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An Automated Mechanism to Characterize Wheelchair User
Performance

Bojan Andonovski, Jaime Valls Mird, James Podnand Ross Black

Abstract— This paper proposes a mechanism to derive
quantitative descriptions of wheelchair usage as a tool to aid
Occupational Therapist with their performance assessment of
mobility platform users. This is accomplished by analysing
data computed from a standalone sensor package fitted on an
wheelchair platform. This work builds upon previous propo-
sitions where parameters that could assist in the assessment
were recommended to the authors by a qualified occupational
therapist (OT). In the current scheme however the task-specidi
parameters that may provide the most relevant user informa-
tion for the assessment are automatically revealed through a
machine learning approach. Data mining techniques are used
to reveal the most informative parameters, and results from
three typical classifiers are presented based on learnings from
manual labelling of the training data. Trials conducted by
healthy volunteers gave classifications with an 81% success rate )
using a Random Forest classifier, a promising outcome that sets Fig. 1: Power wheelchair platform with close-up of situa-

the scene for a potential clinical trial with a larger user pool.  tional monitoring sensor package developed for this work.

I. INTRODUCTION

Powered mobility devices (PMDs) such as electric ) _ -
wheelchairs and scooters are popular ambulation devicdieelchair safely and effectively. Past work on the pradilin
used by the aged and disabled population. Adults aged ov@r Wheelchair users [5] has also been done with focus on
50 years are the most prevalent wheelchairs users [1], andailoring aspects of collaborative control [6], and scémar
is estimated that PMD use is 3.5 times more frequent afté&@sed profiling has proven suitable for potentially longrte
the age of 65 [2]. There are over 4.3 million users of poweregP-autonomy [7]. Similar mobility performance measures
wheelchairs in the US alone [2], and it has been reported thBgve also been trialled as a means for comparison with the
10% of powered wheelchair users experience serious diffiidely used Wheelchair Skills Test (WST) with promising
culties with the standard operation of their wheelchair [1]/€Sults [8]. However, this may not be practical for profes-
Furthermore, there are many other individuals who requirdional classification in a clinical setting where many paSe
mobility assistance yet also have other conditions such §Yy be testing for prescription, given possible limitation
visual or cognitive impairments, that hamper their abitty ©N _both tim_e and t_he quantity of available test equipment. A
safely operate a powered wheelchair. These factors coupl@ries of brief, easily repeated tasks draws a closer pérall
with new technologies providing a broad range of wheelchaffurrently practiced clinical methods, as they possessatgyre
options complicate the mobility aid prescription proce3js [ €ase of use for therapists due to their inherent simplicity.
resulting in an increasing need for an outcome measurementin disability healthcare there exist multiple means for
to clinically quantify the necessity of mobility aids froome@ determining performance of mobility aid users such as the
patient to another. WST [9] mentioned above, and the Power-Mobility Indoor

Mobility performance measures have been mostly prdoriving Assessment (PIDA) [10]. The outcomes of these
posed in the literature as a mean to provide some fortests normally depend on the judgment of a qualified occupa-
of shared control of the platform. The work presented akonal therapist (OT) with recommendations [11] on the most
part of the “CanWheel” project [4] shows the outcomessuitable type of mobility aid, if any. Since there are many
of Intelligent Wheelchair System (IWS) developed to helgests with different assessment standards, inconsistering
older adults with cognitive impairments drive a poweredften results even under similar test scenarios [12]. Despi
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Fig. 4: Sample linear velocity profile for 10m task (class 1).
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Fig. 2: Recorded data distribution for 10m runs.
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Fig. 5: Sample linear velocity profile for 10m task (class 4).

