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Abstract

Heterogeneous networks are a type of complex network model which can have multi-

type objects and relationships. Nowadays, research on heterogeneous networks has

been increasingly attracting interest because these networks are more advantageous

in modeling real-world situations than traditional networks, that is homogenous net-

works, that can only have one type of object and relationship. For example, the

network of Facebook has vertices including photographs, companies, movies, news

and messages and different relationships among these objects. Besides that, hetero-

geneous networks are especially useful for representing complex abstract concepts,

such as friendship and academic collaboration. Because these concepts are hard to

measure directly, heterogeneous networks are able to represent these abstract concepts

by concrete and measurable objects and relationships. Because of these features, het-

erogeneous networks are applied in many areas including social networks, the World

Wide Web, research publication networks and so on. This motivates the thesis to

work on network analysis in the context of heterogeneous networks.

In the past, homogeneous networks were the research focus of network analysis

and therefore many methods proposed by previous studies for social network analy-

sis were designed for homogenous networks. Although heterogeneous networks can

be considered as an extension of homogenous networks, most of these methods are

6



Abstract 7

not applicable on heterogeneous networks because these methods can only address

one type of object and relationships instead of dealing with multi-type ones. In net-

work analysis, there are three basic problems including community detection, link

prediction and object ranking. These three questions are the basis of many practical

questions, such as network structure extraction, recommendation systems and search

engines. Community detection, also called clustering, aims to find the community

structure of a network including subgroups of vertices that are closely related, which

can facilitate people to understand the structure of networks. Link prediction is a

task for finding links which are currently non-existent in networks but may appear

in the future. Object ranking can be viewed as an object evaluation task which aims

to order a set of objects based on their importance, relevance, or other user defined

criteria. In addition to these three research issues, approaches for determining the

number of clusters a priori is also important because it can improve the quality of

community detection significantly. This thesis works on heterogeneous network and

proposes a set of methods to address the four main research problems in network

analysis including community detection, determining the number of clusters, link

prediction and object ranking.

There are four contributions in this thesis. Contribution 1 proposes a Multiple

Semantic-path Clustering method which can facilitate users to achieve a desired clus-

tering in heterogeneous networks. Contribution 2 develops a Leader Detection and

Grouping Clustering method which can determine the number of clusters a priori,

thereby improving the quality of clustering. Contribution 3 introduces a Network

Evolution-based Link Prediction method which can improve link prediction accuracy

by modeling evolution patterns of objects. Contribution 4 proposes a co-ranking



Abstract 8

method which can work on complex bipartite heterogeneous networks where one type

of vertex can connect to themselves directly and indirectly.

The performance of all developed methods in the thesis in terms of clustering

quality, link prediction accuracy and ranking effectiveness, is evaluated in the con-

text of a research management dataset of University of Technology, Sydney (UTS)

and public bibliographic DBLP (DataBase systems and Logic Programming) dataset.

Moreover, all the results of the proposed methods in this thesis are compared with

state-of-the-art methods and these experimental results suggest that the proposed

methods outperform these state-of-the-art methods in quantitative and qualitative

analysis.
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Chapter 1

Introduction

The world where we are living is interconnected and interrelated: most data such

as objects, groups or components link or interact with each other, thereby forming

numerous, large, interconnected and complex networks. As a result, the analysis of

large-scale, complex networks has gained wide attention nowadays from researchers

in computer science, social science, physics, economics, biology, and so on. This is not

only because network analysis can facilitate people to understand how current net-

works are formed but also because the research can forecast the direction of network

evolution and identify the roles networked objects play.

Recently the advent of Web 2.0 and advances in mobile technologies have acceler-

ated information publishing, sharing, interaction and collaboration across the world,

making the process of collecting, integrating and organising data much easier than

ever before. This drives the emergence and rapid growth of many successful online so-

cial, academic, and information sharing networks. Most of those real-world networks

are heterogeneous, where vertices and relations are of different types (Sun & Han

2012). For example, in academic networks, vertices can be researchers, publications,

14
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venues, and so on. Clearly, treating all the vertices as the same type is unreason-

able as different vertices have different patterns in forming networks and in network

evolution. Thus heterogeneous network modelling is needed to capture the essential

information of those networks.

Till now the theories and methods related to network analysis have been well

researched via both theoretical and experimental studies. However, most current

network analysis research (Scott & Carrington 2011) is based on homogeneous net-

works where vertices are objects of the same entity type (e.g., authors) and links

are relationships from the same relation type (e.g., co-authorship). Most famous

and widely applied network analysis methods are based on homogeneous networks,

such as neighbourhood theory (Lü & Zhou 2011), Katz similarity (Katz 1953), ran-

dom walk (Spitzer 2001), spectral clustering (von Luxburg 2007) and the well-known

PageRank algorithm (Page et al. 1999) as well as many other community detec-

tion (Fortunato 2010) and link prediction (Liben-Nowell & Kleinberg 2007) methods.

This thesis addresses some typical questions of network analysis on heterogeneous

networks in the context of academic collaboration. This is not only because academic

collaboration is a typical social phenomenon but also because available datasets are

open, standard and well-organised thereby providing a benchmark to verify the effec-

tiveness and efficiency of the proposed methods. Those questions covers community

detection, link prediction and ranking objects. Community detection looks for cohe-

sive groups which are also called communities, clusters, cohesive subgroups or mod-

ules in different contexts. Individuals interact more frequently with members within

groups than those outside the group. Link prediction is the problem of predicting the

existence of a link between two entities, based on attributes of the objects and other
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observed links. Examples include predicting links among actors in social networks,

such as predicting friendships, predicting the participation of actors in events and so

on. The objective of ranking objects is to find “important” objects in a given network

by exploiting the structure of the network to order or prioritize the set of objects.

1.1 What are heterogeneous networks?

Traditional networks, also called homogeneous networks, are appropriate and applica-

ble for representing an abstraction of the real world, focusing both on objects and the

interactions between objects. This model cannot only represent and store essential

information about the real world, but also provides a useful tool for mining knowledge

from it.

The concept of heterogeneous networks derives from the concept of homogeneous

networks. The major difference between these types of networks is the types of

vertices and relations. Homogeneous networks can only have one type of vertex and

one typed relation, while heterogeneous networks have no such constraint and are

allowed to have multi-typed vertices, or multi-typed relations or both. On the other

hand, heterogeneous networks inherit most characteristics of homogeneous networks.

These networks can have directed, undirected, weighted or unweighted links, and

different attributes can be attached to vertices.

However, it is challenging to understand the global structure of heterogeneous

networks, because they may have many vertices and edges of different types. In

the literature review, network schemas are often applied to denote heterogeneous

networks. The schema can specify typed constraints on the sets of objects and re-

lationships between objects. These constraints make a heterogeneous information



Chapter 1. Introduction 17

Figure 1.1: An example of how to decompose complex heterogeneous networks

network semi-structured, guiding the exploration of the semantics of networks.

Although heterogeneous network schemas are useful for presenting and under-

standing the global structure of heterogeneous, it is still hard to explore the hidden

patterns of heterogeneous networks based on them due to their complex topological

structures. As objects of different types have different importance, this thesis decom-

poses complex schemas further. For example, Figure 1.1a is the schema of a com-

plex heterogeneous network, representing academic collaboration where researchers

are connected to each other by social relations or are connected to publications and

courses by publishing and teaching relationships respectively.

The complexity of the heterogeneous network is that one type of object can be

connected directly or indirectly via other objects of different types. In the network,

for example, researchers can be connected by social relations directly and linked to

each other indirectly by teaching courses or publishing publications. For this ex-

ample, the object type, researchers, is the major study focus and then it is called
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the target object in the thesis. Once the target object type is determined, schemas

of heterogeneous networks can be further divided into combination of multipartite

heterogeneous networks and homogeneous networks. Multipartite heterogeneous net-

works refer to networks where objects are linked if and only if they are from different

types and there is no link among the same type of objects. The complex heteroge-

neous network (Figure 1.1a) is divided into a multipartite heterogeneous network (

Figure 1.1b) and a homogeneous network (Figure 1.1c). Thus, the research focus of

this thesis lies in multipartite heterogeneous networks.

In the real world, heterogeneous networks are ubiquitous, ranging from social,

scientific, to business applications. Here are a few examples of such networks.

1. Facebook network

Currently, Facebook, as the most successful social media, can also be considered

as a heterogeneous network. This website contains many different types of ob-

jects such as users, companies/organizations, topics, messages and news. These

objects are connected by different relationships. Users can post their status and

send messages. Companies and organizations can release news and users can

share news with their friends.

2. Wikipedia network

The knowledge sharing website Wikipedia can be viewed as a heterogeneous net-

work, containing a set of object types: articles, key words, users and references,

and a set of relation types including editing between users and articles, links

between articles and key words, citations between articles, authorship between

users and articles and so on.
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3. Bibliographic information network

Another example of heterogeneous networks is bibliographic information net-

works. These networks normally have four types of object: publications, venues (i.e.,

conference/journal), authors, and terms (key words of publications). Each pub-

lication has links to a set of authors, a venue, and a set of terms, belonging to a

set of link types. It may also contain citation information for some publications.

That is, these papers have links to cited papers as well as a set of papers citing

the paper. Examples of bibliographic information networks are DBLP 1 and

CiteSeer 2. Both of them are online public bibliography websites and have been

major dataset sources of many network analysis experiments.

Heterogeneous networks can be constructed in almost any domain, such as so-

cial networks (e.g., Twitter, Myspace), e-commerce (e.g., Amazon and eBay), online

movie databases (e.g., IMDB), and numerous database applications. Heterogeneous

networks can also be constructed from text data, such as news collections, by entity

and relationship extraction using natural language processing and other advanced

techniques. This thesis validates methods for heterogeneous networks in the domain

of academic collaboration.

Sun & Han (2012) gives a general definition of heterogeneous network: they can

be denoted as G = (V,E;α, β), where V is the vertex set, E ⊆ V × V is the link set,

α is the set of object types, and β : V �→ α is the mapping function from each vertex

to its type. Each object v (v ∈ V ) belongs to and can only belong to one type of

objects while each link e (e ∈ E) belongs to a particular relation. If two links belong

to the same relation type, the two links cannot have the same starting point and

1http://dblp.uni-trier.de/
2http://citeseer.ist.psu.edu/
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ending point simultaneously. Unlike homogeneous networks, heterogeneous networks

are presented by the network schema which describes the specified type constraints

on the sets of objects and relations between the objects.

1.2 Significance of mining heterogeneous networks

Mining heterogeneous networks is of great importance and necessity. Compared with

homogeneous networks, heterogeneous networks are better for modeling some complex

phenomena without much loss of information. Modeling entertainment activities has

to include many different types of object such as concerts, theaters, cinemas, shopping

malls, beaches and so on. In this case, homogeneous networks are insufficient to cover

all the information. Another application of heterogeneous networks is for representing

abstract concepts such as friendship and academic collaboration.

A difficulty of analyzing those concepts is how to measure relationships of objects

quantitatively. People have to face this difficulty when using homogeneous networks

to model these concepts. By contrary, heterogeneous networks are able to use con-

crete and measurable concepts to represent abstract ones. For example, friendship

is hard to measure directly, but in heterogeneous networks, friendship can be repre-

sented by easily measureable concepts such as common hobbies, classmates in pri-

mary, secondary or tertiary schools, times of meeting per week, and so on. Using

a heterogeneous network to represent friendship, thus, can reflect the real situation

better.

Many methods have been developed for the analysis of homogeneous networks,

especially on social networks, such as ranking, community detection, link prediction,

and object influence analysis. However, most of these methods cannot be directly
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applied to mining heterogeneous networks. This is not only because heterogeneous

relations across entities of different types may carry rather different semantic meaning

but also because a heterogeneous network in general captures much richer information

than homogeneous networks.

Network analysis of homogeneous networks is a mature field and network analysis

research has transferred from homogeneous networks to heterogeneous networks in

recent years. Research of heterogeneous network analysis is becoming a hot topic in

network analysis. The methods developed in this thesis for heterogeneous network

analysis have the potential to be directly applied on homogeneous networks.

1.3 Why study academic collaboration?

Academic collaboration (Katz & Martin 1997) is a prevalent and typical social phe-

nomenon with a long history. Research interest in academic collaboration has much

significance in many aspects.

Investigation into academic collaboration focuses on practical questions. The

study of detecting communities (Xu et al. 2012) and investigating evolutionary pro-

cess of individual communities or whole networks (Lin et al. 2013) are beneficial for

understanding collaboration in academia and for predicting new research directions.

This information is a key for universities and research institutions for setting their

future strategies. Ranking (Zhou et al. 2007) in academic collaboration refers to eval-

uating researcher’ contributions quantitatively. Ranking results are often viewed as

an important index in promotion or research funding allocation.

The research and proposed methods of academic collaboration network analysis
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and theories can easily be applied to other social networks (Sun & Han 2012). Aca-

demic collaboration networks are a type of social networks which are large-scaled,

complex, relatively sparse and change rapidly over time. As a result the experimen-

tal processes and developed techniques are easily applied on social networks in other

domains.

Another important aspect of studying academic collaboration is that datasets

of academic collaboration networks have their own advantages and are more suitable

than those of other domains. Although many famous social websites such as Facebook

and Twitter provide Application Program Interface (API) functions for researchers to

acquire data, the resulting datasets are always different because of choosing different

attributes or time period. By constrast, the data of academic collaboration networks

is public, well-organised and standardised by online bibliographic websites (e.g. DBLP

and CiteSeer) which constitutes the primary reason that so many experiments (Sun,

Yu & Han 2009, Abbasi et al. 2011, Yu et al. 2011, Lu & Feng 2009, Pilkington &

Meredith 2009) verify the effectiveness and efficiency of their proposed methodologies

and theories based on academic collaboration datasets.

Finally, in contemporary society, an increasing number of new products and

projects are the result of academic collaboration, crossing several different disciplines.

The motivation of collaborative research is that it enables humans to gain capability

in solving complex problems, especially, when facing huge and complicated projects

over multiple discipline domains. Meanwhile, academic collaboration improves the

quality of our solutions by analyzing and approaching problems from different as-

pects. The ideas and opinions from these aspects, undoubtedly, make our research
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outputs robust. Furthermore, collaborative research boosts the development of dis-

ciplines as some methodologies generated in one discipline can be applied in others.

