefore, a new reflectance
value is defined for the combination of the reflectance ratio
and light source intensity, as:

Kq = kals, Ks = ksl 2

and we rewrite (1) as:

a2

K,
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It is important to highlight that the diffused and specular
reflectance values are unique for each colour component,
(Red, Green, Blue) where (K, g, K;q,Ksp5) € Ky and
(Ka,r, Ka,c,Ka ) € Kq. However, the same process is
used to estimate the reflectance value for each individual
colour component. Therefore, for simplicity, the equations
are presented using the set notations, (K4, K). Further-
more, with the near-field use of the light source, there is
a high probability that the specular reflectance regions in
an image contain no useful information due to intensity
readings being saturated to their maximum upper limit.
Thus, we only estimate the diffused reflectance value, K,
and the distance between the light source and the surface,
r. The reflectance model equation is simplified to:

1
I, = T—Q(Kd cos 8; + exp(—
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B. Light Source Position Estimation

In order to calculate r for an image pixel in the training
and test images, the surface point P for the pixel and S are
used (Fig. 3). The surface point P, can be provided from the
depth data and the light source point S, which is a fixed
position in the camera coordinate frame is estimated by
analysing both the diffused and specular reflectance com-
ponents from a calibration RGB-D data. In our estimation
process we assume the calibration image: (a) contains a

planar surface that consists of a single surface-type; (b)
shows a surface illuminated by a near-field light source with
no appreciable ambient lighting; and (c) contains a specular
component and light fall-out described by a Lambertian
diffuse reflectance of constant albedo.

Fig. 4a shows a greyscale example of a calibration image
Q, used to estimate the light source position. Fig. 4b shows
a binary image that contains the maximum intensity region
of the image identified by applying an intensity threshold,
Ty, to the calibration image. The image pixel at the centroid
position of the saturated region is estimated to satisfies «
= 0 and the corresponding surface point can be denoted as
P The unit vector L , in the direction from the surface
point P to light source point S can be written as [16]:

Ep ZQ(NP'VP)NP_‘?Z) )

where J\_fp is the unit normal vector at surface point P s
and V;, is the unit vector in the viewing direction from the
surface point ]5;9 to camera coordinate frame origin. The
depth data for the calibration image (Fig. 4a) is used to
produce a 3D point cloud from which a surface plane is
identified using A RANSAC plane fitting algorithm [18].
The normal of the identified surface plane is taken as N,
and V can be calculated using the surface point Pp provide
by the 3D point cloud. The fixed position of the light source
point relative to the camera, S , can be expressed as:

S=P,+r,L, (6)

where 7, is the distance between ﬁp and S. The value
of r, is estimated by using the diffused region of the
calibration image shown in Fig. 4c. The diffused region
Qg4, is extracted by identify the image pixels (7, ;) in the
calibration image (2, that have intensity values I,., below
an intensity threshold 7., as,

Qd = {(lvj) € Q|Ir(17]> < Tr} (7)

Least-square fitting of the diffused reflectance model of (4)
and )4 is performed to estimate ry,.
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The number of pixel points in the diffused region set is Vg,
the optimisation parameter to find the value of 7, that best
fits the diffused reflectance model to the diffused region in
the image is t, the intensity value at a pixel point is I,.(z, j),
the distance between the light source and a surface point
is (4, 4, t), and the light source-to-surface incident angle is
0;(i,7,t). Note that T,. and T are selected empirically and
are dependent on the surface roughness, o, of the calibration
surface-type.
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Fig. 4. a) Greyscale of calibration image; b) Specular reflectance region in
calibration image; ¢) Diffused reflectance component in calibration image

C. Diffused Reflectance Estimation

Diffused reflectance values are estimated from the
RGB-D data to train and classify different surface-types.
The diffused reflectance value K4(7,j) for an image pixel
is expressed as:

I.(i,5)r(i, 5)*

Ka(i,j) =
a(i, ) cos 0;(i, 5)