data-mined from test runs for an assessment of general user
proficiency. This is done in order to be unrestricted to any
particulars concerning the required assessment outcofmes o
the respective OT, allowing classification to focus solely
on navigational ability. Selection of parameters based on
platform movement is done through machine learning, as
assessments are likely to carry a tendency towards usersrameters possibly less intuitive to interpret may pdgsib
overestimating their own navigational capacities [14]. provide greater insights for classification. After this fre
There is also much work in the literature covering thedrocessing step, a number of discriminative classifiers are
use of machine learning algorithms in a vast range dftudied to analyse the skill of a PMD user.
classification applications from cancer diagnosis cateri ~ The remainder of the paper is as follows: a description
the analysis of soccer videos.Classification analysisutiino of the experimental setup is given in Section II, with an
data mining techniques is also becoming widely adopteautline of the process undertaken for identification of ukef
for healthcare applications given the large bodies of dataeasurements described in Section Ill. Classification expe
to decide what information is most relevant to improvenents are covered in Section IV with results, discussion and
quality of patient care. Support Vector Machine (SVM)concluding remarks in Sections V, VI and VII respectively.
and K-Nearest Neighbors (KNN) have been compared to
guide rehabilitation planning for home care clients [15] fo
instance. However, little has been done to study whether aThis paper is primarily concerned on parameters gathered
machine learning engine could provide support to therapistrom short driving activities as a way to assess the validity
in determining what the most appropriate PMD for a clienof the proposed scheme. As such, three representative tasks
could be, a judgement in itself compounded by the laclwere selected out of PIDAs available 35, namely “180
of agreement in the tests to be carried out to deciphéurn”, “driving on an indoors incline” and “10m forward
such outcome. The incipient results in this paper point tdriving” tasks. An instrumented wheelchair platform (Fig 1
the fact that machine learning approaches have got tleguipped with drive motors and wheel encoders was fitted
potential to serve as a clinical assessment tool to replitet  with a modular sensor package housing an RGB-D camera
judgement of a therapist in efficient and consistent mghilit(MS Kinect), a Hokuyo laser range finder and an Xsens
aid performance classification. To that end, a methodologgertial measurement unit (IMU). The sensors were all con-
is proposed to find correlations between therapist scorés anected with a wheelchair's on-board PC controller. More
guantitative measures that can be evaluated with a stamlaldnformation detailing the wheelchair and sensor package ca
sensor package. Whereas our earlier works [16], [17] welze found in [16].
based on environmental attributes such as alignment with Multiple runs were then recorded from five able users
a bed and other parameters recommended by a therapiwshile they performed the tasks under controlled envirornimen
the work hereby presented proposes the use of paramettaisconditions. Details are collected in Table I. The use of

Fig. 3: Test ramp (6 gradient).

Il. EXPERIMENT SETUP AND DATA COLLECTION
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TABLE |I: Task Datasets _

Experiment | Number of Dataset§ Number of Test Users e
10m drive 78 4 http:/flocalhost:11311/
180° turn 78 5 P
Ramp drive 61 4 Ros Hostname

Use enviranment variables
Remember settings on startup [

Connect.

Show Result

Speed 0.00

Turn 0.00

Fig. 6: Sample 10m run.

Step

Fig. 8: Assessment GUI.

etc) were recorded during the user trials. Figures 6 and 7
depict a sample wheelchair trajectory from a run recorded fo
the 10m and 180 deg task repectively. The arrows indicate
Fig. 7: Sample 180turn. platform position and orientation, with points identifiedke
solid objects by the laser scanner (such as walls) shown in
black. Light-grey areas represent known empty space, and th
nave able bodied users and limited data sets to demonstrgggaining dark-grey space are the unknown regions beyond
proof-of-concept are considered a necessary first stepebeféhe environment sensed by the scanner. Figure 3 shows the
seeking to apply the methods to those with a disability. Ableamp used for ramp task simply for illustration. Figure 8
bodies users will, like those with a disability, exhibit mge  depicts the simple GUI developed with the future assessing
of skill levels that, while neccesarily different from theos staff in mind to be able to conveniently use the system in
with a dissability, can still potentially be identified ugin an intuitive, repetitive and consistent manner with littieed
the proposed machine learning techniques. Nonetheless,f@ familiarization with the underlying robotics hardwave
align the skill set with those of the intended audience, sisefoftware. This was done with the intention to allow for more
were asked to simulate varying degrees of erraticness in théests to be conducted efficiently in a clinical setting. The
driving, and were labelled accordingly. This is of coursénterface is Qt-based and uses a MATLAB pipeline behind-
rather subjective, but in essence so is the task at hand,ats wihe-scenes for classification based on incoming data kitidge
makes a “proficient ’ or “bad” driver of a power mobility from the ROS sensor drivers.
device is hard to discern in itself. But is is precisely the m
capacity of the proposed techniques to capture and model
variability in the data trends, particularly given the asated