In addition, collaborative research provides a platform to share academic methods

and achievement, thereby avoiding repeated work and then saving labor and budgets.

Due to these advantages, academic collaboration analysis becomes an interesting topic

nowadays.

1.4 Research questions

Mining heterogeneous networks is a new emerging research field with many detailed

questions and this thesis aims to answer the following questions with validation in

the context of academic collaboration:

RQ 1: How to acquire a desired clustering when using heterogenous net-

works to model abstract concepts?

Abstract concepts, such as academic collaboration, friendship and love rela-

tionship, are hard to be measured directly which is a reason why it becomes

a hot research topic. Heterogeneous networks are advantaged to model these

concepts by decomposing them into detailed, concrete objects and relation-

ships. For example, academic collaboration can be represented by co-teaching

subjects, co-authoring publications, co-supervising students and co-working

in labs. However, a difficulty is how to combine the different contributions of

relationships for these abstract concepts.

RQ 2: How to determine the number of clusters a priori?
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One notable difference between classification and clustering is that in clas-

sification, people have prior knowledge about the labels of clusters and how

many groups they want. By contrast, for clustering, it is often impossible to

know the number of clusters beforehand. However, the quality of clustering

highly depends on whether the chosen number of clusters is appropriate. This

needs to be investigated in both homogenous and heterogeneous networks.

RQ 3: Should objects be treated individually in link prediction so as to

improve the accuracy?

From observations and experiences, individual objects in networks, especially

humans, show different patterns of connections as networks evolve. Some

change their connections rapidly while others tend to maintain their existing

connections. This interesting phenomenon provides a new aspect to improve

the accuracy of link prediction.

RQ 4: How to rank objects in complex bipartite heterogeneous networks?

Object ranking in complex bipartite heterogeneous networks is not well-

investigated due to their complex topological features. Unlike bipartite het-

erogeneous networks where one-type of objects are connected indirectly by

the other type of objects, complex ones allow one-type of objects connected

to themselves directly or indirectly by the other type of objects. The feature

of complex bipartite heterogeneous extends their applications.
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1.5 Contributions to knowledge

By investigating the above research questions and comparing the results of the pro-

posed methods with state-of-the-art methods, this thesis identifies four main contri-

butions to knowledge:

Contribution 1. Multiple semantic-path clustering on heterogeneous net-

works. Chapter 3 proposes a Multiple Semantic-path Clustering method to

address RQ 1 which is based on the idea that similarities between objects of

abstract concepts are collective similarities from the combination of all possible

semantic paths. The proposed multiple semantic-path clustering decomposes

relations into a set of semantic paths which are a sequence of object types

to represent a meaningful relationship. For example, schoolmate relationship

can be represented by a semantic path (People-School-People) and co-working

relationship can be represented by semantic path (People-Company-People).

Indeed, different weights and combinations of semantic paths generate different

clustering results (Sun et al. 2012). In order to generate a desired cluster-

ing, this thesis assesses the weights of semantic paths, that is, their contribu-

tions to the collective similarity by a few examples provided by users to specify

their clustering preference. Through experimental verification, this proposed

method outperforms spectral clustering with random walk (von Luxburg 2007)

and semantic-path selection clustering (Sun et al. 2013).

Contribution 2. Determining the number of clusters based on leader’s

topological features. To answer the second research question, this thesis

proposes a novel way of determining the number of clusters based on topological
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features of the network. This method is inspired by a perspective in social theory

that a cohesive community is generally constituted by one or several leaders

and their followers (Scott 2012). Then the main idea of the proposed method

is to differentiate leaders from their followers by their topological features. As

leaders may come from the same communities, the method also combines those

nearby leaders based on their semantic paths to form leader groups. Then the

number of clusters is determined by the number of leader groups. Chapter 4

describes the algorithm for segmenting leaders and their followers and verifies

it on a real life university academic collaboration heterogeneous networks. The

performance of the proposed method is compared with another two commonly

used methods for determining the number of clusters based on the structure of

eigenvalues, and it acquires better results.

Contribution 3. Network evolution-based link prediction. The thesis an-

swers RQ 3 by developing a link prediction method based on object activeness.

Dynamic networks by definition change over time, but at a given time point,

they are stable. More specifically, the evolution of a dynamic network can be

considered as a continuous function G = f(t) where G stands for the network

and t is time. This function suggests that the network changes as time changes.

At a time point t = t0, the network is determined, G = f(t0). Then the evo-

lutionary process of a network can be represented by a sequence of networks

at different time points. The closer two time points are, the more accurate the

evolutionary process is modeled. Based on this, the proposed object active-

ness based link prediction method collects a series of snapshots of a dynamic

network at different time points to represent the evolutionary process of the
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network. The pattern of how an object evolves is captured from differences of

their local connectivity among each two adjacent time points and these evolv-

ing patterns of evolution are considered when predicting future connections.

The proposed method achieves higher accuracy of link prediction on a real life

university academic collaboration heterogeneous networks compared with other

robust state-of-the-art link prediction methods in Chapter 5.

Contribution 4. A co–ranking method on complex bipartite heteroge-

neous networks. How to rank different objects simultaneously in a complex

bipartite heterogeneous network is the biggest motivation for proposing the co-

ranking framework in Chapter 6. This novel approach is a flexible framework

based on a set of customized rules, taking into account both directed and undi-

rected relationships. The thesis verifies the proposed method on the DBLP

bibliographic dataset. The approach ranks authors and publications iteratively

and uses the ranking scores of each round to reinforce the ranks of authors and

publications. Unlike traditional approaches for assessing publications based on

a large number of citations, the proposed approach can make a correct ranking

based on a very small set of citations. The method is validated by comparing

the ranking results with another two commonly used methods, PageRank (Fi-

ala 2012) and Hyperlink-Induced Topic Search (HITS) (Berendt et al. 2002) on

DBLP dataset.

1.6 Organisation of contents

The thesis is organised as follows:
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Chapter 1 outlines the general context of this thesis including research aims,

problems and corresponding contributions to knowledge.

Chapter 2 surveys the recent researches of social network analysis related to the

thesis, covering studies of similarity measures, community detection, link prediction

and ranking on both homogeneous networks and heterogeneous networks because

many heterogeneous network algorithms and methods derive from those of homoge-

neous networks. It also highlights the research gaps to motivate the research in this

thesis.

Chapter 3 presents the principles and implementations of the proposed multi-

path clustering to detect communities on the University of Technology, Sydney (UTS)

academic collaboration heterogeneous networks. The experiment verifies the effec-

tiveness and efficiency of the proposed multi-path clustering by comparing it with

spectral clustering and semantic-path selection clustering. The multi-path clustering

can generate better clustering results than the other two methods.

Chapter 4 presents an experiment in the academic collaboration domain to de-

termine the number of clusters before clustering. To determine the accurate number

of clusters, this study takes both social theory and network topological structure into

consideration. The experimental results show that the proposed method is effective

and can facilitate most clustering methods such as spectral clustering to achieve better

clusters by comparing with two eigenvalue-based methods of determining the number

of clusters.

Chapter 5 describes a study to improve the accuracy of link prediction in the

context of heterogeneous networks by involving the process of network evolution.

In social theory, people have different levels of activity in developing or enhancing
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the links over time. Compared with a single snapshot of networks, an historical

dataset is able to provide such information and helpful to capture the evolutionary

patterns of individuals. This chapter applies the proposed method to predict links on

the University of Technology, Sydney (UTS) academic collaboration heterogeneous

networks, showing that the accuracy of considering activeness is much higher than

treating objects equally.

Chapter 6 proposes a co-ranking method for ranking objects in complex bipartite

heterogeneous networks where objects can be connected to themselves directly or

connected via other types of objects indirectly. This novel ranking approach is a

potential flexible because it allows users to define their own rules which are extracted

from topological features. The method is validated by comparing the ranking results

of PageRank and HITs on DBLP and CiteSeer datasets. The co-ranking method ranks

authors and publications iteratively and uses the results of each round to reinforce

the ranking scores of authors and publications.

Chapter 7 concludes the research work presented in this thesis and provides

discussions, lists the strengths and weaknesses of the contributions, and proffers some

further research directions.



Chapter 2

Literature review

Network analysis, a class of data mining, is the analysis of objects and their rela-

tionships within networks. It views objects and their relationships based on networks

where vertices represent individual objects and edges denote relationships or interac-

tions between them, such as friendship, kinship, organizations and so on. Compared

with traditional ways of organizing data (objects attached with attributes), networks

can describe social phenomena, biological functions and information systems better.

In recent years, public and academic interest in network analysis has been growing

rapidly (Brandes & Erlebach 2005).

Network analysis has three fundamental research areas including community de-

tection (Lancichinetti & Fortunato 2009), link prediction (Zhang & Philip 2014) and

object ranking (Berendt et al. 2002) which are the basis for many practical questions,

such as network structure extraction, recommendation systems and searching engines.

Many networks of various kinds, especially social networks, demonstrate a strong

community effect in that objects tend to communicate or interact with objects in

the same community frequently while seldom communicate or interact with those in

different communities. Community detection aims to find the community structure

30
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of a network, which can facilitate people to understand the structure of networks.

Link prediction is a task for finding links which are currently non-existent in

networks but may appear in the future. As many networks are dynamic, predicting

links is a key to understanding network evolution. In some cases, not all links in

networks are observable and they can be hidden due to personal privacy security or

be incorrect due to mistakes in data collection, integration and transmission. Link

prediction can help to fix these issues.

Object ranking can be viewed as an object evaluation task which aims to order

a set of objects based on their importance, relevance, or other user defined criteria.

The most important application of object ranking is in Internet searching engines,

such as Google which ranks webpages by the relevance with user inputs.

In addition to these three research issues, how to determine the number of clusters

beforehand is also important because it can improve the clustering quality signifi-

cantly.

However, most studies of network analysis over these issues (Lancichinetti & For-

tunato 2009, Zhang & Philip 2014, Tsai et al. 2014) focus on homogenous networks

rather than heterogeneous networks. Indeed, heterogeneous networks have a much

more flexible structure and are more appropriate in modelling real-world situations.

This constitutes the major motivation of the thesis.

The major difference between these two types of networks is that homogenous

networks can only have one type of object and relationship while heterogeneous ones

can have many types. The formal definitions (Sun & Han 2012) are given below:

Definition 1 (Homogeneous Networks): For a given network G = (V,E), where

V is the vertex set and E is the edge set. If all vertices in V are identical and all
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links in E are of the same type, then G is defined to be a homogenous network.

Definition 2 (Heterogeneous Networks): A network is heterogeneous if it contains

multiple types of vertices and edges. Heterogeneous networks can be represented as

G = (V,E), where V = (V1 ∪V2 · · · ∪Vn) is the union of vertice sets of different types

and E = (E1 ∪ E2 . . . ∪ Em) is the union of heterogeneous edge sets. Value n and m

are the numbers of object types and relationship types respectively.

Both homogenous networks and heterogeneous networks can be directed, undi-

rected, weighted and unweighted networks. In directed networks, edges have a di-

rection associated with them while in undirected networks, edges have no directions.

For example, considering two vertices v and u, the edge from v to u is represented by

evu and the edge from u to v is represented by euv. In directed networks, evu �= euv

because edges have directions while in directed networks, evu = euv. Weighted net-

works mean edges have weights to stand for the distances between vertices and the

weights of edge evu is generally labelled as wvu.

This review of the literature will group and discuss existing work in the fields of

community detection (Section 2.2), determining the number of clusters (Section 2.3),

link prediction (Section 2.4) and object ranking (Section 2.5) in network analysis.

Before reviewing these topics, this chapter firstly reviews the similarity measures in

networks (Section 2.1) because they are the basis of network analysis research. This

literature review also covers some state-of-the-art methods and validations which are

used to test the effectiveness and efficiency of the proposed methods in this thesis.
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2.1 Similarity measures in networks

Similarity is a very abstract and general concept with different meanings in different

domains, so that there are various similarity measures in different contexts. Tra-

ditionally, the level of object similarity is roughly determined by commonalities of

object attributes but vertex similarity represents how close two vertices are (Brandes

& Erlebach 2005).

Measuring similarities among vertices in networks plays a fundamental role in

network analysis because many methods or algorithms for community detection, link

prediction and ranking are based on it. For instance, it is natural to see that com-

munities are groups of objects which are similar to each other; in link prediction, the

more similar two objects are, the higher the possibility that those two vertices will

link to each other in the future; top ranked objects always contain the same attributes

or topological features.

This section reviews three main approaches for measuring similarity between ver-

tices in homogeneous networks: distance-based similarity measures, neighborhood-

based similarity measures and probability-based similarity measures.

2.1.1 Distance-based similarity measures

In a given network, it is intuitive to measure the similarity between vertices by dis-

tances. The most widely applied one is shortest-path which calculates a path between

two vertices such that the sum of the edge weights or the edge number of this path

is minimized. The major algorithms for calculating shortest paths are the Bellman

(1956) algorithm and Dijkstra (1959) algorithm with time complexity O(|V ||E|) and
O(|V |2) respectively where |V | is the number of vertices and |E| is the number of
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edges. A social network study on personal data privacy (Bonneau et al. 2009) applies

shortest-path to measure the similarities among users in Facebook and then detects

community structure based on user similarities to suggest that leaking personal infor-

mation enables transitive privacy loss. The study confirms that shortest-path is an

effective similarity measure and the experimental results show that if two Facebook

users have a short shortest-path, they tend to have similar profiles. If one of them

leaks his/her profile, the profile of the other user is insecure.

However, a major drawback of shortest-path is that it just focuses on one path.

In fact, for many networks, especially dense networks where the number of edges is

far more than the number of vertices, paths between vertices are often more than

one. Shortest-path just focuses on the shortest one which is sometimes hard to reflect

distances between vertices. This inspires people to consider all paths between vertices

instead of one of them. A typical similarity measure based on this idea is max-

flow (Ahuja et al. 1993) which counts the number of paths between two vertices.

But for this method, there may be a problem that if a network contains a cycle, the

total number of paths between two vertices is infinite because max-flow repeats to

count edges in the cycle. However this problem can be avoided if the weighted sum

or the length of paths is constrained (Even 2011). A study by Newman (2001) on

collaboration networks shows that there is a positive correlation between the number

of all paths and the probability that two scientists will collaborate in the future and

max-flow works better than shortest-path in predicting co-authorship.