(10)
where the light source-to-surface point angle of incidence is
0;(i,7), the light source-to-surface point distance is 7 (4, j),
and the reflectance intensity is I,.(¢, ). In order to deter-
mine 6;(3, j), the surface normal, N (i, j), of the 3D surface
point corresponding to the image pixel is estimated by
analysing the eigenvectors and eigenvalues of a covariance
matrix constructed from a k-neighbourhood of surrounding
3D surface points [19]. Fig. 5 shows the estimated surface
normal vector, N (i, j), from which 6; (i, j) is calculated as:
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The light source-to-surface point distance, r(i,j), is ex-

pressed as the magnitude of the light source direction vector
L(i,j), as:

0:(i,7) = cos (11)

r(i,4) = 1L, )]l
The reflectance intensity for an image pixel, I,.(¢,7), is
extracted from each colour component of the RGB image.
The outcome of diffused reflectance estimation is a set of
three values (K g, Ks.g, K ) for each pixel that can be
used as the feature vector to classify surface-types.

12)

Fig. 5. Estimated surface normal vector for a surface point

D. Extraction of Colour-based Features

This section describes the extraction of colour-based
features, which can be used as a performance comparison
with the proposed diffuse reflectance features. The RGB
intensity values have been successfully shown to clas-
sify rust from simple background surfaces [20]. However,
illumination variance significantly reduces classification

accuracy when using RGB intensity values as features.
Therefore, the L*a*b* colour space has been proposed in
[21][10] to improve classification accuracy for images with
illumination variance. The L*a*b* colour space decouples
illumination into a luminance component and thus shows
higher robustness towards illumination variance. The L*
component corresponds to lightness ranging from black
to white (0-100), the a* component measures green-
red (negative-positive), and the b* measures blue-yellow
(negative-positive). To calculate the L*a*b* components,
the tristimulus values (X, Y, Z) are used [22].

L* = 116f (;;()) — 16 (13)

conli () () s
() (5] o

e ()= { £ 00

For this paper, the RGB and the L*a*b* colour space
are used to provide a comparison with the proposed dif-
fused reflectance features. An RGB-based feature vector is
produced directly from the intensity values of each RGB
colour component to demonstrate the effect of varying
illumination on classification accuracy. A second feature
vector is produced using the colour component a* and b*
from the L*a*b* colour space. The feature vector using a*
and b* is intended to demonstrate improved tolerance to
illumination variance over the RGB-based feature vector.

E. Multi-class Support Vector Machines

In order to classify features into a set of known classes, a
supervised classification technique is applied. The support
vector machine (SVM) is a popular classifier and has been
applied in various image recognition tasks [7][23]. It has
been shown to robustly perform (two-class) classification
using a limited training data set. However, a multi-class
SVM classifier is complicated to formulate and can be
intractable. To achieve multi-class classification with SVM,
the approach of combining several binary SVM classifiers
is used. Several approaches are available [24], includ-
ing: one-versus-all method using winner-takes-all strategy
(WTA-SVM), one-versus-one method using max-wins vot-
ing (MWV-SVM), and error correcting output codes with
pairwise coupling by combining posterior probabilities of
individual SVMs PWC-PSVM. An empirical study compar-
ing the different approaches concludes that WTA-SVM and
MWV-SVM are competitive with no clear superiority, while
PWC-PSVM consistently outperforms these two methods.

For this paper, we have chosen to use an implementa-
tion of PWC-PSVM described in [25] to perform pixel-
wise classification of different surface-types in an image.
Three separate multi-class SVM classifiers are trained using
the feature vectors; (Kg4r,Kic,Kip). (R,G,B) and
(a*,b*). A limited training data set has been intentionally



used to train the classifier. The dataset does not represent
the whole range of lighting variance for the surface-type
classes. Therefore, no data scaling is applied to the dataset
before training. The classification outputs from each clas-
sifier are compared to provide a performance comparison
between the feature vectors.

III. EXPERIMENTS AND RESULTS
A. Experiment Setup

The experiments presented in this paper uses an RGB-
D sensor package as shown in Fig. 6; consisting of a
Microsoft Kinect, a Pointgrey firefly camera with a 6 mm
lens, and a 160 LED array light source. Depth images
are collected from the Kinect and 640x480 pixel RGB
images are collected using the firefly camera with fixed
settings for: gain, brightness, aperture, shutter speed, and
white balance. Extrinsic calibration is performed between
the Kinect and the firefly camera to obtain a homogeneous
transform matrix between the two cameras’ coordinate
frames.