. PARAMETER SELECTION

Various features were extracted from the sensor data and
inherent noise in the measurements, that this work is trigng used as an input to the classifier to perform the assessments.

capture. As per the PIDA scale, the four classes range fropfifameter selection was carried out using the Attribute
poor (1) to proficient (4). Figure 2 shows the spread of th§electlon. feature. Wlthm_ the WEKA toolkit [19] to find
datasets collected, with classes distributed roughly lgqua th® most informative attributes first. The evaluator apphoa
and a slightly lesser number of runs deemed to be very pogPMPUtes the intrinsic value of a subset of attributes by

or very good. Two samples of one of the extracted parameter@nsidering the individual predictive ability of each fe,
from the 10m run task, in this case the linear velocity profile?/ond with the degree of redundancy between them. Among

are shown in Figures 4 and 5 for class 1 and 4 respective'ige considergble number of quantitative measurementshwhic
(further details about the parameters analysed will bergiveé-ould be derived from the sensor package data, a number of
in Section 1II). It can be observed how the class 4 profilé‘ey metrics were selected as most representative for each

is relatively smoother despite some peaks towards the eRfithe tasks. Hence, fqr the 10m driving task the following
of the run, whereas the class 1 profile appears more erraBgrameters were used:

throughout. 1) Average linear velocity

All the development was done in the Robot Operating 2) Standard deviation of linear velocity (*)
System (ROS) software environment (www.ros.org). Laser 3) Average angular velocity _
scanner, odometry and IMU data was fused to map and4) Standard deviation of angular velocity (*)
provide wheelchair localization during the runs via the ©) Time to accomplish the task
Hector mapping package [18]. Additional ROS support was Seven metrics were selected for the 180rning task:
developed for each of the tasks and time-stamped parameterd) Average linear velocity
(e.g. linear and angular velocity, proximity to obstacles, 2) Standard deviation of linear velocity



TABLE Il: 10m Task Parameter Statistics

Parameter
1 2 3 4 5
Min 0.36 0.17 0.02 0.01 5.77
Max 1.72 416 0.72 0.33 27.89
Mean 0.72 102 0.27 0.12 15.68
Std Dev. | 0.30 0.65 0.19 0.08 4.85

TABLE Ill: 180° Turn Task Parameter Statistics

Parameter
1 2 3 4 5 6 7
Min 0.07 0.15 0.03 0.07 7.36 5.05 0.04
Max 082 0.72 0.63 032 4513 39.0 0.35
Mean 038 037 024 014 19.83 16.02 0.11
Std Dev. | 0.17 0.13 0.17 0.07 9.73 8.78 0.09

TABLE IV: Ramp Task Parameter Statistics

Parameter
1 2 3 4 5 6 7
Min 0.13 0.11 0.04 0.02 3.19 0.03 3.66
Max 1.74 263 071 068 2689 0.26 7.69
Mean 082 045 025 0.19 10.66 0.08 4.69
Std Dev. | 0.36 0.38 0.20 0.14 4.46 0.04 182
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Fig. 9: Kappa values from parametric transform

3) Average angular velocity

4) Standard deviation of angular velocity (*)
5) Time to accomplish the task

6) Idle time

7) Minimum distance to obstacle
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Fig. 10: Summary of results for best classifier on the 3 tasks.

