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Abstract—An non-linear Bayesian regression engine for robotic
tracking based on an ultrasonic/RF sensor unit is presented
in this paper. The proposed system is able to maintain sys-
tematic tracking of a leading human in indoor/outdoor settings
with minimalistic instrumentation. Compared to popular camera
based localization system the sonar array/RF based system has
the advantage of being insensitive to background light intensity
changes, a primary concern in outdoor environments. In contrast
to single-plane laser range finder based tracking the proposed
scheme is able to better adapt to small terrain variations, while
at the same time being a significantly more affordable proposition
for tracking with a robotic unit. A key novelty in this work is
the utilisation of Gaussian Process Regression (GPR) to build a
model for the sensor unit, which is shown to compare favourably
against traditional linear triangulation approaches. The covari-
ance function yield by the GPR sensor model also provides the
additional benefit of outlier rejection. We present experimental
results of indoors and outdoors tracking by mounting the sensor
unit on a Garden Utility Transportation System (GUTS) robot
and compare the proposed approach with linear triangulation
which clearly show the inference engine capability to generalise
relative localisation of human and a marked improvement in
tracking accuracy and robustness.

1. MOTIVATION

The use of solutions to track mobile targets has been an
active area of research for the robotics community in a wide
range of application domains. Different successful applica-
tions have been developed for museum guidance [1], hospi-
tal assistance [2],pedestrian tracking [3] or outdoor human
assistance [4]. Human localization and tracking systems are
generally based on laser range finders, camera or combinations
of these [5] [6] [7] [8] [9] [10]. These are well understood
sensors that offer readily available measurements easy to
integrate into standard tracking solutions. However, off-the-
shelf cameras tend to behave poorly when background lighting
conditions change, while standard IR-based RGB-D cameras
become inoperative under direct exposure to sun light, whereas
laser based solutions, while significantly more accurate and
resilient to outdoor lighting conditions, can be rather costly and
potentially unwieldy mechatronic contraptions when design to
operate in uneven terrains.

This work proposes an alternative ultrasonic-based sensor
unit to localize a leading guide relative to a mobile robot for
continuous tracking. This is particular driven by the need of
an affordable yet robust relative localization system for an
assistant robotic gardening unit operating on uneven outdoor
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Fig. 1. Garden Utility Transportation System (GUTS), which is used to assist
gardeners by following them while carrying a heavy dustbin

terrains. The Garden Utility Transportation System (GUTS),
shown in Fig 1, is a differential drive mobile robot system
fitted with an auto-tipping mechanism designed to aid a pro-
fessional landscaper/gardener in transporting and manipulating
garden waste in an outdoor setting, thus preventing them from
repetitive manipulation of large loads in this risky occupational
group. GUTS is designed to be able to follow a user in
an outdoor environment, possibly rough and uneven, at a
reasonable distance not to encroach on the user’s personal
space and working envelop, but still ensuring steady sensor
readings.

Compared to traditional sonar array sensors which use
Time Of Flight (TOF) and triangulation to find the relative
location of a target with respect to the source, Gaussian Process
Regression techniques are proposed in this work to improve the
predicted accuracy of the reference target. This is predicated
on the ability of these Bayesian engines to capture noisy
non-linear relationships. Sonar range finders are notoriously
noisy and difficult to synchronize precisely. Individual sensor
performance tends to differ appreciably due the non-linearity
of their readings, which are hard to capture by standard linear
sensor models. As such accuracy of customary linear trian-
gulation methods based on sonar TOF’s measurements tend
to be generally poor and will only degrade with time. GPRs
on the other hand are trained with real data obtained by the
actual individual sensor, thus training data has already taken
into consideration issues such as poorly synchronized signal
transmission, system delays or subtle difference in individual



Fig. 2. Sonar array on GUTS for ultrasonic signal measurements (above)
and human-carrying POD with transmitting ultrasonic arrangement (below)

sensor behaviours.

The structure of this paper is as follows: in Section II,
related work about human localization and robotic tracking
systems is presented. Section III describes the proposed robotic
sensor unit and associated software framework while Sec-
tion IV outlines the proposed sensor model methodology.
Results from a set of indoor and outdoor experiments will be
shown in Section V to demonstrate the performance of GPRs
in particular when compared with a canonical triangulation
technique. Section VI will present the concluding remarks.