Fig. 7 shows the experimental environment of a mock
bridge channel structure, which contains surface-types in-
cluding: painted surface, blasted surface, rusted surface and
timber surface. From this environment, the training images
used to estimate the reflectance model parameters are col-
lected by positioning the RGB-D sensor package to capture
images containing a single surface plane. Subsequent test
images are from the environment using different view-
points. It is assumed that during the process of capturing
images, the light source intensity remains constant.

S

I Kinect‘ I

Firefly camera

LED light source

Fig. 6. Sensor package: Firefly camera, Kinect, and LED light array

B. Experiment 1

In this experiment, the classifier trained with the pro-
posed diffuse reflectance values, K4, is compared against
the classifiers trained with the RGB and a*b* features.
Test images of the four different surface-types are collected
from the mock bridge structure. Fig. 8 shows how each
test image contains a flat plane of a single surface-type
that is captured under the illumination of a near-field LED
light source. Note that manual contrast enhancement has
been applied to the rusted and blasted surface test images
in Fig. 8 to clearly show the different surface-types for
this paper; the actual classification is performed on the
original unadjusted images. The training image for each
surface-type is captured at a viewing distance of 500 mm

Rusted surfacel | Blasted surfacel |Timber surfacel |Painted surface

Fig. 7. Experimental environment: mock bridge channel structure

and a centre pixel viewing angle of incidence of 0°. A
subset of pixels from the training images is extracted by
taking every 10th pixel along the rows and columns. This
subset is then used to train the classifiers. Three additional
test images are collected for each surface-type at viewing
distances ranging between 500-1000 mm, and viewing
angles ranging between 0—45 degrees angle of incidence
between the centre pixel ray-cast to the surface normal.

The classification results produced by the three different
classifiers are compared to each other. Manual cropping
of the test images is necessary to omit regions with no
available depth data. Fig. 9 shows the results of the K-
based classifier exhibiting a misclassified band (yellow) on
the lower portion of the images due to incomplete depth
data for the RGB image. Fig. 8 shows that cropping is
also necessary in test Samples 2 and 3 for the rusted and
blasted surfaces. This cropping removes unrelated surface-
types in the image since there is inadequate surface area
with which to fill the whole image frame. Table I shows the
classification accuracy results for each image. Training data
resubstitution validation shows a classification accuracy of
greater than 90% for K, and a*b*. Overall across all test
images, K4 demonstrated the highest accuracy with greater
than 96% accuracy for all images. This was followed by
the a*b*-based classifier, which also demonstrated good
performance, and finally the RGB-based classifier showed
the poorest accuracy due to the effect of lighting variance
in the images.

In order to analyse the effect of illumination variance
on classification accuracy, Fig. 9 provides a visualisation
of the painted surface classification results. The colour
scheme used in this figure is: blue = painted surface,
teal = timber surface, yellow = rusted surface, and red =
blasted surface. From the figure, it can be observed that the
classification accuracy deteriorates progressively from the
Training sample through to Sample 3, which corresponds to
the increase in illumination variance. This deterioration is
most prominent in Sample 3 for the RGB features, which
shows a large region of misclassification on the left side
of the image where the light fall-off is most significant.
The results for K; and a*b* also have the same mis-



classification characteristics as RGB, albeit less significant.
The classification results of the other surface-types is ob-
served to have similar misclassification characteristics due
to illumination variance, particularly for the RGB feature
vector. Furthermore, the effect of illumination variance on
feature inconsistency can be observed by comparing the
value distributions of the R colour component and the K,
for the samples of painted surface-type. For the R colour
component, the value distributions of the Training sample
and Sample 3 have mean values of 50.89 and 27.67, and
standard deviations of 19.85 and 14.94, respectively. For
K, the value distribution of the Training sample and
Sample 3 has mean values of 4.6 and 3.7, and standard
deviations of 2.13 and 1.31, respectively. This result shows
that there is less variance in the value distribution for Kg ,
between the Training sample and Sample 3. Therefore,
improved classification accuracy is seen for the classifier
trained with a K, feature vector.

