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Abstract  19 

Cotton aphid, Aphis gossypii Glover, has emerged as a prominent pest in Australian cotton 20 

production, monitoring pesticide resistance including pyrethroids in field populations is 21 

crucial for its sustainable management.  We examined the distribution of kdr resistance in 35 22 

field collected A. gossypii populations and used a TaqMan qPCR assays with pooled samples.  23 

The study demonstrated proof of concept that pooled insect qPCR methodology provided 24 

effective detection with better sensitivity than individual PCR-RFLP genotyping techniques 25 

for the kdr resistance allele. The practical outcome is that routine resistance monitoring can 26 

examine more sites while increasing the likelihood of detecting incipient resistance at those 27 

sites. More importantly, the method is adaptable to any genetically caused resistance and so 28 

not limited to A. gossypii or even insect control. It cannot be overstressed that the ability to 29 

detected resistance at very low frequencies is critical to all sustainable resistance 30 

management. Early detection of resistance provides critical time for the modification of 31 

chemical use prior to potential insecticide control failure. 32 

  33 

Keywords: cotton aphid, melon aphid, resistance detection, pooled aphids, resistance 34 

management 35 

Key message 36 

� Cotton aphid has developed resistance to a range of insecticides in the Australian 37 

cotton production system.  38 

�  There is a need for a quick and sensitive method of monitoring pyrethroid resistance 39 

in field populations, particularly at low resistance allele frequencies. 40 
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�  We developed a TaqMan qPCR assay with pooled aphid samples with better 41 

sensitivity than individual PCR-RFLP genotyping.  42 

� Our method can be adapted to any species and can examine more sites with increased 43 

sensitivity of detecting resistance. 44 

  45 
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 46 

Introduction  47 

Worldwide, the cotton or melon aphid Aphis gossypii Glover is a major pest of many crops 48 

causing damage by direct feeding and facilitating the transmission of plant viruses. In cotton, 49 

significant crop value can also be lost from honeydew contamination of the open boll lint 50 

(Herron et al. 2001). In Australian cotton, A. gossypii has emerged as a significant pest 51 

requiring targeted chemical control (Herron et al. 2001).  Counter intuitively this was due to 52 

an overall reduction in insecticide use associated with transgenic Bt-cotton that controls the 53 

Helicoverpa spp. and other lepidopteran insect species only (Herron and Wilson 2011).  54 

     Since A. gossypii has been targeted strategically for control it has developed resistance to a 55 

range of insecticides including carbamates, endosulfan, organophosphates, pyrethroids 56 

(Herron et al. 2001) and neonicotinoids (Herron and Wilson 2011) in both cotton and other 57 

crops. In cotton, high-level resistance to the organophosphate (omethoate and dimethoate) 58 

and carbamate (pirimicarb) insecticides in A. gossypii caused control failures due to an 59 

insensitive acetylcholinesterase (ACE1) mediated resistance (Herron et al. 2001, McLoon and 60 

Herron 2009). More recently, neonicotinoid resistance was detected in A. gossypii that again 61 

caused control failures (Herron and Wilson 2011).   62 

     In Australian cotton, synthetic pyrethroids are not recommended for A. gossypii control 63 

yet resistance to this insecticide group has been detected (Herron et al. 2001) and is likely 64 

caused by concurrent or coincident selection where chemicals are applied to control other 65 

pests when A. gossypii is also present (Herron and Wilson 2011). Increased metabolic 66 

detoxification and decreased target site sensitivity (of the insect nervous system) are two of 67 

the major mechanisms involved in the development of pyrethroid resistance in many pest 68 

species. For instance, pyrethroid resistance due to metabolic detoxification has been reported 69 



 5 

in fruit fly (Daborn et al. 2002), house fly (Zhu and Liu 2008), and  green peach aphid (Silva 70 

et al. 2012). Target site insensitivity of voltage gated sodium channel (VGSC) was first 71 

identified in house fly  (Williamson et al. 1993) due to a point mutation (Leu1014 to Phe) 72 

within the domain IIS4–S6 region of the para-type VGSC gene. This is also termed 73 

knockdown (kdr) resistance that causes DDT and pyrethroid resistance in insects and other 74 

arthropods resulting from a reduced sensitivity in the sodium channels to the toxin. A second 75 

mutation (Met918 to Thr) near to the S-4-S5 linker in domain II is known to cause much 76 

higher resistance in house flies and so termed the super-kdr mutation (Williamson et al. 77 