II. RELATED WORK

There are a variety of robot relative human localization
systems reported in the literature. They often differ in the
selection of sensors and features that they extract to accomplish
the tracking task, as well as the actual smoothing technique.
Aggarwal et al. [11] provide an overview of interpreting
and tracking human motions using cameras. The methods
reported extract and track features such as color, texture, or
shape contours. Subsequently, various filtering techniques are
used to estimate the target’s state. Gockley et al. [8] make
use of a laser based approach to implement natural person-
following behaviours in their social robots. Miro et al. [10]
compared laser and camera information in estimating indoor
the human relative localization for tracking. It was clearly
demonstrated how camera based approaches could be easily
influenced by variations in background lighting, even under
steady indoor conditions, whereas laser range finders offered
good performance at relatively high cost.

Beyond the sphere of customary laser/camera based ap-
proaches, other sensors have also been employed in tracking
system. Dang et al [12] utilised an infrared camera to localize
and track the human. Hong et al. [13] made use of structured
lighting range sensors to detecting and tracking people with
a mobile robot. Chang et al. [14] introduced ultra-wideband
(WUB) radar for human detection and tracking. Nakamura et
al. [15] use a microphone array for sound source localization
and human tracking. This approach exploited the speed of
sound and differences in the time of arrival of the human sound
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Fig. 3. Sensor configurations on GUTS and human carrying POD

signals to identify the sound source, but it required a dedi-
cated multichannel synchronized sampling board. Moreover,
it requires that people keep talking to be located accurately.
Hollinger et al. [16] introduced ranging radio for tracking a
moving target.

Wilhelm et al. [17] proposed a sensor fusion technique with
vision and sonar for people tracking with a mobile robot. In
their case sonar was uses to add range information to the visual
content. Kohler et al. [18] also used ultrasonic sensors and
joined particle weighting for vehicle tracking. Ullah et al. [19]
employed a sonar array for tracking a target. In their approach,
the sonar array fires and receives along multiple paths, yet
ultimately their solution can potentially loose performance
accuracy when the target sits outside the path of the sonar
beam directions.

III. ULTRASOUND/RF SENSOR UNIT

The proposed ultrasonic/RF sensor unit modules for the
robotic tracking system are depicted in Fig 2 as mounted
on GUTS. Fig. 3 represents a block diagram of its operating
functionality. It consists of two parts:

o An active sonar emitter array in a human carrying Portable
User Device (POD). This part consists of three sonar
sensors actively emitting ultrasonic pressure waves. No
TOF measurement are computed by these sensors. At the
time of firing, the RF module on the POD also emits a
faster RF signal.

e A passive sensor array attached to the GUTS unit. It
consists of four sonar units equally spaced in front of the
GUTS robot. The sonar sensors operate in passive mode
listening for signal from other sources. An RF module
is used to determine when to start listening for incoming
signals. Once the RF module on the GUTS sonar array
receives the RF signal from the POD indicating the
beginning of ultrasound transmission, it start a timer. The
time lapsed from the timer start until the each sonar unit
measures an incoming signal is the corresponding TOF
for that sonar.

A. Sensor Units

The Sharp SRF02 ultrasonic sensor employed in this work
is shown in Fig. 4, alongside its effective beam characteristics.
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Fig. 4. SRF02 sonar sensor and its beam characteristics.

The SRFO02 exhibits a pattern that covers around 60 degrees in
the horizontal plane. In order to cover a wider area to allow
improved freedom of mobility to the user we employ 3 time-
synchronised SRF02 sensor units in the human carrying POD
in the arrangement shown at the bottom of Fig 3. In such
setup, the sonar sensors in the POD can cover approximately
180 degrees allowing more robust user tracking. An Arduino
in GUTS is connected to the four sonar sensors via the 12C
communication bus and sends TOF data to a control unit via
serial communication.

A pair of 433 MHz RF transmitter/receiver units are used to
time-synchronise firing the sonar sensor array both in GUTS
and the POD, each coordinated by an Arduino microcontroller.
As explained above, there is an alternate sequence of acoustic
listening in GUTS and emitting of the acoustic signal by the
POD unit. An RF module is needed to coordinate the emitting
and receiving protocol of these sonar measurements as relying
on synchronization of system time in both microcontroller is
not accurate enough; the timer/crystal performance on both
microcontroller could not possibly be identical. Under normal
circumstances that would not be a major issue, however given
the speed of sound a small difference in the two timers
(generally in terms of a few micro seconds per second) can
steadily accumulate to bigger value and have a significant big
impact on TOF measurement when typical TOF readings are
in the order of a few thousand micro seconds. Under these
conditions localization drifting is clearly apparent. Compared
to the propagation of acoustic waves in air, the transmission of
RF signals are relatively fast and can be ignored. While there
will be some physical delay in the RF transmission, it can be
regarded as constant and taken into account by the training
model described below.