Time complexity of distance-based similarity measures are proportionable with

the number of edges in networks which means the computational process takes a long

time in dense networks. This drawback of distance-based similarity measures gives
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rise to the research of neighborhood-based similarity measures.

2.1.2 Neighborhood-based similarity measures

Neighborhood is another important topological feature in networks. The general

idea of these similarity measures is that vertex similarity is reflected by the levels

of their neighborhood overlap. Two vertices are considered to be similar if they

have common neighbors, even if they are not adjacent themselves. Vertices without

common neighbors are considered “far” from each other. Consider two vertices v and

u in a network, the similarity of these two vertices is determined by the overlap of

their neighborhood sets which are represented by Γ(v) and Γ(u). |Γ(v)| is the number

of neighbors of vertex v and |Γ(u)| represents the number of neighbors of vertex u. dv

is the degree of vertex v. Several most widely applied neighborhood-based similarity

measures are given below.

Table 2.1: Summarization of Neighborhood-based similarity measures

Neighborhood-based similarity measures Definition

Common Neighbours (CN) simCN(v, u) = |Γ(v) ∩ Γ(u)|
Jaccard Coefficient simJaccard(v, u) =

|Γ(v)∩Γ(u)|
|Γ(v)∪Γ(u)|

Adamic-Adar (AA) simAA(v, u) =
∑

i∈Γ(v)∩Γ(u)
1

log di

Preferential Attachment (PA) simAA(v, u) =
∑

i∈Γ(v)∩Γ(u)
1

log di

Katz simKatz(v, u) =
∑∞

l=1 β
l · ∣∣pathslv,u∣∣

(1) Common Neighbours (CN) (Caplow & Forman 1950) is the simplest neighborhood-

based similarity. It simply measures the number of shared neighbors.

simCN(v, u) = |Γ(v) ∩ Γ(u)| (2.1.1)
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(2) Jaccard Coefficient (Cheetham & Hazel 1969) emphasizes the shared neighbors

and different neighbors simultaneously. For two vertices, it calculates the pro-

portion of their shared neighbors and all their neighbors.

simJaccard(v, u) =
|Γ(v) ∩ Γ(u)|
|Γ(v) ∪ Γ(u)| (2.1.2)

(3) Adamic-Adar (AA) (Adamic & Adar 2003) refines the simple counting of com-

mon neighbors by assigning the less-connected neighbors more weight.

simAA(v, u) =
∑

i∈Γ(v)∩Γ(u)

1

log di
(2.1.3)

(4) Preferential Attachment (PA) (Barabási & Albert 1999) is commonly used in

evolving scale-free networks where the probability that a new edge is connected

to vertex v is proportional to dv. Then the probability that a new link will

connect v and u is proportional to dv × du.

simPA(v, u) =
|Γ(v) ∩ Γ(u)|

dv × du
(2.1.4)

(5) Katz (1953) is a very interesting similarity measure considering both neighbour-

hood and distance between vertices.

simKatz(v, u) =
∞∑
l=1

βl · ∣∣pathslv,u∣∣ (2.1.5)

where pathslx,y is the set of all l-length paths from v to u and β > 0 is a scale

parameter for the function. Parameter β can be regarded as a radius around

the target vertex and predictors can only fetch neighbors from inside the circle

formed by this radius. A very small β yields predictions much like common

neighbors as the long paths contribute very little to the sum. Due to the fact
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that a network without node attributes can be represented by its adjacency

matrix A, the corresponding matrix for Katz’s similarity is defined, using the

approach in (Liben-Nowell & Kleinberg 2007), as

P = (I − βA)−1 − I (2.1.6)

where A is the adjacency matrix I is the identity matrix.

These similarity measures are effective in both community detection and link pre-

diction. For community detection, a comparative study by Fortunato (2010) inves-

tigates the effectiveness and efficiency of CN, AA, Jaccard Coefficient, PA and Katz

on two community detection benchmark datasets: GN benchmark dataset (proposed

by Girvan & Newman (2002)) and LFR benchmark dataset (proposed by Lanci-

chinetti & Fortunato (2009)). The quality of clustering is evaluated by normalized

mutual information (NMI) (Lancichinetti et al. 2008) which computes the agreement

between two given partitions or between a partition and the ground truth. The ex-

perimental results suggest that both AA and Katz good performance in community

detection followed by Jaccard Coefficient, PA and CN. Katz has the longest CPU

time. For link prediction, Liben-Nowell Liben-Nowell & Kleinberg (2007) system-

atically compared a number of neighborhood-based similarity measures on a social

collaboration network. The experimental results shows Katz and RA outperform AA

and CN in terms of link prediction accuracy, the computational complexity of Katz

is still higher than others though.

From the above studies, Katz similarity measure is effective in community de-

tection and link prediction. An important feature in this similarity measure is to

take all paths between vertices into consideration and assigns paths different weights
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according to their length. Inspired by this idea, this thesis proposes a semantic-path

based similarity measure in Chapter 4.

2.1.3 Probability-based similarity measures

Another category of similarity measures in networks are probability-based similarity

measures. The main idea behind them is that: given a network, there is an agent

walking around on it and if two vertices are similar, the agent can travel from one to

the other in a short time.

(1) Random Walk (RW) (Pearson 1905) counts the number of edges, weighted sum

or time of randomly moving agent from the starting vertex u to the end vertex

v. This count is marked as T (u, v).

(2) Average Commute Time (ACT) (Yen et al. 2009) counts the average number of

edges, weighted sum or time of randomly moving agent from the starting vertex

u to the end vertex v and back to u.

simACT (u, v) =
T (u, v) + T (v, u)

2
(2.1.7)

This similarity is designed for undirected networks where the travelling time

from one vertex to the other sometimes may be quite different from the time of

the reverse trip.

Probability-based similarity measures are effective in finding clusters and predict-

ing links in directed networks compared with neighborhood-based similarity mea-

sures (Liu & Lü 2010). This feature enables probability-based similarity measures

to be applied more in heterogeneous networks because those networks often contain
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directed and undirected edges simultaneously (Noh & Rieger 2004, Vishnumurthy &

Francis 2006, Zhou et al. 2007, Chen et al. 2012).

This thesis applies random walk to measure vertex similarity on heterogeneous

networks in Chapter 3 and Chapter 4 for validating the effectiveness of the proposed

methods.

2.2 Community detection

Many biological, social, technological and information networks are inhomogeneous,

revealing a high level of order and organization. Specifically the attributes of differ-

ent vertices may differ so that some vertices are similar while others are dissimilar.

Meanwhile the degree distribution is broad, with a tail that often follows a power law.

Therefore most vertices have low degrees while some vertices have high degrees. The

unbalanced distribution of edges of networks gives rise to a feature: high concentra-

tion of vertices and edges within some groups and low concentrations between these

groups. This inhomogeneity is named as community structure (Figure 2.1).

The aim of community detection in networks is to identify clusters and, possi-

bly, the hierarchical organization, by only using the information encoded in networks

including the attributes of vertices and topological features. Communities are also

called groups, clusters, cohesive subgroups, or modules in different contexts. Commu-

nity detection is one of the fundamental tasks in both homogeneous and heterogeneous

network analysis. Actually, many social and academic phenomena are to be found

by groups instead of individuals. Finding a community requires identifying a set of

vertices such that they interact with each other more frequently than with those ver-

tices outside the group. A simple example of detecting communities is illustrated in
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Figure 2.1: A simple example of community detection to show that three communities
have been found.

Figure 2.1 where there is a clear community structure with three cohesive groups.

The research on community detection has a long history and it has been well

discussed in different areas. Early research on community detection can be traced

back to the late 1950s and early 1960s. Rice (1928) identified political groups in

a small area based on their voting patterns. This starts to measure how close two

people are in a quantitative way. Although people began to focus on community

detection, without the modern technologies of computers and the Internet, most

researches (Morse & Weiss 1955, Sprott 1958) were done manually.

From the 1970s, work on community detection accelerated with the increasing

availability of computers and large-scale network datasets. Since then, many com-

munity detection methods have been proposed and developed including similarity-

based community detection (Stull 1988), hierarchical clustering (Scott & Carrington

2011), spectral clustering-based algorithms (Fiedler 1973, Donath & Hoffman 1973),

modularity partitioning (Newman 2006) and other community detection methods on

heterogeneous networks (Sun et al. 2013). Similarity-based community detection, hi-

erarchical clustering and spectral clustering-based algorithms were initially proposed
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for homogenous networks and later are extended to heterogeneous networks. This

section reviews these methods and describes how they apply on heterogeneous net-

works.

2.2.1 Similarity-based community detection

In the early stages of community detection research for large-scale networks, most

community detection methods are based on the natural idea that vertices which are

close to each other should be allocated to the same community while those who are

far from each other should be put into different communities. Then many similar-

ity measures are proposed based on topological features for homogeneous networks,

including distance-based similarity (Bozkaya & Ozsoyoglu 1997) which measures the

closeness of two vertices by the number of paths or the sum of path weights between

them such as shortest-path, neighborhood-based similarity (Jarvis & Patrick 1973)

which measures the closeness of vertices by their shared neighbors in networks such as

common-neighborhood, and probability-based similarity (Spitzer 2001) which mea-

sure the closeness of two vertices based on how long an agent takes to travel between

them, such as random-walk. A comprehensive literature review of similarity measures

can be found in Lü & Zhou (2011).

These similarity measures are effective in dealing with different types of networks.

A recent study by Pan et al. (2010) comprehensively compared these three kinds of

similarity measures on a set of benchmark datasets, such as Zachary’s karate club net-

work (Zachary 1977), American college football network (Girvan & Newman 2002),

the dolphin association network (Lusseau 2003) and computer-generated networks

introduced by Lancichinetti et al. (2008). The study demonstrates that for sparse
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networks where the ratio of edge number and vertex number is low, distance-based

similarity works better than neighborhood-based similarity while for dense networks

where the ratio of edge number and vertex number is high, neighborhood-based sim-

ilarity is more efficient. This is because the computational complexity of distance-

based similarity is sensitive to the number of edges and the large number of edges in

dense networks increases the computational complexity of distance-based similarity

dramatically. Probability-based similarity performs better than the other two simi-

larity measures in networks with a clear community structure and works effectively

to find large communities but is weak to find small ones because random travelling

agents are more likely to stay in large communities and seldom travel to smaller ones.

Recently, research of community detection focuses on probability-based and dist-

ance-based similarity measures. This is because as heterogeneous networks have

multi-typed objects and relations, neighborhood-based similarity measures are not

valid. Random walk, one of the famous probability-based similarity measures is ap-

plied to detection communities on heterogeneous networks (Chen et al. 2012, Li & Li

2012, Zoia et al. 2010). These studies impose no constraints when an agent is moving

from one type of vertice to the others, which means different types of vertices and

edges are treated equally. Wang et al. (2013) takes its drawback into consideration

and proposes NEIWalk in their study to overcome it. To capture the differences of

edge types, NEIWalk assigns transition probability to different types of vertices and

the cost of moving from one type of object to the other depends on how often an agent

moves between them. If the frequency is high meaning this these two types of objects

are closely related to each other (e.g. authors and publications in co-authorship), the

cost is low. The method is tested on DBLP dataset and it achieves a high accuracy
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(0.537) in finding communities.

Based on distance-based similarity measures, Sun et al. (2011) propose a novel

similarity measure, PathSim, designed for heterogeneous networks. Given a hetero-

geneous network G, the similarity of two vertices u and v of the same type is defined

as

sim(u, v) =
2path(u, v)

path(u, u) + path(v, v)
(2.2.1)

where path(u, v) is the number of paths between u and v, path(u, u) is the number

of paths between u and u and path(v, v) is the number of paths between v and v.

They fully tested the effectiveness and efficiency of SimPath on Facebook dataset,

Flickr dataset, DBLP dataset and Twitter dataset in the book (Sun & Han 2012).

The experimental results demonstrate that for heterogeneous networks, SimPath per-

formances better in both community detection and link prediction than random walk

and pairwise random walk.

In fact, the major objective of similarity-based community detection methods

on heterogeneous networks is to find accurate similarities among objects. Given

a heterogeneous network, once similarities of target-type vertices are determined,

this heterogeneous network can be transferred into a homogeneous network where

vertices are connected by their similarities. As a result, for the problem of community

detection on heterogeneous networks, these methods often work with hierarchical

clustering and spectral clustering-based algorithms (von Luxburg 2007) to improve

the quality of clusters such as balancing detected communities or achieving global

optimal solutions.
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Figure 2.2: An example of hierarchical tree. Horizontal cuts correspond to partitions
of a network in communities from Newman & Girvan (2004).

2.2.2 Hierarchical clustering

Many networks, especially social networks, display a clear hierarchical structure (Scott

& Carrington 2011). Close vertices tend to form small communities while small

communities are joined into large ones (illustrated in Figure 2.2). Compared with

similarity-based community detection, utilizing this feature is able to acquire more

balanced and globally optimal clustering.

The general process of hierarchical clustering algorithms starts with the calculation

of similarities of vertices and then groups the similar ones. These techniques can be

classified into two categories:

1. Agglomerative algorithms, where clusters are iteratively merged if their similar-

ity is sufficiently high;

2. Divisive algorithms, where clusters are iteratively split by removing edges con-

necting vertices with low similarity.
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Both categories of algorithm are based on an iterative process but refer to opposite

directions. Agglomerative algorithms are bottom-up starting from vertices in a net-

work as separate clusters and ending one cluster. Divisive algorithms are top-down,

the opposite direction. They assume the whole network is one cluster and repetitively

splits large clusters into smaller ones until the smaller clusters are cohesive enough.

Both ways involve a stopping condition such as satisfying a special criterion like a

pre-assigned number of clusters or optimization of a quality function which is used

to measure the quality of clusters (e.g. their modularity).

Since clusters are merged or split based on their mutual similarity, it is essential

to define a measure that estimates how similar clusters are. The general idea for

comparing the similarity of two clusters is based on their distances. For example,

given two clusters C1 and C2, the similarity between two groups is defined as

sim(C1, C2) =
∑

x∈C1,y∈C2

sim(x, y) (2.2.2)

where x is an element of cluster C1 and element y belongs to C2. Function sim(x, y)

is the similarity between x and y.