1996). The same kdr mutation cause pyrethroid resistance in malaria mosquito (Martinez-78 

Torres et al. 1998) and German cockroach (Miyazaki et al. 1996) and recently also in green 79 

peach aphid (so potentially making it multiple resistant with two or more concurrent 80 

mechanisms) (Martinez-Torres et al. 1999) and cotton aphid (Carletto et al. 2010). Although 81 

pyrethroid resistance in A. gossypii in Australian was reported as early as 2001 (Herron et al. 82 

2001) it was only a recent discovery that the mutation causing pyrethroid resistance in A. 83 

gossypii was attributed to a target site mutation (L1041F) in the voltage gated sodium channel 84 

(Herron et al. 2001, Marshall et al. 2012) and no super-kdr was observed.  85 

     Management of A. gossypii within all Australian cotton is achieved via a complex 86 

integration of several techniques including specific agronomic practices to form an integrated 87 

pest management (IPM) system (Herron and Wilson 2010). Resistance detection and ongoing 88 

monitoring is essential to sustained IPM within agricultural production systems, with such 89 

monitoring traditionally performed by bioassay (Busvine 1971). The method requires live 90 

insects to be exposed to increasing concentrations of pesticide so that probit regressions can 91 

be calculated and toxicity comparisons made, often at the LC50 level (a value that kills 50% 92 

of treated insects) (Busvine 1971). This method, while accurate, can be tedious as the 93 

bioassay requires the manipulation of live insects and strains are often laboratory maintained 94 
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(cultured) for a significant time before the bioassay can be conducted. Molecular methods to 95 

detect resistance are becoming more normal (McLoon and Herron 2009) but those methods 96 

may test a sample smaller than a conventional bioassay (Herron et al. 2001).  97 

     Mechanisms of pesticide resistance include increased production of insect metabolic 98 

enzymes, modification of the pesticide target site by allele mutation or gene amplification 99 

(Van Leeuwen et al. 2010, Bass and Field 2011). For target site resistance mutations, the 100 

detection of resistance allele(s) in an insect population, can be achieved by molecular 101 

methods including: allele specific PCR (Ranson et al. 2000, Liu et al. 2005); PCR restriction 102 

fragment length polymorphism analysis (PCR-RFLP) (Daborn et al. 2004, Cassanelli et al. 103 

2005, McLoon and Herron 2009, Marshall et al. 2012); high-resolution melt curve analysis 104 

(Bass et al. 2007, Pasay et al. 2008); and several others (Kolaczinski et al. 2000, Lynd et al. 105 

2005, Kulkarni et al. 2006). The resistance allele frequency is estimated by genotyping 106 

multiple individuals (samples) from a field population. However, individual genotyping of 107 

large numbers is not cost-effective and bias can arise in the estimate if only small numbers 108 

are genotyped from any one field population. This is particularly a problem when the 109 

resistance allele frequency in the population being tested is low.  110 

     As an alternative to individual genotyping, the resistance allele frequency can be estimated 111 

by quantitative PCR (qPCR) TaqMan SNP assay using  pooled samples (Yu et al. 2006, Chen 112 

et al. 2014). Rapid identification of resistant alleles from pooled insect samples offers 113 

significant throughput improvements for the detection of insecticide resistance and also 114 

makes it easier to monitor large geographic areas.  115 

     We surveyed 35 A. gossypii field populations collected during the 2011-12 Australian 116 

cotton season for kdr mediated pyrethroid resistance. Here we demonstrate a qPCR based 117 
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assay on pooled aphid samples as a sensitive and cost effective alternative to conventional 118 

individual PCR-RFLP.  119 

Materials and Methods  120 

Aphid Collection and maintenance  121 

A. gossypii strains were collected from commercial cotton and horticulture crops (Table 1) in 122 

Queensland (Qld), New South Wales (NSW) and Western Australia (WA) and maintained as 123 

live cultures on cotton (even if not originally collected from cotton) (Herron and Wilson 124 