IV. CLASSIFICATION METHODOLOGY

Two methods were attempted to classify data: the first
relied on time-dependent features such as velocities and
derivations thereof such as mean and standard deviation.
The second approach was to change the domain of the data
via parametric transformations for feature matrices ofgbur
covariance and modified covariance [20] between autoregres
sion orders 2 to 20 (Fig 9). The upper limit of the autoregres-
sion range was manually determined due to the convergence
of kappa values following order 15, which would provide
less useful information. Parametric transforms use orders
of autoregression, a magnitude of derived weighted sum of
previous to current values. In that way the data representat
(domain) is changed into specific time windows, to see if
they can provide greater information compared to a dataset
in its entirety. As the data is interpreted through a différe
representation, a new set of parameters is also obtaineshwhi
may be more beneficial to classification compared to their
time-domain counterparts. Burg, covariance and modified
covariance methods are all autoregression processes with
different approaches for estimating data strength.

All available classifiers within WEKA were trained with
datasets randomly selected from all 4 classes and were
compared using both time-dependent features and feature
matrices from parametric transformation for two approache
to analysis. Each classifier was tested using cross-validat

And a further seven metrics were selected for the rarﬂp WEKA UtI|IZ|ng six ‘folds’: all available data for a task is

driving task:

1) Average linear velocity

2) Standard deviation of linear velocity

3) Average angular velocity

4) Standard deviation of angular velocity (*)
5) Time to accomplish the task

6) Minimum distance to obstacle

7) Gradient of incline

divided into six sets, and a classifier is trained from fives set
and applied to the remaining one. This is repeated for each
set, resulting in six classifiers whose results are aggeegat
for the overall performance of the classifier encompassing
the task’s available data pool.

V. RESULTS
Random Forest (RF) and Support Vector Machine (SVM)

yielded the best results using time-dependent data, amd the
Tables II-IV provide a breakdown of each tasks’ parameeonfusion matrices are shown in Tables V and VI with the
ters. (*) denotes the most informative parameters idedtifiebest classifier's results graphically represented in Edw.
for each of the tasks. The standard deviation of angul&®andom Forest classification uses a number of generated
velocity was the most informative parameter identified fbr a decision maps or ‘trees’, that branch from a random set of
three tasks, being the sole parameter for the ramp antl 18@atures at each decision point. This classifier attempts to
tasks. The 10m driving task also had the standard deviationinimize both its own bias and the spread of data, making
of linear velocity as an additional distinctive metric. it well-suited for classification with a limited number of



TABLE V: Time-domain Random Forest TABLE VIII: Accuracy (%)

10m task 180° turn task Ramp task RF (time) SVM  RF (parametric)
1 2 3 4|1 2 3 4|1 2 3 4 Lom Most Inf. 85 83 72
1116 1 0 0|17 1 0 0]12 1 1 © All Param. 82 82 68
21 212 0 0|1 19 1 1|2 10 1 1 180 © Most Inf. 84 73 73
3/o 1 19 1|0 1 19 1|2 1 18 2 UM 1 All param. 80 70 71
411 2 1 141 0 2 14| 0 0 0 10 R Most Inf. 74 70 70
amp | All Param. 63 61 60
TABLE VI: Time-domain Support Vector Machine ,
PP TABLE IX: Cohen’s Kappa
10m task 180 turn task Ramp task
1 2 3 4 1 2 3 4 1 2 3 4 RF (tlme) SVM RF (parametrlc)
1 15 2 0 0 16 1 1 0 11 2 1 0 10m Most Inf. 0.71 0.62 0.62
2 2 18 1 1 2 15 2 3 2 9 1 2 All Param. 0.67 0.59 0.6
3/ 0 3 16 2|0 1 19 1|1 2 18 2 18¢° turn | Most Inf. 0.69 0.6 0.61
4 1 1 3 13| 0 2 2 13| 0 0 0 10 All Param. 0.68 0.57 0.6
Ramp Most Inf. 0.6 0.59 0.58
TABLE VII: Parametric Random Forest All Param. | 051 0.5 0.49
10m task 18(° turn task Ramp task
1 2 3 4|1 2 3 4|1 2 3 4 . . . .
T4 1 1 01 1 1 110 2 2z o interest For this scenario, the ability of the user to selec
2|1 21 0o o0o|1 17 2 2|2 10 1 1 the appropriate speed with respect to the environment as
31 4 14 211 2 17 1}2 1 18 2 gpserved throught the PIDA test is the OT’s primary sub-
412 2 3 121 1 3 12/ 0 0 0 10