B. Software Setup

The Robot Operating System (ROS) middleware has been
employed as the software framework for the GUTS platform.
A ROS package was developed with nodes to collect sonar ToF
sensor measurements, computing the GPR prediction, calculate
control commands and sending motor driver messages to the
low-level motor controllers. Standard GUI packages in ROS
such as Rviz provide feedback about the relative location
of the POD-carrying human inferred by GPR at any one
time. Learning the GPR sensor model and on-line regression
was accomplished with the Gaussian Process Machine Learn-
ing (GPML) toolbox in MATLAB , linked to ROS via the

MATLAB-ROS bridge package.
IV. GPR SENSOR MODULE

Given the TOF measurement with the sonar array on GUTS,
the slight delay introduce by the RF transmission and the
different non-linear response performance of each sonar sensor,
standard performance of triangulation method suffers. In this
work we propose a learning mechanism based on non-linear
Bayesian Gaussian Processes to encapsulate the influence of
these factor into a non-linear regression model. A Gaussian
Process is a collection of random variables, any finite number
of which have (consistent) joint Gaussian distributions [20].
The GPR is described with following equations:

f~N(p,X) (1)
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Eq. 1 describes the general form of GPR, where the function
output f is a joint distribution over data mean g and covariance
3.

@, and f represent mean, covariance and output of training
data. p,,>,* and f, represent mean, covariance of test data
and the output prediction. Ef represent the spatial covariance
between training and test data. Eq. 3 describes the predicted
mean g+ E*TE_l(f — p) and covariance X, — E*TE_lE* .

A zero mean function

and squared exponential function with noisy observation
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have been used in our GPR model. We used exact inference
method to do the optimization and obtained the set of hyper-
parameters o¢,¢ and o, fully describing the GPR. d;;s is 1
when i = 4’ and 0 otherwise.

We use the GPR methodology to build a sensor model for
each sonar unit. Four independent GPRs are trained and a sen-
sor models thus derived for each of the four sonars describing
the likelihood of attaining a given sonar measurement at a
certain location. The set up for obtaining training data is shown
in Fig. 5. We captured 20 ToF data points at each (orange) grid
point to training each GPR. The laser range finder was used
to derive the ground truth of the POD (x,y) location.

After training, we end up with the following GPR sensor
models

Y =k(z,x;) = a?exp(—

P(S1|z,y) = GPRi(S1]x,y)
P(S2|z,y) = GPRa(S2|z,y) ©)
P(Ss|z,y) = GPR3(Ss]x,y)
P(Sy|lz,y) = GPR4(S4|z,y)



Fig. 5. GPR training setup: 20 sonar array measurements, each of them
consisting of 4 TOF data taken at each orange point. Exact (x,y) positions
extracted from laser range finder data are used as ground truth in the training
of the GPR based sensor model for each sonar.

where S; to S, are the expected sensor readings at a certain
(x,y) position.

Given an (x,y) location of interest, the GPR provides
four expected sensor readings with corresponding covariances,
making this type of sensor model a suitable proposition to be
employed within the framework of a typical tracking filter such
as particle filters, where the prior probability of each particle
can be effectively weighted by the sensor model to calculate
a posterior probability, as:

Ppost(x,y[S1, S2, S3,84) =
P(S1, 52,53, Salz,y) Pprior (T, y)
P(S1,52,53,54)
(P(S1|z, y) P(Si|z,y) P(Si|z, y) P(Si]z,y)) Pyrior (2, y)
P(Sy,852,853,54)

)

where P(Si|x,y) to P(S4|z,y) would be characterised by
the sensor models derived from the training (Eq. 6). Since S
to Sy are our actual observation, P(S1,S2,55,54) = 1.

After the training phase, a regression function for each of
the four sonar sensor modules will be obtained which estimates
the expected sensor reading and associated spatial covariance
at a certain (x,y) location. The mean and covariance function
for one of the sonars is shown in Fig. 6 and Fig. 7. It can
be observed from the figure that the area where we have a
good spread of training points exhibits a covariance in the
region of 2000 micro seconds or less. This correspond to a
standard deviation around 40 micro seconds, which is within
the operational characteristics of the type of sonar sensors used
in this work. The mean and covariance function for other three
sensors are similar and have been omitted.

In the work presented here for inference an unknown prior
probability P,,;or(z,y) is assumed, represented as a uniform
distribution, hence Eq. 7 can be further simplified as
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Fig. 6. Mean function of GPR for sonar 1
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Fig. 7. Covariance function of GPR for sonar 1
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Fig. 8. Example of the probability density map of a TOF observation data.
The (x,y) position with the highest probability is selected as the predicted
location.