2011).  Sampling was based on detailed aphid specific methods that required multiple 125 

invested leaves to be collected from several locations (Wilson and Herron 2014).  All strains 126 

tested were collected during the 2011-2012 season and were maintained under insecticide 127 

free conditions in a purpose built insectary isolated individually in insect proof cages (Wilson 128 

and Herron 2014). Strain Mona Park was found susceptible and strain Territ resistant. Strain 129 

Territ was then pressured on an ad hoc basis with 0.0003 mg active ingredient / L lambda-130 

cyhalothrin (pyrethroid) and several days before use as the resistant standard to eliminate the 131 

possibility of reversion. Susceptible Mona Park was confirmed as such prior to use as a 132 

reference susceptible via PCR-RFLP.  133 

< Table 1134 

Resistance allele frequency obtained with PCR-RFLP 135 

Samples were extracted within several weeks of collection months before reversion was 136 

likely (Herron et al. 2001). Aphids used for PCR-RFLP were placed individually into 137 

separate microcentrifuge tubes containing 80 µL of 5% Chelex-100 resin in Millipore water 138 

solution. Aphids were thoroughly crushed using a sterile micropestle and microcentrifuge 139 



 8 

tubes were heated to 56°C for 30 min, and then boiled at 100 °C for 5 min. The samples were 140 

stored at -20°C until required. Aphid samples for qPCR were prepared as for PCR-RFLP as 141 

above but with 200 aphids pooled into one microcentrifuge tube containing 500 µL of 5% 142 

Chelex-100 resin solution.  143 

PCR-RFLP was performed as previously described (Marshall et al. 2012). Briefly, primers 144 

KDR-DP1 5’-TCTTGGCCCACACTTAATCTTT-3’) and KDR-DP4 (5’-145 

CTCGCCGTTTGCATCTTATT-3) (Sigma-Aldrich, Castle Hill, Australia) were used to 146 

amplify a 468 bp fragment, which contained the L1014F mutation. Restriction endonuclease 147 

BstEII (New England Biolabs, MA, USA) was added post-PCR and incubated at 60 °C for a 148 

minimum of 6 hrs. Samples were visualised by gel electrophoresis using 2% agarose (Bio-149 

Rad) and stained with GelRed (Biotium Inc., CA, USA). Resistance allele frequency (RAF) 150 

was calculated by genotyping 20 individual aphids for each population.  151 

Quantitative real-time PCR (qPCR) 152 

A TaqMan® assay was developed  using forward primer 5’-153 

CCATTCTTCTTGGCTACTGTTGTCA-3’ and reverse primer 5’-154 

CCCTAAGTAATACACATTTATGCATTGTCAGT-3’ (Life Technologies Inc., CA, USA). 155 

Dual-labelled probes 5’-FAM-CATACCACAAAGTTACC-3’-BQ1 and 5’-VIC-156 

CATACCACAAGGTTACC-3’-BQ2 (Life Technologies) were designed based on the 157 

sequences of the previously described A. gossypii strains,  those being Went F6 (resistant) 158 

and SB (susceptible) (Marshall et al. 2012). PCR reactions contained 900 nmol forward 159 

primer and reverse primer and 200 nmol susceptible and resistant probes, in 1 × TaqMan 160 

Universal PCR Master Mix (Life Technologies) in a 25 µl reaction volume. Each sample was 161 

set up in triplicate and one negative and positive control was included in each run. Real-time 162 
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PCR was performed in an ABI7500 Real-Time PCR System (Life Technologies) with 10 min 163 

at 95ºC followed by 47 cycles of 15 s at 95ºC and then 1 min at 60ºC.  164 

 165 

Quantification of kdr resistance allele frequency 166 

As pyrethroid resistance in A. gossypii has previously been noted to be heterozygous 167 

(Marshall et al. 2012), a standard curve for quantification of resistance allele frequency 168 

(RAF) was generated by mixing susceptible and resistant aphids (total 20) with predefined 169 

RAF’s of  0.5, 0.475, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.025 and 0.   170 