jective criteria in their assessment. The task was resttict
in that work to navigating through a large room, opening a
door and parking alongside a bed. To establish the comelati
features and datasets, as is the case in our experiments. S\{h the methodology hereby proposed, the three tasks were
is aWidely'used classifier that requil‘es manual classificat combined into 61 |Onger, amalgamated runs and labelled
of some data before automatic ClaSSification can proce%sed on an overa” score of Speed Se|ection for each Of
Training results in a set of data that is ‘learned’, whichhe runs. Table XI depicts obtained accuracy and Cohen’s
can then be used as the basis of a statistical model fRappa of the speed selection classifiers for amalgamated run
assigning the remaining data into classes. Table VII showsere are only slightly differences between speed selectio
resultant confusion matrices from the best of the parametrg|assifiers values on accuracies and kappa. The use of most
transformation approaches: a Random Forest classifier fformative parameters to classify the whole performarfce o
Modified Covariance with autoregression order 5. the users run outperformed the accuracy when using only
Table VIII displays percentage accuracies for each methagheed selection for classification. This, point out that the
using the most evaluated parameters in comparison with gdlentified parameters may indeed be helpful to OT staff.
available parameters, for the approaches from the confusio
matrices. Table IX shows values for Cohen's kappa [21], VI. DiscussioN

a measurement of inter-rater agreement for qualitative at- Despite the shortcoming of a limited set of experiments
tributes. This value provides an indication of how far aonducted on able bodies, the results obtained appear promi
classifier varies from the diagonal in a confusion matriing to address a clear need. Selecting the most appropriate
between O (poor) and 1 (perfect). It can be seen that over@MD for a client is a time intensive and financially costly
the Random Forest on time-domain data was the most sysrocess. If therapists can have access to a critical or mini-
cessful classification method for the three assessmerg,taskium data set a client will still obtain the most appropriate
by achieving an averaged 81% classification rate compar@D, spend less time in therapy and give the therapist an
to 75% and 72% for the SVM and parametric Random Foregjpportunity to target those parameters which are critioal f
methods respectively. The parametric transform approa&th ch persons success in operating the PMD. Novice therapists
not perform as well as the time-domain classification dugsing machine learning systems could potentially function
to the narrow distribution of data based on time-domaiat the same level as expert therapists using conventional
parameters. Similarly the SVM's performance was inferiotechniques. Future work will focus on comparing use of
to that of the time-domain Random Forest, owing to thenachine learning systems and current assessment technique
limited number of features for learning. It is also shownn addition, therapists would have an opportunity to examin
in Table VIII that resultant accuracies for only selectihg t users performance “in silico” to determine their skill leve
most informative criteria were unanimously higher than wheand if their skill is improving in response to the therapists
all parameters were used. This outcome is reinforced wiAput. Machine learning systems could assist therapists to
an averaged Cohen’s kappa of 0.67 from the Random Foresitend the evidence-base of their practice, reduce the mmou
method on time-domain data, indicating a strong relevancef time taken to learn and perform mobility aid assessments,

Resulting confusion matrices of a comparison with oummprove the quality of assessments and reflect on the quality
earlier work [17] are collected in Table X. In this caseof their assessment techniques and tools. The professional
the “Speed Selection” of the PIDA test was the task o&nd financial benefits would be considerable.
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