’ Training H Sample 1 H Sample 2 H Sample 3 ‘

Fig. 8. Test samples for Experiment 1

| Painted surface |

| Training || Sample 1 || Sample 2 || Sample 3 |

Fig. 9. Painted surface classification results

C. Experiment 2

In this experiment, the three classifiers are demonstrated
on images containing multiple surface-types and surface
planes. Similar to Experiment 1, the same training images
are used to extract the Kj;, RGB and a*b* feature vec-
tors to train the classifiers. Fig. 10a shows a test image
(contrast enhanced for viewing purposes) classified in this
experiment. Fig. 100 shows the depth image containing

TABLE I
CLASSIFICATION RESULTS OF TEST SAMPLES FOR EXPERIMENT 1

Accuracy %
RGB \ a* b* \ Ky

Painted surface

Training 9390% | 96.21% | 97.70%

Sample 1 7727% | 87.57% | 97.19%

Sample 2 62.43% | 78.13% | 96.90%

Sample 3 59.34% | 76.06% | 96.93%
Timber surface

Training 98.70% | 96.88% | 99.85%

Sample 1 93.08% | 87.93% | 99.96%

Sample 2 84.85% | 81.27% | 99.89%

Sample 3 83.15% | 81.24% | 99.98%
Rusted surface

Training 54.03% | 96.00% | 98.98%

Sample 1 46.34% | 96.355% | 99.58%

Sample 2 30.12% | 95.89% | 98.91%

Sample 3 1599% | 95.89% | 96.87%
Blasted surface

Training 76.14% | 92.27% | 96.41%

Sample 1 85.82% | 95.61% | 98.25%

Sample 2 80.12% | 95.60% | 97.94%

Sample 3 56.51% | 91.93% | 98.36%

the two surface planes that are classified, Fig. 10c shows
the 3D point cloud generated from the depth image, and
Fig. 10d shows the estimated surface normals used for the
calculation of the reflectance values, K.

Fig. 11 shows the visualisation of the classification
results for the image using the same colour scheme used in
Experiment 1. Table II shows the confusion matrices of the
classification results for the image. The confusion matrices
show that the K -based classifier was most successful
in classifying the surface-types with the highest accuracy
across all surface-type classes. The lowest classification
accuracy achieved by the K ;-based classifier was observed
for the timber surface (teal). From Fig. 11, it is shown
that the K ;z-based classifier misclassified part of the timber
surface (teal) as blasted surface (red), resulting in an accu-
racy of 45.14% for the timber surface-type. Comparatively,
RGB and a*b* classifiers both had higher misclassification
of the timber surface with accuracies of 10.69% and 0.04%,
respectively. Furthermore, Table III provides the average ac-
curacy of three additional test images collected at different
viewpoints within the multiple surface-types and surface
plane environment. The results in the table indicates that
on average, K has the highest accuracy followed by a*b*
and finally RGB.

IV. DISCUSSION

The results presented in this paper have demonstrated
that applying depth data to estimate the Lambertian diffused
reflectance values of each image pixel can provide colour
features for improved pixel-wise surface-type classification



(b)

A W e/
A -

© (d)
Fig. 10. a) Experiment 2 test image with multiple surface-types; b) Depth
data; ¢) 3D point cloud; d) Estimated surface normals for surface points
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Fig. 11. a) RGB classification results; b) a*b* classification results; c)
K4 classification results

TABLE II
CONFUSION MATRICES FOR EXPERIMENT 2 SINGLE TEST IMAGE

TABLE III
AVERAGE SURFACE-TYPE CLASSIFICATION RESULTS FOR MULTIPLE
TEST IMAGES

RGB a* b* Ky
Average Timber Accuracy | 12.23% | 0.026% | 44.05%
Average Rusted Accuracy | 14.13% | 80.45% | 82.54%
Average Blasted Accuracy | 54.43% | 91.17% | 96.17%
Overall Accuracy 28.79% | 64.37% | 78.03%