 171 

Resistance allele frequency was predicted on the transformed fluorescence ratio (k´) at the 172 

inflexion point of a four parameter sigmoid curve (Chen et al. 2014). In brief, the transformed 173 

fluorescence ratio k' is the transformation of the ratio of two fluorescence intensities, when 174 

one fluorescence reaches its inflexion point. k' and four parameters of sigmoid curve, were 175 

estimated by two-step sigmoid curve fitting, using raw fluorescence data. For each standard 176 

point and unknown sample, k' was the average of the triplicated PCR reactions and the CV 177 

was <5%. A prediction equation was built by using k' and standards of known RAF. As 178 

described by Chen et al. (2014) there were four samples shared between runs for 179 

normalization of multiple qPCR runs.  180 

 181 

Results  182 

Pyrethroid resistance detected by PCR-RFLP  183 
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Consistent with the previous study of Marshall et al. (2012) using PCR-RFLP, we found all 184 

aphids with L10141F resistance allele to be heterozygous (Table 1). Of the six field 185 

populations with resistant alleles, two were from NSW (Wisemantle and Wyadringah) and 4 186 

from Qld (Alcheringa, Bore Paddock, Territ and Zagazig). In contrast, no resistance alleles 187 

were detected in any WA collection (Table 1). Resistance allele frequency ranged from 0.05 188 

in strain Wyadringah to 0.48 in strain Wisemantle. As kdr resistance in A. gossypii has 189 

always been observed as heterozygous, a RAF of 0.48 equates to approximately 95% of 190 

aphids tested being pyrethroid resistant.  191 

Pyrethroid resistance detected by qPCR with pooled aphids   192 

The prediction equation was based on a sigmoid function between transformed fluorescence 193 

ratio (k´) and known RAF standard (Table 2).   To evaluate the sensitivity of the qPCR assay, 194 

we estimated the average standard deviation of the constructed RAFs three replicates to be 195 

0.008 and subsequently set our sensitivity when testing field strains at a conservative 0.024. 196 

Using this conservative level of significance we identified the L1014F allele in 5 additional 197 

strains (Table 1). Additional strains identified as pyrethroid resistant included 3 from NSW 198 

(Carnarvon F3, Carrington and Springfield) and 2 from Qld (Balondale F3  and Boonal 199 

Dryland). Furthermore, strain Burgorah Clo from Qld was identified as pyrethroid resistant 200 

by qPCR while the PCR-RFLP genotyping failed. Unfortunately, PCR-RFLP analysis could 201 

not be repeated on this strain due to culture failure.  202 

< Table 2203 

Discussion 204 

Pyrethroid use in Australian cotton was once a mainstay choice for insect control until 205 

insecticide resistance was linked to control failure during 1983 in the major Australian cotton 206 
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pest species Helicoverpa armigera (Hübner) (Gunning et al. 1984). Resistance management 207 

based on chemical alternation and use restrictions was implemented slowing pyrethroid 208 

resistance but frequencies gradually increased until industry was on the verge of crisis 209 

(Forrester et al. 1993). It was not until the introduction of transgenic Bt-cotton in 1996 (that 210 

controlled H. armigera) were Australian cotton growers truly able to embrace IPM as a 211 

control tactic that eventually resulted in a substantial 85% reduction in pesticide use 212 

(Constable et al. 2011). Ironically, that decline in insecticide use in Bt-cotton allowed 213 

secondary pests such as whitefly, mirids, and aphids to survive, that when targeted for 214 

control, again caused resistance (Herron et al. 2001, 2011). 215 

 Pesticide resistance monitoring is an integral part of the successful maintenance of  IPM of  216 

A. gossypii in Australian cotton (Mass et al. 2014). Despite pyrethroids not being specifically 217 

targeted against A. gossypii in Australian cotton, pyrethroid resistance is well established in 218 

A. gossypii.  Pyrethroid resistance in Australian A. gossypii was detected via bioassay and it 219 

was not until very recently that molecular based methodology was developed to detect the 220 

kdr-associated L1014F polymorphism (Marshall et al. 2012). The reasons for the 221 

polymorphism being common in Australian A. gossypii are complex and probably include 222 

non-cotton plant species such as melons hosting A. gossypii that do receive pyrethroid sprays 223 

for A. gossypii control. In fact, a recent genetic structure study of A. gossypii in Australia 224 

showed weak host plant specialisation and many plant species could serve as refuge plants for 225 