Hierarchical clustering has many advantages. It has a low requirement a prior

knowledge on the number and size of the clusters and it is compatible with different

similarity measures thereby increasing its feasibility in different domains. There are

many studies of applying hierarchical clustering on homogeneous networks. A typical

study of community detection by hierarchical clustering can be found in Gulbahce &

Lehmann (2008) which aims to detect communities on a set of computer-generated

datasets to verify their proposed method. The method first measures common-

neighbor similarity between vertices and then derives the hierarchical structure of

the network by a top-down approach. After every split, the proposed method checks
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the average modularity of the partition so as to achieve an optimal clustering. Hierar-

chical clustering can also achieve good results on many real-world networks, like the

world airport network (Guimera & Amaral 2004), email exchange networks (Barrat

et al. 2004) and metabolic networks (Sales-Pardo et al. 2007).

Although hierarchical clustering for community detection on homogenous net-

works has worked well, it is seldom applied on heterogeneous networks. This is

because the results of hierarchical clustering highly depend on which similarity mea-

sures are chosen and whether networks have a clear hierarchical structure. On the one

hand, similarity measures in heterogeneous networks are not well researched and this

is a motivation of this thesis to propose a user-guided collective similarity in Chap-

ter 3. On the other hand, heterogeneous networks are complex and it is hard to know

whether it has a clear hierarchical structure beforehand. If there is no clear structure,

the clustering results are different when choosing different starting vertices. Another

problem is that vertices with just one neighbor are often classified as separate clus-

ters. These limit the application of hierarchical clustering to detect communities on

heterogeneous networks. However, spectral-based clustering algorithms do not have

these limitations.

2.2.3 Spectral-based clustering algorithms

As the research on topology of networks progressed, it was realized that community

detection on networks can be cast into a graph partitioning problem. This aims to

divide vertices in a given network into k groups of predefined size so that the number

of edges lying between the groups is minimal. Figure 2.3 presents the solution of the

problem for a graph with twelve vertices and the communities are found if those three
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Figure 2.3: An example of graph partitioning.

edges are removed.

Spectral-based clustering methods are based on the idea of graph partitioning.

The focus is on finding the best cuts of a graph that optimize a certain predefined

criterion function. The first contribution on spectral clustering was a paper by Donath

& Hoffman (1973) who applied the eigenvectors of the adjacency matrix for graph

partitions. In the same year, Fiedler (1973) realized the importance of the eigenvector

of the second smallest eigenvalue of the Laplacian matrix which could be used to

cluster bipartite networks. Since then, spectral clustering has been discovered, re-

discovered and extended many times in different communities (Pothen et al. 1990,

Hagen & Kahng 1992, Shi & Malik 2000, Meila & Shi 2001) and a detailed description

about the historical development of spectral clustering is in von Luxburg (2007).

The core step of spectral-based clustering methods is to build network Laplacian
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Table 2.2: Laplacian matrices

Laplacian matrix Definition

Minimum cut Laplacian matrix Lu = D − A

Ratio cut Laplacian matrix Lr = DT (D − A)D

Normalized cut Laplacian matrix Ln = I −D−1/2AD−1/2

Random-walk Laplacian matrix Lrw = I −D−1A

matrices. Different studies can have different ways to define and build their own

Laplacian matrices. There is a review to summarize different ways of matrices (Chung

1997) and this section describes three major methods. Given a network G with

adjacency matrix A, the three commonly used Laplacian matrices are defined in

Table 2.2 where matrix D is the degree matrix defined as the diagonal matrix with

values d1, d2, . . . , dn on the diagonal, di =
∑n

j=1 aij and aij is the element of A in row

i and column j. Matrix I is the identify matrix.

Different Laplacian matrices represent networks in different ways. The minimum

cut Laplacian matrix (also named unnormalized Laplacian matrix) (Stoer & Wagner

1997) is the simplest and most direct way to construct a partition of the network

for solving the minimum cut problem. However in practice it often does not lead to

satisfactory partitions. The problem is that in many cases, the solution of minimum

cut simply separates one individual vertex from the rest of the graph. Of course this

is not what we want to achieve in clustering, as clusters should be reasonably large

groups of points. One way to circumvent this problem is to explicitly request that

the clusters should be “reasonably large”. The two most common objective functions

to encode this are ratio cut (Hagen & Kahng 1992) and normalized cut (Shi & Malik

2000). In ratio cut, the size of a cluster is measured by its number of vertices, while
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in normalized cut the size is measured by the weights of its edges. The random walk

Laplacian matrix (Meila & Shi 2001) is based on random walks over the network.

The random walk Laplacian matrix can be interpreted as trying to find a partition

of the network such that the random walk stays for long within the same cluster and

seldomly jumps between clusters. It seems that there is no universal Laplacian matrix

and its definition can be tailored user requirements and similarity measures.

The success of spectral clustering is mainly based on the fact that it does not

make strong assumptions on the form of the clusters. As opposed to hierarchical

clustering where the resulting clusters form convex clusters, spectral clustering can

solve very general problems like intertwined spirals. Moreover, spectral clustering can

be implemented efficiently even for large data sets because the major calculation is

concentrated on a matrix calculation which is compatible with parallel computation

in distributed systems (Chen et al. 2011). This algorithm is not dependant on the

initialization and there are no issues of getting stuck in local minima or restarting

the algorithm for several times with different initializations.

Recently, spectral clustering-based studies have covered many areas in both ho-

mogeneous and heterogeneous networks. For homogeneous networks, Thurlow et al.

(2010) identified functionally related prognostic gene sets for head and neck squa-

mous cell carcinoma by applying spectral clustering on microarray data and found

gene sets highly significant for predicting patient outcome by grouping patients and

their genes into different clusters. Krzakala et al. (2013) compared spectral clustering

with different Laplacian matrices in some real world datasets and they found ran-

dom walk based spectral clustering outperformed others. Another study (van Gennip

et al. 2013) applied spectral clustering on a dataset combining social and geographical
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data together and investigated the limitations of this method in the circumstance of

missing social data.

For heterogeneous networks, spectral clustering was firstly applied to bipartite

networks such as word-document data (Dhillon 2001, Ding et al. 2001). These algo-

rithms formulate the data matrix as a bipartite network and seek to find the opti-

mal normalized cut for networks. However, the clusters generated by these methods

contain vertices of both types. The following research aims at clustering different

types of objects into different clusters instead of mixing them. This type of spectral-

based clustering (called co-clustering or bi-clustering) is based on matrix factorization.

Studies (Dhillon et al. 2003, Long et al. 2005, Li 2005) model the co-clustering as an

optimization problem involving a triple matrix factorization. In their experiments,

they build a set of clusters for each type of object and recursively maximize the mu-

tual information between clusters with the same type of objects. A more generalized

co-clustering framework is presented by Zhong & Ghosh (2005) which can combine

with different optimization functions such as modularity and information entropy.

Later spectral-based clustering methods are extended to networks with more than

two types of data objects. Gao et al. (2005) formulated star-structured relational data

as star-structured multi-partite networks and this method allows users to define their

own optimization functions. Another important study was done by Long et al. (2006).

The study proposes a general model of clustering multi-type interrelated data object

simultaneously and the model is applicable to heterogeneous networks with various

structures. The method iteratively clusters each type of data objects and reinforces

the clustering quality of each type by the interactions among objects in different types

until convergence. This method also considers both object attributes and topological
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features at the same time which extends its usage. However, there is no convergence

analysis, such as what kind of networks converge and how fast they will converge.

Till now, spectral-based clustering has become the major and most widely applied

community detection method for both homogenous and heterogeneous networks. A

drawback of recent spectral-based methods for heterogeneous networks which reduces

the efficiency is to cluster different types of objects simultaneously. The multiple

semantic-path clustering proposed in this thesis aims to cluster target object type

instead of all types of vertices. This improves the clustering efficiency significantly.

2.2.4 Modularity partitioning

Modularity partitioning is another class of community detection methods on net-

works. The concept of modularity is proposed by Newman (2004) and it was initially

introduced as a optimal function to define a stopping criterion for hierarchical clus-

tering. In other words, modularity is the goal of community detection. Of course

in different situations the definition of modularity can be different and modularity-

based clustering is an optimal function to maximize values of predefined modularity.

In the survey paper, Newman (2006) summarized and explained different definitions

of modularity and how they affect the clustering results.

The first algorithm developed for maximizing modularity is based on greedy al-

gorithms (Newman 2004). This algorithm is an agglomerative hierarchical clustering

method where vertices with high similarities are joined into small groups and then

small groups are connected to form large ones, thereby increasing the modularity.

The process of modularity maximization is this: it starts from |C| clusters where |V |
is the number of vetices and each cluster has one vertex and edges are not added one
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by one during the procedure. Adding the first edge to the set of disconnected vertices

reduces the number of groups from n to n− 1, so it generates a new partition of the

network. The edge is chosen such that this partition gives the maximum increase

of modularity with respect to the previous configuration. All other edges are added

based on the same principle. If the insertion of an edge does not change the partition,

i.e. the edge is internal to one of the clusters previously formed, modularity stays

the same. A later paper (Clauset et al. 2004) improves the efficiency of Newman’s

method. The previous approach involves a large number of useless operations due

to the sparse adjacency matrix and the revised method is more efficient when using

data structures for sparse matrices.

Although this approach to optimization of modularity tends to form large commu-

nities quickly, it often yields low values of maximum modularity. A study by Danon

et al. (2005) modifies the modularity to this: the merger of two communities depends

on the edge fraction of two communities so as to favor small ones. This trick leads to

a better modularity optima as compared to Newmans original approach.

Currently, modularity works mainly as an index to estimate the quality of clus-

tering in both homogeneous and heterogeneous networks instead of a community

detection method (Dhillon 2001, Dhillon et al. 2003, Long et al. 2005, 2006, Thurlow

et al. 2010, Meng & Kennedy 2012b, Wang et al. 2013). This thesis also applies New-

man’s modularity to evaluate the results of community detection in Chapter 3 and

Chapter 4.
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2.2.5 Other community detection methods on heterogeneous

networks

As community detection on heterogeneous networks has become a topic of huge inter-

ests in network analysis, there are many new approaches developed for heterogeneous

networks.

The work starts from developing new similarity measures based on semantic paths.

Jeh & Widom (2002) proposed a similarity measure, SimRank, to calculate pairwise

similarity between objects in heterogeneous networks. This method is quite similar

to common neighbor similarity measures in homogenous networks and it counts path

numbers of each semantic path between two vertices. Although this similarity measure

treats the contribution of different semantic paths in the same way, it is still applied

by many studies (Jeh & Widom 2004, Fogaras & Rácz 2005, Lin et al. 2006, Tian

et al. 2008, Li et al. 2010). A study by Lizorkin et al. (2010) combines SimRank with

optimization functions so as to improve the quality of clustering. He et al. (2010)

parallelize SimRank to improve its capability of processing large-scale datasets.

Another similarity measures, PathSim, is proposed by Sun et al. (2011). This

method involves a mechanism of semantic path selection through which this method

can choose semantic paths with high contributions. However, PathSim is not appli-

cable to asymmetric paths.

Sun & Han (2013) proposed a novel way to deal with the community detection

problem by combining clustering and ranking approaches. The method is based

on the idea that ranking and clustering can mutually enhance each other because

objects highly ranked in each cluster may contribute more towards an unambiguous

clustering. If an object is ranked high by one cluster, the object is more likely belong
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to this cluster. Their experimental results demonstrate that the accuracy of clustering

results can be significantly enhanced. However, the scale of experimental data is too

small and covers the bibliography of only two areas (Data mining and database) in

the DBLP dataset.

Although there are many community detection methods proposed for heteroge-

neous networks, few of them consider that different users may have different purposes

for clustering. This thesis proposes a multiple semantic-path clustering in Chapter 3

which can select and estimate semantic paths with user guidance in order to achieve

user-desired clustering results.

2.2.6 Community detection validation

As reviewed in the previous sections, there are many algorithms to detect communi-

ties in networks and this requires a comprehensive set of ways to compare or evaluate

them. This section briefly reviews some state-of-the-art approaches for evaluating

community detection methods covering statistical indices, modularity and informa-

tion theoretic-based agreement measures. In this thesis, these approaches are applied

to assess the clustering results in Chapter 3 and Chapter 4.

In community detection, a community is roughly defined as “densely connected”

objects that are “loosely connected” to others. Whether a clustering is “good” or not

is determined by whether the detected communities follow this rule and how closely.

Many evaluation methods are proposed in accordance to this idea but with different

explanations of “internal density” and “external looseness”. For example, “density”

can either be the number of edges, the number of n-cliques or even the total number

of shared neighbors.
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The most straightforward approach to validation is statistical analysis. The qual-

ity of clustering is evaluated by one or several indices. In this way, two independent

functions f and g are introduced, where f is used to measure the “density” inside the

clusters while g indicates the “looseness” among clusters. Till now, many different

indices are proposed based on different definitions of “internal density” and “external

looseness”. Among them, coverage and performance (Scott & Carrington 2011) are

two widely applied indices for evaluating the quality of community detection results.

This thesis applies them to evaluate the community detection results in Chapter 3

and Chapter 4.

1. Coverage is a common index in evaluating quality of clustering and the func-

tion f refers to the proportion of numbers of intra-cluster edges to all edges.

After clustering, every vertice must be allocated into clusters but edges may

exist among clusters. In order to achieve the purpose that edges are dense in

clusters and sparse among clusters, this proportion should be large. In weighted

graphs, this proportion represents the ratio of the sum of edge weights in clus-

ters to the sum of all edge weights. In unweighted graphs, it is the number of

edges. The function g is always zero in this approach.