Ppost(x, y|51, S27 SS, 54) =
P(Sy|z,y)P(S1|z,y)P(S1|z,y)P(S1|z,y)

For each observation S; to Sy, a probability density map
such as the one shown in Fig. 8 can be derived using Eq.
8. The (x,y) position with highest probability can then be
chosen as the predicted location for the measured ultrasound
combination. Furthermore, given the measure of uncertainty
associated to our predictions, if an expected sensor readings
for a given ( x,y) falls outside the 1 x o region at the location
with the overall highest probability, the prediction is rejected
as a likely outlier possibly caused by a false sensor reading or
bounced ultrasonics signal.
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Fig. 9. Experimental setup for system validation with the laser range finder
mounted at the front of the vehicle.
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Fig. 10. Experimental result of POD following triangular trajectory.

V. EXPERIMENTAL RESULTS

In order to validate the accuracy of the sonar/RF robotic
tracking system, an experiment was first devised whereby
given a stationary GUTS platform, a person carrying the POD
would walk around the robot following certain trajectory pat-
terns. Laser scans measurements where taken simultaneously
with a Hokuyo laser range finder added to the front of GUTS
as shown in Fig. 9. The true location of the user with respect
to the robot was then derived from the analysis of the laser
range data scans.

Results from the GPR inference are shown in Fig. 10 for
a triangular shape trajectory example. Blue circles represent
GPR regression while red circles are the corresponding ground
truth data gathered from the laser range finder. Green circles
denote predictions based on simple triangulation. From the
figure it can be observed how the accuracy of the proposed
GPR-based sensor model is markedly improved. Figs. 11 and
12 provide a qualitatively indication of the predictive errors
given a triangulation methodology and the proposed GPR
prediction approach in relation to the laser ground truth data.
In both figures the “y” axis represents the user locations based
on the laser data, and the “x” axis corresponds to the values
calculated by triangulation and GPR. It can be observed how
GPR predictions, while not perfect, are able to stay closer to
the ideal 45 degree slope, marked as a red lines in both figures,
while triangulation exhibits a clear shift and wider dispersion.

The above tests were repeated a number of times following
arbitrary trajectories to quantitatively evaluate the accuracy
of the predictions. Fig. 13 and 14 show the inaccuracies of

the predictions along the “x” and “y” axes for two examples
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Fig. 11. Predicted “x” position by GPR/triangulation with respect to laser
ground truth.
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Fig. 12. Predicted “y” position by GPR/triangulation with respect to laser
ground truth.

(the former corresponds to the triangular trajectory depicted
in Fig 10) by depicting the mean predictive error of the
POD with for the proposed GPR approach and the standard
triangulation technique. Given the noisy measurements is not
possible to provide a general absolute error figure, yet a clear
trend of improved accuracy can be observed for the case of
the GPR model when compared with the standard triangulation
methodology in both x and y direction. To a large extent this
is due to the ability of the GPR machinery to accommodate
for the TOF noise in the acoustic data and the sensor non-
linearities.

In order to further demonstrate the ability of the proposed
methodology to be integrated within a robotic platform as a
viable and robust solution to track a human beacon, field tests
of the GUTS platform following a person in a large indoor
environment and in an outdoor setting were also carried out.
The field tests were recorded and have been submitted as
an attachment to this paper. Two accounts of the field trial’s
proceedings are illustrated in Figs. 15 and 16. In the field
tests a simple linear proportional controller in translation and
orientation velocity was implemented, yet that was sufficient to
concluded that under normal walking pace and patterns GUTS
was able to effectively follow the leading person, as shown in
the attached videos.
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Fig. 13.  Mean error in “x” and “y” using triangulation and the GPR based
approach for the triangular trajectory depicted in Fig. 10.
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Fig. 14. Mean error in “x” and “y” using triangulation and the GPR based
approach for a different trajectory experiment.

VI. CONCLUSIONS

An ultrasonic/RF sensor unit able to maintain systematic
tracking of a leading guide with the help of a non-linear
Bayesian regression engine has been presented in this paper.
The proposed GPR approach has been proven to have the
ability to handle the noise and non-linearities associated to
measurements from such sensor package, inherently more
significant than those expected from comparable solutions
from sensors such as cameras or laser range finders. In doing
so, the proposed approach has the fundamental advantage of
being insensitive to background lighting conditions, a primary
concern in outdoor settings, and also better suited to deal
with terrain variations when compared to more costly single
laser based solutions. The accuracy of the proposed technique
has also been proven to compare favourably with a standard
triangulation methodology.
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