A. gossypii.(Chen et al. 2013).  However, it is also likely that the kdr resistance detected in A. 226 

gossypii is maintained by the use of pyrethroids targeting other insect pest species in cotton 227 

with A. gossypii experiencing co-incidental or concurrent selection (Herron and Wilson 228 

2011).   229 
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By using qPCR rather than PCR-RFLP we were able to identify 4 additional A. gossypii 230 

strains exhibiting low-level kdr resistance which were not previously detected. We consider 231 

the small sample-size of the individual genotyping PCR-RFLP method is the most likely 232 

reason for the difference in sensitivity in population level between methods, especially when 233 

the resistance allele frequencies fall below 5%. On average, under the RFLP-PCR scenario, 234 

only 2 aphids will be carrying the resistance mutation in a 20 aphid sample so the likelihood 235 

of a false negative is high. Therefore when the resistance allele frequency is low, the qPCR 236 

with a pool of 200 aphids provides a more robust and sensitive prediction. In addition, the 237 

pooled qPCR method reduced the number of PCRs required to estimate the resistance 238 

frequency for each field population. Hence it is possible to monitor more sites/areas as the 239 

principal cost of these techniques is PCR-based reagents. Cost-effective and accurate 240 

methods could potentially allow more frequent resistance monitoring and increase the 241 

likelihood of detecting incipient resistance.   In addition to the proof of concept that qPCR 242 

improves the chance of resistance detection in A. gossypii (or any other species), the ability to 243 

significantly and cost-effectively increase sample size tested has profound ramifications for 244 

resistance management generally. For example, Australian cotton (and many other 245 

agricultural systems) relies heavily on the glyphosate herbicide for weed control and the 246 

threat of resistance to it has caused an integrated pest management system to be implemented 247 

(Mass et al. 2014). The qPCR methodology described here is adaptable to glysophate and so 248 

can be used to monitor glysophate resistance in weeds associated with cotton. It cannot be 249 

overstressed that the ability to detected resistance at very low frequencies is fundamental to 250 

sustainable management because it can give early warning prior to failures and provide 251 

critical time to modify chemical use within the management system. For a sustainable 252 

integrated pest management system, we recommend the use of qPCR routinely to monitor kdr 253 

resistance. However, it is still desirable to occasionally perform complementary pyrethroid 254 
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bioassay as the current qPCR assays only detect the known L1014F kdr mutation and 255 

pyrethroid resistance can arise from increased detoxification enzyme activity or other 256 

mutations in VSSC gene. For that reason it would also be desirable to sequence the VSSC 257 

gene if pyrethroid resistance is detected via bioassay if qPCR did not detect the kdr resistance 258 

allele. This procedure will identify if there is a new mutation in the VSSC gene or mutations 259 

in the primer region which can be beyond the sensitivity of the current qPCR method. 260 

Further, the DNA extract from 200 aphid can be used for detect other resistance alleles such 261 

super-kdr.  262 

     In conclusion, the kdr resistance allele appears widespread in both Australian horticultural 263 

and cotton growing regions with resistance frequencies in individual strains ranging from low 264 

to high. Resistance management implications are significant because cotton in the vicinity of 265 

sprayed horticulture may be negatively affected by those sprays while the inadvertent co-266 

incident selection of A. gossypii within cotton may again adversely affect future control 267 

options. Quantitative PCR from pooled aphid samples can be used to monitor pyrethroid 268 

resistance in field populations in support of IPM with improved precision compared to PCR- 269 

RFLP. The methodology is not limited to aphids or even insects but adaptable to any species 270 

that develops resistance. 271 
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Table 1. Resistance allele frequency (RAF) in the 2011-2012 Australian cotton season 