2. Performance first defines a “correct” and “incorrect” clustering which refers

to the connectivity of vertices. If two vertices are in the same cluster and there

is an edge between them or they are in different clusters and there is no edge

between them, they are labeled as a “correct” clustering. Otherwise, they are

“incorrect”. Based on this, function f is defined as counting the number of

edges in clusters whereas g counts the number of nonexistent edges between

clusters.
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However, the values of these indices are influenced by the number and the size of

communities. A slight difference in the number of communities and sizes may give rise

to a huge differences in indice values. For example, a good division of a network into

communities is not merely one in which there are few edges between communities;

it is one in which there are fewer than expected edges between communities. If

the number of edges between two groups is significantly less than expected, this

means that the division is effective as it shows meaningful community structure. This

idea, that the true community structure in a network corresponds to a statistically

surprising arrangement of edges, can be quantified by using the measure known as

modularity (Newman & Girvan 2004) which is roughly the number of edges within

communities minus the expected number in an equivalent network with edges placed

at random. Indeed, modularity has multiple usages: it was initially proposed to

be a clustering method (Clauset et al. 2004); later it also served as an optimization

approach to improve clustering results by other methods (Newman 2006); and recently

it is often adopted as a evaluation of clustering quality (Shen et al. 2009).

The approach for calculating modularity follows Newman’s formula which was

proposed to work on unweighted networks. Consider a network G = (V,E), the

modularity of this network is

Q =
1

4|E|C
TBC (2.2.3)

where matrix C is a cluster indicator matrix of the network and Ci,j = 1 denotes that

the ith vertex belongs to the jth community. Matrix B is the modularity matrix and

it is defined as

Buv = Auv − dudv
2|E| (2.2.4)

where A is the association matrix and du and dv are the degrees of vertex u and v
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respectively.

The modularity can be either positive or negative, with positive values indicating

the possible presence of community structure. Thus, one can search for community

structure precisely by looking for the divisions of a network that have positive and

preferably large, values of the modularity.

Another way to evaluate clusters involved in this thesis is the information theoretic

agreement measure, Normalized Mutual Information (NMI) (Batina et al. 2011) which

computes the agreement between two given partitions or between a partition and the

ground truth. This evaluation is applied in Chapter 3 for verifying how to acquire a

desired clustering.

Given a network with n vertices, there are two partitions X and Y with x and y

clusters respectively. For partition X, the clusters are labeled as 1, 2, . . . , x while for

partition Y the clusters are labeled as 1, 2, . . . , y. In NMI, partitions are regarded as

the different distributions of vertices. As a result, the normalized mutual information

Inorm(X, Y ) is defined as

Inorm(X, Y ) =
2I(X, Y )

H(X) +H(Y )
(2.2.5)

I(X, Y ) =
x∑

i=1

y∑
j=1

PXY (i, j) log
PX(i, j)

PY (i)P (j)

H(X) = −
x∑

i=1

PX(i) logPY (i)

H(Y ) = −
y∑

j=1

PY (j) logPY (j)

where PX(i) stands for the probability of objects belonging to Cluster i in partition X

and PY (j) stands for the probability of objects belonging to cluster j in partition Y .
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PXY (i, j) is a joint probability, denoting the probability of objects belonging to both

cluster i in partition X and cluster j in partition Y . The measure I(X, Y ) tells how

similar partition X and Y are. The value of NMI is zero when two distributions are

independent and one when they are identical.

Normalized Mutual Information, which is derived from probability theory and in-

formation theory, is a reliable method for measuring the mutual dependence of two

random variables (Paninski 2003). It is applied in many papers (Lancichinetti et al.

2008, Lancichinetti & Fortunato 2009, Blondel et al. 2008) for comparing clustering

quality among different community detection algorithms because of its sound theo-

retical basis and easy implementation.

2.3 Determining the number of clusters

In networks, choosing the number of clusters k in advance is a general problem for

nearly all clustering algorithms and the choice of “right” number of clusters can

improve the quality of clustering substantially because the number of clusters is a

mandatory input parameter of many state-of-the-art and widely applied clustering

methods such as K-means and spectral clustering. There are two main families of

approaches: clustering result-based methods and topological feature-based methods.

2.3.1 Clustering result-based methods

In a real dataset, the number of clusters is often unknown. The simplest method

of choosing the number of clusters is to try different values, and cluster valida-

tion techniques are used to measure the clustering results and determine the best
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value of k (Caliński & Harabasz 1974, Hartigan 1975). These approaches where

the clustering algorithms are repeatedly executed are computationally expensive and

time-consuming. To extend the availability of this idea, Kryszczuk & Hurley (2010)

integrate the process of multiple execution of clustering algorithms and clustering

comparison into a standard, general framework where the framework is compatible

with different clustering validity indices (Maulik & Bandyopadhyay 2002) including

modularity, performance and coverage. These are a group of functions measuring

the clustering quality. Although this proposed method is very effective in finding the

correct number of clusters in benchmark datasets, it is still confined to small datasets.

2.3.2 Topological feature-based methods

Recently with the emergence and rapid expansion of social, biological and biblio-

graphic networks, the problem of determining the number of clusters becomes more

challenging because the traditional approach to repeatedly execute the clustering al-

gorithms is impractical with these large-scale datasets. Then the problem has been re-

considered from the aspect of the clustering algorithms based on topological features.

As presented in the previous section, topological features and community structures of

networks can be understood to some extent through the analysis of their correspond-

ing matrices such as adjacency or Laplacian matrices. From this idea, the number of

clusters is determined by how many eigenvalues are chosen and therefore the methods

in this area are usually based on the eigenvalue structure (Fraley & Raftery 2002).

Cumulative percentage variance (Abdi &Williams 2010) is an accurate method

for determining the number of clusters based on matrices built from networks. As

different eigenvalues contribute differently to the network partition, an intuitive idea
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Figure 2.4: Scree graph

is to choose those important eigenvalues. In spectral-based clustering, smaller eigen-

values are more important than larger ones in terms of network partitioning. Assume

that there are m eigenvalues and the first k smallest eigenvalues are chosen. The

cumulative percentage variance is defined as

C = 1−
∑k

i=1 li∑m
j=1 lj

(2.3.1)

where li is the ith smallest eigenvalue of the Laplacian matrix. However, this method

does not solve the problem completely but transfers it to a new question on how to

choose C.

Another better way to choose k is with a scree graph (Jolliffe 2005). A scree

graph, shown in Figure 2.4, is a plot of eigenvalues associated with vertex indices. In

general, the “elbow point” is the separation and the eigenvalues which are less than

it are chosen. For example, in Figure 2.4, eigenvalues with index 2 should be chosen.

One way to find the “elbow point” is to compare the slope between both sides of
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eigenvalues with the “elbow point” having the maximum value. The slope value is

defined as

S(k) = (lk−1 − lk)− (lk − lk+1) (2.3.2)

where lk is the kth smallest eigenvalue of the Laplacian matrix.

There are many similar methods and examples include ad hoc measures such as

the ratio of within-cluster and between-cluster similarities (Chiang & Mirkin 2010),

information-theoretic criteria (Still & Bialek 2004), the gap statistic (Tibshirani et al.

2001) and stability approaches (Lange et al. 2004).

Although many methods are proposed, it is still hard to give a general answer

to the question of how many eigenvalues to choose as different methods have their

own advantages in different types of networks. For example, the methods based on

the ratio of within-cluster to between-cluster similarities perform better on networks

with a clear community structure. Lange et al. (2004) comprehensively describes the

above methods and explains the different usages of them. The study applies K-means

on 20 randomly generated datasets with different numbers of clusters determined

by different approaches. The performances of the different methods vary when the

generated networks show different topological features like density.

Indeed, choosing which approach is suitable for determining the number of clusters

requires a deep understanding of networks and indeed this information is hard to

retrieve before clustering. However the current researches confirm that determining

the number of clusters from topological features is feasible.

This thesis is inspired to continue to address the problem by considering network

topology and finds that social network theory proposes a completely new idea. In

social science, the reason why social networks tend to have a community structure
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is because different individuals play different roles and roles are reflected through

their topological features (Scott & Carrington 2011). More specifically, some objects

are considered to be more important in terms of topological features than others as

they are the core of groups and the regular members are linked to each other via

them. Those objects with high ranks in significance are defined as “group leaders”

and the number of clusters is highly related to the number of those leaders. The

early research (Sparrowe et al. 2001, Mehra et al. 2006) attempted to detect leaders

via degree centrality as they believed that leaders should have more links with oth-

ers. However, they ignored an important fact that in the real world, core members

sometimes have a high degree-centrality (Abbasi et al. 2011) as well. As a result, the

number of detected leaders is often more than the real number of leaders.

This thesis (Chapter 4), therefore, involves betweenness-centrality (Baglioni et al.

2012) to remedy the methods for searching for leaders because leaders not only have

more connections in clusters but they also often relate with individuals in other clus-

ters and betweenness centrality, that quantifies the number of times a vertex acts as a

bridge along the shortest path between two other vertices, can reflect this character-

istic. Meanwhile, considering the case that sometimes there are two or more leaders

in one potential group, this thesis devises an algorithm to combine leaders when they

are close enough. Beside “group leaders”, this thesis defines “group coordinators”

who mainly take responsibility to connect groups together. For example, in academic

collaboration network, directors of research centers are the coordinators of research

labs. Removing the edges between “group coordinators” in advance may make the

work of community detection much easier. Finally a novel community detection ap-

proach based on the concept of “roles” is proposed. Because leaders are detected
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Figure 2.5: SVM aims to draw a boundary among objects and those objects in the
same side are classified into one cluster (Cortes & Vapnik 1995).

by Support Vector Machine (SVM) based on training datasets, next section briefly

reviews SVM methods.

2.3.3 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a kind of binary classification method (Moya &

Hush 1996). This classification method tries to identify objects belonging to two

classes amongst all objects, by learning from a training set containing positive and

negative examples of objects. According to the problem of determining the number

of clusters, this thesis applies SVM to find leaders from all objects.

In binary classification methods, Support Vector Machine (Cortes & Vapnik 1995)

of them outperform others in terms of generalization. This method was initially

proposed in 1995 but the concept could be traced back to 1979 (Cortes & Vapnik

1995).
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Support Vector Machine aims to find the optimal boundaries between two groups

of objects and these optimal boundaries are decided by involving different kernel func-

tions. Unlike traditional methods which minimize the empirical training error, Sup-

port Vector Machine minimizes an upper bound of the generalization error through

maximizing the margin between the separating hyperplane and the data. Another at-

tractive aspect is that it can be compatible with different kinds of kernel functions (a

distance measure between objects). Therefore it can be linear or non-linear.

In the thesis, Support Vector Machine with Gaussian kernel function is applied to

find leaders in a heterogeneous co-authorship network and the followed procedure of

non-linear SVM refers to Burges (1998).

2.4 Link prediction

The link-prediction problem for social networks can be described from the point of

view of data mining in the following way: given a snapshot of a social network at

time t, the goal is to predict new links that will be added to the network during the

interval from time t to a given future time t′.

This problem can be viewed as a simple binary classification problem. That is,

for any two potentially linked objects oi and oj, predict whether lij is 1 or 0. Current

research aims to measure the degree of similarity and closeness between two target

nodes. In network terms this means not only that they should be similar to each other,

but also that they must also be reachable through the network. In other words, the

closer and more similar are they, the higher possibility they have to be connected in

the future. Generally, approaches to address this problem come from two aspects:

the attribute information of nodes and the structural properties of social networks.
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In the first of these kinds of approach, attribute information is used for link

prediction. Popescul & Ungar (2003) introduces a structured logistic regression model

that can make use of relational features to predict the existence of links on citation

datasets from CiteSeer. In that experiment, link prediction on citation networks is

cast into a citation recommendation system by gauging similarities between target

publications and existing publications. However, those methods have limitations in

that the attributes of nodes can only reveal similarity with others, but fail to take

the concept of “distance” into consideration. For instance, two people may be quite

similar to each other in terms of habits, interests and backgrounds. However, they

cannot be friends if they are located far from each other in geography as they have

no chance to meet.

Links are predicted on the basis of different graph proximity measures. Among the

selection of proximity measures, nearest neighbourhood algorithms are quite famous

and have been widely applied. In the experiment of Murata & Moriyasu (2008),

they introduced a weighted common neighbour approach and compared its prediction

results with common neighbour and Jaccard’s coefficient method. Unfortunately,

their experimental results have accuracies that are all lower than 50%.

The reason for this is because neighbourhood algorithms can make correct predic-

tion when two nodes are quite close to each other. In fact, some relationships such

as friendship, co-authorship and citation relationships are transitive: nodes may be

connected in the future if there is a path among them, but those methods may ignore

this situation.

The second approach takes into account the structural properties of social net-

works, namely “distance” between nodes, when devising measures of closeness. One
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famous approach is the Katz measure (Katz et al. 1997) which defines a measure that

directly sums over the collection of paths, exponentially damped by their length so

as to count short paths more heavily. Another approach uses random walk (Rud-

nick & Gaspari 2004), to calculate the moving time or number of steps of an agent

from a start point s to the end point e. Because the time to arrive is not in general

symmetric, a common way to detect closeness from this probabilistic approach is to

consider the commute time Cs,e = Ts,e + Te,s, where Ts,e and Te,s are times to move

from start to end and end to start respectively. Liben-Nowell & Kleinberg (2007)

present an experiment comparing predictors on large co-authorship networks. Their

work suggests that information about future interactions can be extracted from the

network topology alone and that subtle measures for detecting node proximity can

outperform more direct measures. However, the results show that among all predic-

tors, Katz, the method combining neighbourhood and distance concepts, is the best.

However, the accuracy they found of 16% is still quite low.

The above research confirms that current methods of link prediction have a large

room for improvement. In this thesis, information concerning the evolution of a co-

authorship network is collected so as to treat vertices differently. Through observing

their past actions, vertices are labeled by their activities and those vertices with

high values in activity have a high possibility to connect with others. In order to

improve the accuracy further, matrix theory is applied to detect the main patterns

of predicting results.
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2.5 Ranking

Early stages of ranking objects in networks focused on object connectivity. The

initial research on ranking vertices in networks is inspired by the voting mechanism

that highly ranked objects are those who get more votes from others. Based on this

idea, highly ranked vertices in networks should have more connections from others.

For this reason, Brin & Page (1998) proposed the famous PageRank algorithm to rank

web pages based on keywords that user input and webpage connectivity. Till now this

idea is still the core algorithm of Google search engine. Since then, many studies have

been devoted to this area and have proposed many customized PageRank algorithms

(a comprehensive review about PageRank algorithms and their applications can be

found in Berkhin (2005)).