Confusion matrix: RGB

Painted | Timber Rusted Blasted Acc%
Painted 0 0 0 0 n/a
Timber 2 8823 72769 882 10.69%
Rusted 4 59313 269 2 0.45%
Blasted 0 8002 46969 14119 | 20.43%
Confusion matrix: a* b*

Painted | Timber | Rusted | Blasted Acc%
Painted 0 0 0 0 n/a
Timber 187 34 78860 3395 0.04%
Rusted 34 3 47194 12357 | 79.20%
Blasted 428 5925 62737 | 90.80%
Confusion matrix: K

Painted | Timber | Rusted | Blasted Acc%
Painted 0 0 0 0 n/a
Timber 1044 37248 7433 36751 45.16%
Rusted 34 21 47831 11702 | 80.26%
Blasted 1476 0 486 67128 | 97.16%

of images with illumination variance. This paper has ex-
tended on the idea of using reflectance properties to perform
surface-type classification. It has been demonstrated that
it is feasible to use RGB-D data that is collected from a
portable sensor package to improve surface-type classifica-
tion. Experiment 1 demonstrated the approach for simple
images with single surfaces and Experiment 2 demonstrated

the approach for an image captured in a practical situation
of a bridge maintenance environment. Both experiments
showed an improvement in classification accuracy when
using a classifier trained with K reflectance values in
comparison to classifiers trained with RGB and a* b* colour
space features.

The multi-class SVM was chosen to perform surface-
type classification given its strength of handling non-linear
and high-dimensional problems. However, in an application
domain such as per pixel surface-type classification where
a large sample set is processed, the overall performance
benefits of the SVM classifier are reduced. Alternative clas-
sifiers suited towards a large number of sample instances
that can be considered in the future for improving time
efficiency includes a linear-based strategy such as liblinear,
or a deterministic approach such as naive Bayes.

In comparison to a colour conversion approach that
requires only the intensity values of a pixel to perform cal-
culations, the presented approach requires intensity values
and additional geometric parameters in order to perform
calculations. The time required to estimate the necessary
geometric parameters for each pixel including N (4, 7),
0;(i,7) and r(i,7) is currently a limitation for real-time
applications. To classify the 640x480 images that were used
in the experiments, an additional 1-1.5 mins of computation
time was required to generate the K values for all pixels
in the image. Classification time using an SVM classifier
typically required 1 min to generate results. Therefore,
depending on the latency time for an application, the
presented approach may be suitable for online surface-type
classification.

The proposed approach is limited to the classification
of planar surfaces with Lambertian reflectance that can be
illuminated using a light source. Surface-types that will
not work with the proposed approach include transparent
surfaces, highly reflective surfaces and non-reflective sur-
faces. Calculating accurate surface normals for non-planar
surfaces is still a challenging task for a cluttered scene
and in the presence of sensor noise. A potential alternative
strategy is the use of prior surface geometry knowledge
of the environment to perform surface template matching.
By fitting the depth data to an existing library of potential
surface shapes, an accurate distance and surface normal
estimation is possible for each pixel point on the non-planar
surfaces.




V. CONCLUSION

In this paper, an approach to improve surface-type classi-
fication of images containing illumination variance caused
by a single light source has been presented. The approach
uses data collected from a portable RGB-D sensor package
to perform reflectance model calibration and to estimate the
diffused reflectance values of each pixel as classification
features. The diffused reflectance values are tested against
two other colour-based feature vectors (RGB and a* b*)
trained with a multi-class SVM classifier. Experimental
results showed that the diffused reflectance values provided
the highest performance, maintaining accuracy greater than
90% for test images in Experiment 1.

The experimental results of this paper have highlighted
the difficulty of accurately classifying a complex scene
completely from a single observation. Therefore, it is nec-
essary to extend this work into a probabilistic exploration
framework that updates the surface-type belief of an envi-
ronment through repeat observations from different view-
points. This future work will also investigate optimising the
number of observations required to confidently classify the
surface-types in an environment. Further experiments will
be performed in a field environment to test more surface-

types.
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