Strain Location Crop 
RAF 

(RFLP)1 k' 
RAF 

(qPCR) 
Carnarvon F3 northern inland, NSW Cotton 0.00 0.164 0.032* 
Carnarvon Vol.    northern inland, NSW Cotton 0.00 0.118 0.015 
Carrington   northern inland, NSW Cotton 0.00 0.179 0.035* 
Springfield northern inland, NSW Cotton 0.00 0.162 0.031* 
Wisemantle northern inland, NSW Cotton 0.48 0.565 0.485 
Wyadringah northern inland, NSW Cotton 0.05 0.148 0.025 
Alcheringa Darling Downs, QLD Cotton 0.08 0.134 0.020 
Araluken   Darling Downs, QLD Cotton 0.00 0.103 0.011 
Arrawatta Darling Downs, QLD Cotton 0.00 0.136 0.021 
Boonal Dryland Darling Downs, QLD Cotton 0.00 0.179 0.038* 
Boonal Irrigation Darling Downs, QLD Cotton 0.00 0.110 0.013 
Budleah Darling Downs, QLD Cotton 0.00 0.108 0.013 
Eumorella Darling Downs, QLD Cotton 0.00 0.132 0.020 
Fairview Darling Downs, QLD Cotton 0.00 0.119 0.016 
Overflow Darling Downs, QLD Cotton 0.00 0.120 0.016 
Territ Darling Downs, QLD Cotton 0.38 0.540 0.463 
Waltons Darling Downs, QLD Cotton 0.00 0.106 0.012 
Anderson Fitzroy, QLD Cotton 0.00 0.122 0.017 
Griar 148 Fitzroy, QLD Cotton 0.00 0.127 0.018 
Mona Park   north QLD Cotton 0.00 0.111 0.013 
Balondale F3   south west QLD Cotton 0.00 0.151 0.025* 
Balondale Vol.   south west QLD Cotton 0.00 0.084 0.007 
Bore Paddock south west QLD Cotton 0.08 0.263 0.098 
Brookfield Clear south west QLD Cotton 0.00 0.133 0.020 
Brookfield Trees    south west QLD Cotton 0.00 0.126 0.018 
Burgorah Clo.   south west QLD Cotton - 0.241 0.078* 
Burgorah Dry   south west QLD Cotton 0.00 0.128 0.018 
Clyde south west QLD Cotton 0.00 0.124 0.017 
Doondi 1   south west QLD Cotton 0.00 0.112 0.014 
Doondi 2   south west QLD Cotton 0.00 0.119 0.016 
Zagazig   south west QLD Cotton 0.06 0.267 0.102 
Bothkamp Kimberley, WA Rockmelon - 0.115 0.015 
Bothkamp B Kimberley, WA Pumpkin 0.00 0.123 0.017 
Chilman Kimberley, WA Zucchini 0.00 0.132 0.020 
Pacific Seeds   Kimberley, WA Cotton 0.00 0.116 0.015 
Tropical Sands Kimberley, WA Watermelon 0.00 0.132 0.020 
Wanhoe Farms   Kimberley, WA Pumpkin 0.00 0.121 0.016 

1: all kdr positive samples genoyped by PCR RFLP were heterozygous wt/kdr 

- Culture failed before PCR-RFLP analysis could take place.  
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Bold font in the RAF column indicates that the field population has the kdr resistance allele present.  

*resistance allele frequency detected by qPCR with 200 pooled aphids, but no resistance allele was observed by 

genotyping 20 aphids by individual PCR-RFLP. Delineation of resistance was considered positive if the 

predicted RAF was within 3 times the standard deviation of the triplicate produced by the susceptible reference 

strain only (1x sd  = 0.024 so 3x 0.008). Using this estimate further investigation is needed if an absolute zero 

allele frequency is required. 

 



Table 2. Transformed fluorescence ratio (k´) and known RAF standard. 

Standard/Sample 

transformed 

fluorescence 

ratio (k') 

CV 

(%) 

RAF 0.50 0.577* 2.16 

RAF 0.475 0.557 1.26 

RAF 0.45 0.533 1.66 

RAF 0.40 0.481 1.68 

RAF 0.35 0.443 0.66 

RAF 0.30 0.410 3.20 

RAF 0.25 0.386 1.15 

RAF 0.20 0.348 3.26 

RAF 0.15 0.315 1.40 

RAF 0.05 0.169 1.80 

RAF 0.025 0.147 0.74 

RAF 0.00 0.105 4.69 

Prediction equation   

y = 0.5856 / (1 + 

EXP(-(k’ - 0.401) 

/0.0945)) - 0.0126 

 

  

R2 = 0.99  

*: the average transformed fluorescence ratio (k´) of triplicates 

CV: coefficient of variation of transformed fluorescence ratio (k´) of triplicates 
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