Kleinberg (1999) first extended the ranking work from homogeneous networks

to heterogeneous networks. His famous method, the Hyperlink Induced Topic Search

(HITS), confirms that ranking can be reinforced through interactions between nodes of

various types. As a result, many famous papers with a few citations can be assigned

high ranks. Since then, numerous papers on link analysis–based ranking based on

PageRank or HITS have appeared (Ahmedi 2012, Fiala 2012).

Recent advances in graph theory and corresponding methods have enriched rank-

ing methods by incorporating topological features. It is believed that in networks,

an object is ranked high, if it is located in an important position. Many centrali-

ties (Scott 2012) are proposed to achieve this purpose. Liu et al. (2005) compared

the rankings of scientists by PageRank with three other rankings using degree, be-

tweenness centrality and closeness centrality. The results confirmed that centrality
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measures are effective each with their own advantages and that without consider-

ing citations, famous but not so highly cited papers are ranked very high. Another

work (Chiang et al. 2012) exploits social links and uses local information only to

find the top-k users in a co-authorship network based on a probabilistic model using

random walks.

Soon, the research focus of ranking moves to heterogeneous networks. Deng et al.

(2012) proposed a joint regularization framework to model heterogeneous networks

and treated multi-typed linking edges differently, which is effective to ranking objects

in heterogeneous networks. Sun & Han (2012) proposed a new ranking approach

called Authority Ranking for heterogeneous networks. The main idea is that the

rank of an object in a heterogeneous network is determined by its authority and that

authors can be clustered by authority. For example, highly ranked authors tend to

attend highly ranked venues and highly ranked venues attract highly ranked authors.

The approach is applied to co-ranking authors and venues on the DBLP dataset and

the experimental results are very effective. However, this method can only work for

bipartite networks.

Inspired by the previous work, this thesis develops a co-ranking method based

on both object connectivity and topological features for heterogeneous network. The

proposed method can rank objects in complex heterogeneous networks where one-

type of objects can connect to other types of objects or themselves. For testing

the effectiveness and efficiency, two state-of-the-art ranking methods, PageRank and

Hyperlink-Induced Topic Search (HITS), are involved for comparison.
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2.6 Research gaps

In summary, this chapter reviews current research on four basic network analysis

questions: detecting communities, determining the number of clusters, predicting

links and ranking vertices in both homogenous and heterogeneous networks. The

major identified research gaps are listed below.

The complex topological features of heterogeneous networks give rise to one major

issue in community detection: how to estimate the contributions of different relation-

ships, especially for abstract concepts. The current community detection methods on

heterogeneous networks (reviewed in Section 2.2) fail to provide an applicable way for

users to estimate contributions to relationships and ignore that different users may

have different purposes for clustering. This thesis proposes a multiple semantic-path

clustering method which can achieve a desired clustering with user-guided informa-

tion.

The major way of determining the number of clusters is via eigenvalue structures

of networks. Different eigenvalues are of different importance for having network

topological information. In spectral-based clustering algorithms, smaller ones are

more important than larger ones. However, the number of leading smallest eigenvalues

to choose is hard to determine. This thesis addresses the problem by considering

network topology. The proposed method in Chapter 4 determines the number of

clusters by finding cores of communities which are labeled as leader groups.

For link prediction, the major issue is that the link prediction accuracy is still

low and there is a large room to improve. The current methods predict links via

vertex similarities. If two vertices are similar, they are likely to connect; otherwise,

they have a small possibility to connect in the future. In fact, there are often some



Chapter 2. Literature review 70

exceptions that dissimilar vertices are connected while similar ones are not connected

and this is the major reason why link prediction accuracy is low. This thesis proposes

a network evolution-based link prediction method which can capture these exceptions

based on vertex evolving patterns.

For vertex ranking, the current studies of ranking vertices in heterogeneous net-

works focus on bipartite networks where there are two types of vertices and one type

of vertex is not connected directly but connect to each other indirectly via the other

type of vertex. The proposed co-ranking method in Chapter 6 can work on complex

bipartite networks where one type of vertex can connect directly or indirectly.



Chapter 3

Community detection on
heterogeneous networks

In the real world, there are many abstract social phenomena like academic collab-

oration which are hard to measure directly. An approach to solving this problem

is to decompose abstract concepts into a set of concrete and measurable ones. For

example, academic collaboration can be represented by co-authorship and co-work

relationship. This practice gives rise to heterogeneous networks.

Compared with homogeneous networks, heterogeneous networks always contain

different types of objects which are connected by different types of relations. Because

of this topological complexity, many traditional ways of community detection de-

signed for homogeneous networks are not feasible. To solve this problem, this chapter

proposes a Multiple Semantic-path Clustering method which is a general approach of

community detection on heterogeneous networks based on paths and matrix factor-

ization (Tang & Liu 2010). This method can also achieve a desired clustering based

on user-guided information.

71



Chapter 3. Community detection on heterogeneous networks 72

This chapter validates this measurement by investigating academic collaboration

at the University of Technology, Sydney (UTS). The experimental results confirm that

the proposed method outperforms the combination of random-walk similarity mea-

surement and spectral clustering (von Luxburg 2007) in identifying research groups.

This chapter encapsulating Contribution 1 of the thesis, is an extended descrip-

tion of my publications (Meng & Kennedy 2012b, 2013b, Meng et al. 2014).

3.1 Methodology

This part covers the theory and implementation of Multiple Semantic-path Clustering

in details followed by path assessment.

3.1.1 Multiple semantic-path clustering

In this section, a general method, named Multiple Semantic-path Clustering, of com-

munity detection on heterogeneous networks is proposed based on semantic paths and

matrix factorization.

To derive a general model, the process of calculating the similarity of semantic

paths is formulated as a matrix calculation and the start and end type of object of

those paths should be the same as the target object type.

Figure 3.1 shows three examples of heterogeneous networks with an assumption

that object type A is the target research object. Example (a) refers to basic bi-

type relational data such as word-document with one semantic path A − B − A.

The similarity of objects in type A can be calculated by MABM
T
AB where MAB is

the association matrix. Example (b) represents tri-type data such as web pages,
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Figure 3.1: Examples of semantic paths.

web users and search queries in web search engines with two paths A − C − A and

A−C−D−C−A. There are two association matrices MAC and MCD and therefore

the similarity of objects in type A can be represented by the combined similarity

of two paths. The similarities of these paths can be calculated by MACM
T
AC and

MACMCDM
T
CDM

T
AC respectively. Example (c) is a much more complex homogeneous

networks with five object types and objects A are linked both directly and indirectly.

The possible paths are A−A, A−C −A, A−C −B −C −A, A−C −D−C −A

and A−C−E−C−A. In this case, the similarity of A-type objects is the collective

similarities of all these paths.

Definition 3.1. Given a heterogeneous network G = (V,E), there are m different

types of object (V1, . . . , Vm) and n types of relation (E1, . . . , En). Each type of object

may contain different number of vertices. If the target object type is Vt with |Vt|
vertices (1 ≤ t ≤ m). The corresponding semantic path set of this target object type
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is Pt, the collective similarity of objects in type Vt is defined as

SVt =

|Pt|∑
i=1

aiSi s.t.

|Pt|∑
i=1

ai = 1 (3.1.1)

where SVt is the collective similarity matrix of target objects Vt while matrix Si is the

similarity matrix of target objects Vt in terms of path i. There is scale parameter ai

which indicates the contribution of semantic path i to the collective similarity SVt .

It has been shown that the hidden structure of a data matrix can be explored

by matrix factorization (Tang & Liu 2010). Motivated by this finding, the clustering

process of multiple semantic-path clustering is based on matrix factorization because

the cluster structure for a type of objects Vt is embedded in the collective similarity

matrix SVt and the cluster structure of Vt is revealed by the triple factorization,

RVt ≈ CVtSVtC
T
Vt

= CVt

⎛
⎝ |Pt|∑

i=1

aiSi

⎞
⎠CT

Vt
(3.1.2)

where CVt ∈ {0, 1}|Vt|×k is a cluster indicator matrix for target object Vt and k is

the number of clusters such that CVt(p, q) = 1 denotes that the pth object in Vt is

associated with the qth cluster and
∑k

q=1 CVt(p, q) = 1.

Based on the above discussions, the task of Multiple Semantic-path Clustering on

heterogeneous networks can be formally defined as the following optimization problem

and the optimization function below is the objective function of the proposed Multiple

Semantic-path Clustering method.

minF (CVt) =

⎛
⎝RVt − CVt

⎛
⎝ |Pt|∑

i=1

aiSi

⎞
⎠CT

Vt

⎞
⎠ (3.1.3)

The minimization in Equation (3.1.3) is equivalent to the maximization in Equa-

tion (3.1.4). An iterative algorithm is proposed to determine the optimal solution to
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the maximization problem.

maxG(CVt) =

⎛
⎝CVt

⎛
⎝ |Pt|∑

i=1

aiSi

⎞
⎠CT

Vt

⎞
⎠ (3.1.4)

Although the maximization problem in Equation (3.1.4) is NP-hard, the solution

of which cannot be found in polynomial time, an approximate solution can be achieved

by a relaxation by converting the cluster indicators from discrete ones to continuous

values using spectral graph partitioning (Ding et al. 2010).

Multiple Semantic-path Clustering clusters multi-type interrelated data objects

based on their relations by exploiting both direct and indirect interactions between

the hidden structures of different types of objects via semantic paths and matrix fac-

torization. The proposed Multiple Semantic-path Clustering method is an extension

of traditional spectral graph partitioning for community detection. As a result, it

inherits many advantages such as achieving a global solution, having a theoretical

support and easy implementation.

3.1.2 Semantic path assessment

In the previous section, all paths in multiple semantic-path clustering have scalars

that denote their relative importance when clustering target objects. However, het-

erogeneous networks, especially complex ones, always have a large set of semantic

paths. Consequently, the corresponding similarity calculations will be time and labor

intensive. It is necessary to know which semantic paths are important and the value

of their weights before clustering. This section explains how to choose scalars for

different semantic paths.
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In fact, semantic paths can be considered as features and path assessment is a pro-

cess of feature selection and estimation. Given a heterogonous network with p seman-

tic paths, there is a training dataset where users label the objects with cluster indic-

tors. The correlations between semantic paths and cluster indictors are b1, b2, . . . , bl

from largest to smallest. If the first l (l ≤ p) paths are chosen, the weights of paths

are defined as

ai =
bi∑l
i=1 bi

s.t.

l∑
i=1

ai = 1 (3.1.5)

In the experiment, academic collaboration at University of Technology, Sydney is

considered as a ground truth. Based on this, a sample is formed where researchers are

labeled with their laboratories. The weight of a path is represented by the correlation

between the path and cluster labels and paths with the leading closest correlations

are chosen as the main features.

3.2 Clustering evaluation

The proposed multiple semantic-path clustering method to detect communities on

heterogeneous networks is validated from the following two aspects: cluster compar-

ison and cluster validation.

3.2.1 Cluster comparison

To verify the effectiveness and efficiency of multi-path clustering, a well known com-

munity detection method, spectral clustering (a comprehensive description about this

method can be found in literature review, Section 2.2.3.) is involved for comparison.

However, spectral clustering cannot be applied on heterogeneous networks directly.
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To overcome this, a random-walk similarity measure is applied to build a similarity

matrix which spectral clustering can work on. In the experiment, as the current

laboratory setting of UTS is regarded as a ground truth, the clustering results gen-

erated by multi-path clustering and spectral clustering are compared with the UTS

laboratory settings.

The first approach for cluster comparison refers to vector comparison. It is appar-

ent that clustering results can be represented by an indicator matrix and the element

of the matrix indicates whether two data points are in the same cluster or not. Given

two partitions X and Y with n data points, there are two matrices MX and MY

built from these two partitions respectively. For partition X, if object i and j are

in the same clusters, MX(i, j) = 1; otherwise MX(i, j) = 0. The similarity between

partition X and Y is well defined as

Similarity(X, Y ) =
1

n

n∑
i=1

Vi · Ui

||Vi|| · ||Ui||
Vi ∈ MX s.t. MX = (V1, . . . , Vn) (3.2.1)

Ui ∈ MY s.t. MY = (U1, . . . , Un)

where Vi and Ui are the vectors belonging to matrices MX and MY respectively.

Another comparison approach is Normalized Mutual Information (NMI) 2.2.6

which computes the agreement between two given partitions or between a partition

and the ground truth. This chapter regards the UTS laboratory settings as a ground

truth and it compares the clustering results by the proposed method and spectral

clustering with the ground truth.
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Figure 3.2: The constitution of Field of Research (FoR) codes

3.2.2 Cluster validation

Besides that, the clusters generated by multi-path clustering and spectral clustering

are also verified and compared by a set of clustering validation methods including

Coverage, Performance (Scott & Carrington 2011) and Modularity (Newman 2006).

The detailed descriptions about them are included in literature review (Section 2.2.6).

3.3 Experimental dataset

The dataset used for analysis and visualization is from the University of Technology,

Sydney (UTS) research master enterprise (RME) database, which is a collection of

over 60000 records, covering all the faculties and schools in UTS. Information on all

publications of UTS during the recent six years (2006− 2011) was selected including

journals, conference papers and proceedings, chapters and books of all faculties.

The distinctive advantage of this data source over other scientific bibliographic

databases like CiteSeer and computer sciences bibliographic data source DBLP is its

integrity. Although the number of records from this data source is relatively small
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compared to those scientific bibliographic databases, it contains more types of publi-

cations, research fields and researchers. Due to its integrity, it is easier to understand

academic collaboration in this closed environment. The data for verification such as

the configuration of laboratory settings and research leaders is easily accessed.

Besides researchers, faculties, roles and papers, another important object is intro-

duced to build the academic collaboration and it is Field of Research (FoR) codes.

They are used by Australia and New Zealand to indicate which research field publica-

tions belong to. Field of Research (FoR) codes are a system with 6 digits containing

three hierarchical levels: divisions (first 2 digits), groups (first 4 digits) and fields (all

6 digits) with divisions at the highest level. For example, the FoR code for Pattern

Recognition and Data Mining is 080109 while 08 is for Information and Computing

Sciences and 0801 stands for Artificial Intelligence and Image Processing. How one

publication belongs to different research fields is represented by percentages with each

publication having at most three FoR codes. For example, the journal article “Genetic

algorithm-based strategy for identifying association rules without specifying actual

minimum support” (Yan et al. 2009) is attached to three FoR codes: 080100 Artifi-

cial Intelligence and Image Processing (50%), 080604 Database Management (30%)

and 010200 Applied Mathematics (20%).

After data cleaning, integration, transformation and reduction (Han & Kamber

2006), the number of remaining records are stored in nine files: researcher file, pub-

lication file, FoR code file, faculty file, role file, researcher-publication relationship

file, publication-FoR codes relationship file, researcher-faculty relationship file and

researcher-role relationship file (See Table 3.1). Researchers file, publication file, FoR
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Figure 3.3: The schema of the network presenting the academic collaboration at UTS

codes file, faculty file and role file contain five types of nodes: researchers, publica-

tions, FoR codes, faculties and roles respectively, while the relationship files are used

to add links among the nodes.

Table 3.1: The number of records in files from 2009 to 2011

File name Number of records

Researcher file 5621

Publication file 3737

FoR code file 585

Faculty file 13

Role file 5

Researcher-Publication relationship file 12105

Publication-FoR codes relationship file 4576

Researcher-Faculty relationship file 5621

Researcher-Role relationship file 5621

The schema of the heterogeneous UTS academic collaboration networks is illus-

trated in Figure 3.3. It shows that researchers (R) are the core research objects.

Researchers are not linked to each other directly but through other objects (Facul-

ties (F ), Roles (L), Papers (P ) and FoR codes (C)). To be specific, researchers (R)
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can have different roles (L) such as professors, associate professors, senior lecturers,

lecturers and research followers. Different researchers (R) may belong to different fac-

ulties (F ) while researchers (R) publish papers (P ) which belong to FoR codes (C).

Finally, the information about the research organizational structure of UTS is

collected as the ground truth of academic collaboration. This information includes

researchers (R), laboratories (B) and working relationships (R− B −R).

3.4 Experimental results

This section evaluates the performance of the proposed multiple semantic-path clus-

tering on achieving a user desired community detection covering collective similarity

calculation, path assessment and cluster validation. The proposed method is applied

on the heterogeneous UTS academic collaboration network which involves multi-typed

objects and relationships to represent an abstract concept: academic collaboration.

Multiple semantic-path clustering can integrate different types of relationships by

assigning scalars to these relationships with user-guided information.

3.4.1 Collective similarity calculation

This section investigates the schema of the heterogeneous networks from UTS, de-

scribes the process of collective similarity calculation and explains that different

weights of semantic paths influence the collective similarities among researchers sig-

nificantly.

The experimental object is the UTS academic collaboration network. According

to the collected dataset in Section 3.3, it is a heterogeneous network with five object
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Figure 3.4: Semantic paths derived from the academic collaboration heterogeneous
networks.

types (Researchers (R), Faculties (F ), Roles (L), Papers (P ) and FoR codes (C)) and

the 4 types of relation. In this experiment, researchers (R) are the target objects and

Figure 3.4 illustrates all semantic paths related to researchers (R).

Table 3.2: Similarity calculation of all semantic paths related to researchers.

Path Similarity calculation

R− F −R MRFM
T
RF

R− P − C − P −R MRPMPCM
T
PCM

T
RP

R− P −R MRPM
T
RP

R− L−R MRLM
T
RL

The similarity of researchers (R) in each path can be calculated through matrix

computation. Given a path R− P −C − P −R where R is the set of target objects,

the similarity of R in the path is marked as MRPMPCM
T
PCM

T
RP where MRP and

MPC are the adjacency matrices between object types R and P and between object

types P and C respectively. MT
RP is the transposed matrix of MRP and MT

PC is

the transposed matrix of MPC . The collective similarities between researchers are
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measured by the similarities of those paths. The ways of calculating similarities of

each path is presented in Table 3.2 and the collective similarities of researchers (R)

are the combinations of these similarities.

3.4.2 Path assessment

If different weights are assigned to the paths, collective similarities of researchers (R)

may be fairly different. That is why different types of objects and relations must be

involved so as to reflect real situations in this domain.

Table 3.3: The paths and their corresponding scalars

Path Scenario I Scenario II Scenario III

R− F −R 0.97 0.01 0.05

R− P − C − P −R 0.01 0.01 0.28

R− P −R 0.01 0.97 0.62

R− L−R 0.01 0.01 0.05

To clarify this point further, this chapter designs three scenarios (Table 3.3) and

these scenarios have different scalar combinations. To be specific, Scenario I and

Scenario II overly emphasizes paths R− F −R and R− P −R respectively but put

very small weights (0.01) on the other paths. By contrast, the weight combination

in Scenario III are based on Pearson correlations (Kantardzic 2011). The weights

of each path are determined by this way (refer to Section 3.1.2): a random sample

dataset is built with 200 researchers and they are labeled with their laboratories; then

the similarities of each path are normalized and the weights of paths are represented

by the correlation between each path and the laboratory labels.

In this chapter, researcher similarity networks are built based on each of these
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Figure 3.5: The similarity graph of researchers in Scenario I

scenarios.

In Scenario I, faculties (F ) and the “belonging to” relation between researchers (R)

and faculties (F ) are emphasized to a large extent. The weight of this path is 0.97

while the remaining three paths are 0.01 respectively. The similarity graph of re-

searchers (R) is illustrated in Figure 3.5 which shows that researchers (R) are grouped

by the faculties.
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Figure 3.6: The similarity graph of researchers in Scenario II

Scenario II lays emphasis on co-authorship (0.97). This relationship connects two

authors together if they coauthored papers and the more papers they worked on, the

larger the weight of the connection. Co-authorship is also a widely used relation in

terms of academic collaboration research. However the detected groups (Figure 3.6)

are relatively small and meaningless because each author’s number of papers is lim-

ited, normally ranging from three to five. Thus it is necessary to consider other types

of objects and relations such as faculties (F ) and field of research codes (C).

Similarly if the other two paths are overemphasized, it is also difficult to under-

stand the real academic collaboration. Path R−P−C−P−R groups researchers (R)
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Figure 3.7: Some laboratories are labeled in the researcher similarity network of
Scenario III.

with same or similar research fields together while Path R − L − R categories re-

searchers (R) by roles (L). Thus it is reasonable to consider all types of objects and

relations simultaneously.

In Scenario III, path R − P − R, the co-authorship, is regarded to contribute

to the academic collaboration the most and its weight is 0.62 followed by the path

R − P − C − P − R. Field of research codes (C) which tend to link small research

groups together and then to form relatively larger ones, must be involved. From

this, it can be found that longer paths with three or more types of objects, like

R−P −C−P −R, are interesting and using them properly is a good way of building

a more realistic network. On the one hand, they are useful for finding some relatively

large and meaningful communities. On the other hand, just because of this, they
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cannot have a large weight; otherwise all objects are linked together. This conclusion

is also supported by the theory in Sun & Han (2012).

The other two paths (R − F − R and R − L − R) are of little importance and

can be ignored in the further research. The situation of academic collaboration at

UTS is better revealed by this scalar combination. Figure 3.7 is the researcher (R)

similarity network where researchers are colored by their faculties. The edge weights

between researchers are the collective similarities. It can be seen that the academic

collaboration groups are relatively larger than those in Scenario II. Meanwhile these

groups are meaningful. They are matched with the current laboratory setting of UTS

and some of them are labeled.

From the analysis above, it can be seen that it is necessary to consider multi-typed

relations and objects in investigating abstract concepts and the single relationships

and objects are insufficient for revealing the real situation. On the other hand, rela-

tionships (represented by semantic paths) have varying levels of importance. There-

fore, assessing them before clustering is of great necessity and the proposed method

for evaluating paths based on correlations is effective.

3.4.3 Community detection and validation

In this section, both Multiple Semantic-path Clustering and spectral clustering are

applied to detect communities on the heterogeneous UTS academic collaboration net-

work. Spectral clustering works on the researcher similarity matrix built by random-

walk. For Multiple Semantic-path Clustering, the researcher similarities are based on

the collective similarity which is from Scenario III and communities are detected by

the method proposed in Section 3.1.1. This chapter considers the UTS laboratory
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setting as a partition where laboratories are clusters and researchers who work in

these laboratories are objects in these clusters.

The clustering results generated by these methods are compared with the ground

truth, the UTS laboratory setting by Vector-Based Comparison (V-B Comparision)

and Normalized Mutual Information (NMI).

Table 3.4: Clustering validation

Comparative methods V-B Comparison NMI

Multi-path clustering vs. the lab setting 0.932 0.916

Spectral clustering vs. the lab setting 0.762 0.658

The comparative results are listed in Table 3.4 which shows that the clusters

generated by multi-path clustering are more similar to the laboratory setting than

spectral clustering as evidenced by the relatively high values in V-B Comparison

and NMI. This result also confirms that random-walk is not suitable to apply on

heterogeneous networks. The possible reasons for this are that 1) random-walk is

advantaged in finding large communities but weak in finding small communities where

vertices have fewer edges because the random moving decisions are made based on

probability; and 2) in heterogeneous networks, the probabilities of an agent moving

from one type of object to the other type objects should be different. Indeed, these

probabilities are often hard to measure or estimate.

This suggests that taking multi-typed relationships and objects into consideration

is necessary to analyze some abstract and hard-to-be-measured social phenomena.

This section also compares the quality of clusters of both methods by clustering

quality indices: Coverage, Performance and Modularity.
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Table 3.5: Clustering quality validation

Methods Coverage Performance Modularity

Multi-path clustering 0.865 0.792 0.783

Spectral clustering 0.812 0.723 0.792

According to Table 3.5, both Multiple Semantic-path Clustering and spectral clus-

tering perform well in community detection, achieving similar values of quality in-

dices. This suggests that compared with spectral clustering, the proposed Multiple

Semantic-path Clustering method is also an effective community detection method.

The reason why these methods get similar results in clustering quality indices is

that these quality indices evaluate clustering based on different researcher similarity

networks instead of the heterogeneous UTS academic collaboration network. The

network used in spectral clustering is built by random-walk while that used in the

proposed Multiple Semantic-path Clustering method is from the collective similarity.

Currently, these clustering quality indices are only applicable in homogenous net-

works. Thus, it is unreasonable to estimate the quality of community detection by

clustering quality indices alone and this is why this thesis involves a ground truth to

verify the effectiveness of the proposed multiple semantic-path clustering.

3.5 Contribution and discussion

Heterogeneous networks are a model to represent abstract social phenomena for cov-

ering multi-typed objects and relations. Use of multi-typed objects and relationships

results in the fact that detecting communities on heterogeneous networks must con-

sider objects and relations of different types simultaneously and also needs to assess
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the contributions of different relations to the abstract concepts accurately.

This chapter addresses Contribution 1 of this thesis as listed in Section 1.5 by

proposing a general model to identify communities on heterogeneous networks based

on semantic paths and matrix factorization.

Contribution 1, a novel community detection method, named Multiple Semantic-

path Clustering is proposed in Section 3.1. In the proposed method, relations are

represented by semantic paths and the weights of semantic paths are assessed by

correlations between each semantic path and a ground truth situation. Then a col-

lective similarity is calculated based on the combination of semantic paths and the

community structure can be identified by using matrix factorization theory.

The outcomes of the above stated method are compared with another robust

state-of-the-art method, spectral clustering. The results of the proposed method are

superior to that in terms of revealing the academic collaboration more accurately and

the quality of clusters is also very high in three indices: coverage, performance and

modularity.

The main issue with the results of the proposed Multiple Semantic-path Clus-

tering is that this method is applied on the academic collaboration at UTS which

is a relatively small dataset. Its effectiveness and efficiency should be tested in a

large dataset further in the future. Another limitation is that this method just finds

communities for the target object instead of all types, which means if users want to

find communities for all types of objects, this method will need to be executed many

times. Therefore, one research direction is to extend this method to find communities

for all types of objects in the same time.



Chapter 4

Determine the number of clusters
by leaders

As is explained in the literature review (Sec. 2.2), determining the correct number of

clusters functions as an effective way of finding high-quality clusters. Although there

are many ways of achieving this (Fraley & Raftery 2002, Chiang & Mirkin 2010,

Maulik & Bandyopadhyay 2002, Lange et al. 2004), they are sensitive to the topolog-

ical features of networks. This chapter aims to overcome this weakness by proposing

a Leader Detection and Grouping Clustering (LDGC) method. The proposed method

is designed for both homogenous and heterogeneous networks to determine the num-

ber of clusters beforehand based on network topological features. This can support

Contribution 2 of this thesis which is to propose a method to determine the number

of clusters in both homogeneous and heterogeneous networks.

In social networks, communities are generally constituted by leaders and commu-

nity members simultaneously. Leaders are often regarded as more important than

others in terms of network connectivity because they are the core of communities and

the other objects are connected to each other via them. This phenomenon is also seen

in social science (Parkin 2013) in that a networked community is always formed by

91
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one or several leaders and their followers. These leaders often have many connections

with community members while community members are often connected via the

leaders. This gives rise to a close correlation between the number of community lead-

ers and the number of clusters. As long as leaders and their similarities are identified,

it is possible to know the number of clusters.

The proposed Leader Detection and Grouping Clustering method can distinguish

leaders from all objects based on their different topological features. Leaders not only

have more connections in clusters but also have a relationship to individuals in other

clusters. Degree-centrality and betweenness-centrality can reflect this characteristic.

Meanwhile, considering the situation that sometimes there are two or more leaders

in one potential group, this thesis proposes an algorithm to combine leaders when

they are close enough. Leaders who are similar should be grouped to form leader

groups. The number of leader groups is the number of communities. The proposed

Leader Detection and Grouping Clustering method can also detect communities in

both heterogeneous and homogeneous networks. After determining leader groups, the

remaining vertices are allocated into those groups which they are close to.

Finally, the proposed Leader Detection and Grouping Clustering method is val-

idated on the UTS heterogeneous academic collaboration network for determining

the number of clusters and detecting communities. To illustrate its effectiveness, this

chapter involves spectral clustering in a comparative experiment.

The rest of this chapter is organized as follows: Section 4.1 describes the pro-

posed Leader Detection and Grouping Clustering method followed by the experimen-

tal dataset in Section 4.3 and results in Section 4.4. The contribution and discussion

of the proposed method is given in Section 4.5.
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This chapter with Contribution 2 is an extended description of my publica-

tions (Meng & Kennedy 2012a, 2013b).

4.1 Leader detection and grouping clustering

The section describes the principles, algorithms and implementation of the proposed

Leader Detection and Grouping Clustering method. It contains three phases: leader

identification, leader group formation and community detection.

4.1.1 Leader identification

This phase aims to identify leaders in networks based on their topological features by

centrality calculations and support vector machine (SVM) classification.

There are many potential centrality measures, but most of them may not be

suitable. Closeness-centrality (Okamoto et al. 2008) based on distance measures is

defined so that the lower the sum of distances of a vertex to the others is, the more

central this vertex is. This centrality measure is generally used for finding the center of

a network, but leaders may be spread loosely across the entire network. Eigenvector-

centrality and Katz-centrality (Grindrod et al. 2011) are measures of vertex influence

in a network and the values of these centralities are largely determined by the number

of vertex neighbors. As a result, the influence of vertices varies greatly when they are

from different communities. The influence of leaders in large communities often far

exceeds those of leaders from small communities.

However, degree centrality and betweenness centrality can show the importance

of objects in clusters while betweenness centrality can reflect the importance of them
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out of clusters. For example, in a company, managers can be naturally considered

as leaders. They not only need to communicate with his or her team members but

also need to talk to other managers. For team members, they generally interact

with their managers or other members in the same team instead of communicating

with other managers. Degree-centrality and betweenness-centrality can capture this

feature accurately. As a result, they are empirically considered as major indices to

reflect the topological features of networked objects in both local and global levels.

The following are the definitions of these centralities which are reviewed in Section 2.3.

1. Degree centrality is the simplest centrality which counts the number of links

from one node, say v to the others.

CD(v) = degree(v) (4.1.1)

2. Betweenness centrality describes that the more central one vertex is, the

more edges and vertices are joined by it. It is the ratio between the number of

short paths from starting point s to ending point e passing through v to not

passing through v.

CB(v) =
∑ pse(v)

pse
(4.1.2)

The calculation of betweenness-centrality in this chapter refers to the approach in Bran-

des (2001). It is a well-known algorithm requiring O(|V ||E|) time for unweighted net-

works and O(|V ||E|+ |V |2 log |V |) time for weighted graphs, where |V | is the number

of vertices and |E| is the number of edges in the network.
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Values of degree-centrality and betweenness-centrality often have different ranges.

For classification and visualization, the values of these two centralities are normal-

ized into the same range by two different ways. For degree-centrality, values are

linearly scaled into [0, 1] because the ranges of degree-centrality values is narrow. For

betweenness-centrality, values of this centrality have a wide range and the distribu-

tion of these values are not even with a long tail. This chapter applies log function

to scale these values into a small range and then linearly normalized these processed

values into [0, 1].

Table 4.1: A sample of new built dataset

VertexID Degree centrality Betweenness-centrality

10001 0.0417 0

10002 0.0833 0

10003 0.1251 0.0084

Leaders are identified through their special topological features which are revealed

by the combination of degree-centrality and betweenness-centrality. Leader identifica-

tion can be viewed as a binary classification problem (refer to Section 2.3.3) because

there are just two classes: leaders and community members. In this chapter, this

binary classification problem is addressed by Support Vector Machine (Chang & Lin

2011) which is a widely applied binary classification and the kernel function is chosen

as Gaussian kernel function which can detect clusters with an irregular boundary.

KG(vi, vj) = exp

(
−||vi − vj||2

σ2

)
(4.1.3)

After the degree-centrality and betweenness-centrality calculations, this chapter

builds a new dataset which contains vertexID, degree-centrality and betweenness-

centrality. The dataset is randomly divided into three sub datasets: a training dataset
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(300 researchers), a cross validation dataset (300 researchers) and a test dataset (835

researchers). In the training dataset, vertices are labeled as leaders or not. The reason

for setting up relatively small training and a cross validation datasets is to evaluate

the effectiveness of the proposed method in detecting leaders. The cross validation

dataset is for determining the parameters of the Gaussian kernel function based on

the error rate.

4.1.2 Leader group formation

It is noticeable that the number of leaders is often not the number of clusters unless

the aim is to find small, cohesive cliques. In most cases, the number of leaders

outnumbers the number of clusters because one community is very likely to have

more than one leader, especially in large communities. For acquiring the “correct”

number of clusters, leaders with a close relationship should be grouped and then

the number of leader groups is the number of clusters. As is shown in the example

in Figure 4.1, there are three communities: group A, group B and group C. Based

on the values of degree-centrality and betweenness centrality, leader 1 and leader 2

in group A have the same importance. Consequently, the number of leaders is four

because leader 1 and leader 2 are very close and they have 6 common neighbors. So

after leaders are found, the next step is to look into their similarities. In this phase,

similar leaders are allocated to the same leader group; otherwise they are put into

different leader groups.

Another usage of leader groups is to control the size of clusters. For example,

in order to achieve balanced clusters which means clusters having similar numbers

of objects, large leader groups can be separated into small ones while small groups
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Figure 4.1: An example of why leaders should be grouped

can be integrated into a larger one. This allows LDGC to satisfy more complex user

requirements on the size of clusters.

Leader groups are built based on their similarities. This chapter proposes a het-

erogeneous network oriented similarity measure which is designed to make full use of

topological features of heterogeneous networks. The similarities among objects are

acquired based on the number and the length of semantic paths, and the number

of paths in each semantic path. Given vertices x and y in a heterogeneous network

G, their semantic paths are represented by set Pxy. The similarity between them is

defined as

Sim(x, y) =
1

|Pxy|
∑
i∈Pxy

1

len(i)

2Nxy(i)

Nx(i) +Ny(i)
(4.1.4)

where |Pxy| is the number of elements in set Pxy. For a semantic path i, Nxy(i) is the

number of paths in this type between x and y. Nx(i) andNy(i) are the number of paths
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Figure 4.2: The working process of community detection by Leader Detection and
Grouping Clustering. Circles are vertices and LGi refers to leader groups. The
similarity between vertices and leader groups are calculated and vertices are allocated
to those leader groups with highest similarity.

in semantic path i. The length of semantic path i is marked as len(i). For example,

the length of semantic path A−B − C −B −A is four. In heterogeneous networks,

length is an important topological features of a semantic path. Long semantic paths

mean far distances between objects and should be assigned small weights (Sun & Han

2012). This is the reason why length is taken into account.
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4.1.3 Community detection

After building leader groups, the proposed Leader Detection and Grouping Cluster-

ing method can detect communities in heterogeneous networks based on these groups.

Given a heterogeneous network G = (V,E), there are k leader groups (LG1, . . . , LGk).

The remaining vertices are allocated to leader groups based on their similarities with

leader groups. Figure 4.2 illustrates the working process of the proposed Leader De-

tection and Grouping Clustering method in community detection. It can be seen that

similarities between the rest vertices and leader groups are calculated and then these

vertices are allocated to these most similar ones. The ways of measuring similarities

between vertices and leader groups are many. In this chapter, the similarity measure

is based on shortest-path. Vertex v (v ∈ V ) is allocated to leader group LGi, if the

average shortest-path distance of v to the leaders in LGi is shorter than to the leaders

in the other leader groups.

Algorithm 4.1 Algorithm for community detection by Leader Detection and Group-
ing Clustering

Initialization:
Set LG1, . . . , LGk as array;
Set CLS1, . . . , CLSk as array;

Iteration:
1: for v = 1; v <= |V |; v ++ do
2: t = 1;
3: for i = 1; i <= k; i++ do
4: if AvgShortPath(v, LGi) < AvgShortPath(v, LGt) then
5: t = i;
6: end if
7: end for
8: put(v, CLSt);
9: end for

Algorithm 4.1 describes the method for community detection by the proposed
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Leader Detection and Grouping Clustering method. LG1, . . . , LGk are leader groups

which are declared as arrays, containing identified leaders. Arrays CLS1, . . . , CLSk

represent clusters and k is the number of leader groups. Function AvgShortPath(v, LGi)

is to calculate the average shortest-path between vertex v and leader group LGi. Func-

tion put(v, LGt) puts vertex v into leader group LGt. |V | is the number of vertices.

The algorithm works in this way: for each vertex v, it is initially allocated to leader

group LG1 by t = 1. Then the algorithm calculates the average shortest-path between

the vertex and each leader group and keeps updated t until to find the leader group

with shortest average shortest-path. Finally the vertex is allocated to the leader

group with the minimum average shortest-path. The running time of this algorithm

is related to |V | and |k| and then its complexity is O(|V ||k|).

4.2 Clustering validation

In this chapter the proposed Leader Detection and Grouping Clustering method is

validated on the UTS heterogeneous academic collaboration network in two ways.

The first one is to evaluate the effectiveness of LDGC in determining the number

of clusters. To verify this, another two widely used methods of determining the

number of clusters are involved: cumulative percentage variance (Abdi & Williams

2010) and scree graph (Jolliffe 2005) which are reviewed in Section 2.3. This chapter

applies these three methods to determine the number of clusters and their results are

the input of spectral clustering (refer to Section 2.2.3) which is a-state-of-art method

of finding communities in networks. For this method, the number of clusters is a

mandatory input parameter and it highly affects the clustering quality.
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The second validation is to evaluate the effectiveness of LDGC in community

detection. This chapter compares the clustering results generated by the proposed

Leader Detection and Grouping Clustering method and spectral clustering. These

two methods have the same input and their clustering results are evaluated by a set

of clustering validation indices, including Coverage, Performance (Scott & Carrington

2011) and Modularity (Newman 2006) . The detailed descriptions about these indices

are included in the literature review (Section 2.2.6).

4.3 Experimental dataset

The heterogeneous network used for analysis, visualization and explaining the pro-

posed method of clustering is based on the UTS academic collaboration phenomenon.

This heterogeneous network has four types of objects: researchers (R), publica-

tions (P ) and research labs (B) and the schema is illustrated in Figure 4.3. There are

two semantic paths regarding to researchers (R): R − P − R and R − B − R. Path

R − P − R stands for co-authorships. If two researchers work in the same lab, their

co-working relationships are represented by R − B − R. The detailed information

about the dataset is shown in Table 4.2.

Table 4.2: The number of records in files from 2009 to 2011

Name Number of records

Researcher (R) 5621

Publication (P ) 3737

Labs (B) 54

Co-authorships (R− P ) 12105

Co-working relationships (R− B) 5621
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Figure 4.3: The schema of the experimental heterogeneous network.

4.4 Experiment

This section validates the effectiveness of the proposed Leader Detection and Group-

ing Clustering method on the UTS heterogeneous academic collaboration network

in determining the number of clusters and community detection respectively. The

network contains three types of vertices: Researchers (R), Papers (P ) and Labs (L)

and two types of edges: publishing and belonging to. The weight of edges is 1.

4.4.1 Leader identification

The experimental heterogeneous network is the UTS heterogeneous academic collab-

oration network (Figure 4.3). The degree and betweenness centrality of researchers

in the UTS heterogeneous academic collaboration network is calculated by referring

to the Equations (4.1.4) and (4.1.2) respectively. In the experiment, degree and be-

tweenness centrality have different value ranges. Degree centrality ranges from 1 to

24 and betweenness centrality from 0 to 95127.57. For adjusting these values into the

same range, values of both centralities are rescaled into [0, 1] (refer to Section 4.1.1).

After normalization, the distributions of degree and betweenness centrality of
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Figure 4.4: The distribution of researcher degree centrality

Figure 4.5: The distribution of researcher betweenness centrality
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Figure 4.6: The result of leader detection by SVM in R. Triangles and circles are
data points from two clusters. Circles stand for leaders and triangles are commu-
nity members. Solid triangles and circles are support vectors of these two clusters
respectively.

researchers (R) are shown in Figure 4.4 and Figure 4.5 respectively. It can be seen

from these two figures that these two distributions display a long tail. This means

these two distributions are uneven: most researchers (R) have very small values of

degree and betweenness centrality and the gap between small values and large values

are very huge.

Leader detection in this chapter is a binary classification problem which is ad-

dressed by Support Vector Machine (SVM). This experiment builds a new dataset

which contains vertexID, degree-centrality and betweenness-centrality. The dataset

is randomly divided into three sub datasets: a training dataset (300 researchers), a
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cross validation dataset (300 researchers) and a test dataset (835 researchers). In the

training dataset, laboratory directors are considered as leaders and they are labeled as

1 while the other researchers (R) are labeled as 0. The scale parameter σ of Gaussian

kernel function (Equation (4.1.3)) is set as 0.45 based on the cross validation dataset

through error rate. After classification with a training error rate as 0.330865 and 94

support vectors, leaders with high similarities are combined into leader groups. This

experiment calculated the similarities between leaders referring to Equation (4.1.4).

Leaders are connected to their most similar neighbors to build a similarity network

if they are connected in both semantic paths, R − B − R and R − P − R. The un-

connected sub networks are leader groups. After leader combination, there are 206

leader groups and this is the number of clusters of this heterogeneous network.

4.4.2 Community detection

This section verifies the effectiveness of the proposed leader based community detec-

tion method in determining the number of clusters and in community detection.

In determining the number of clusters, the verifying process is based on the idea

that an accurate number of clusters can give rise to a high quality clustering. In this

chapter, the number of clusters of the heterogeneous networks is determined by three

approaches: cumulative percentage variance, scree graph and the proposed Leader

Detection and Grouping Clustering method. For cumulative percentage variance, the

threshold is chosen as 98% empirically. For scree graph the biggest slop is chosen

as the separating pointing of selected and unselected eigenvalues. Section 4.4.1 has

explained the way of determining the number of clusters by LDGC. The other two

methods determine the number of clusters through the structure of the researcher



Chapter 4. Determine the number of clusters 106

Figure 4.7: The eigenvalues of the random-walk Laplacian matrix.

similarity matrix which is generated by random walk. For The numbers of clusters

determined by these three methods are 206, 298 and 812 respectively. Spectral clus-

tering is applied with these three numbers of clusters and the clustering results are

shown in Table 4.3.

Table 4.3: Clustering results by spectral clustering

Methods Cumulative percentage Scree graph LDGC

variance

Clusters 298 812 206

Modularity 0.803 0.771 0.884

Coverage 0.822 0.803 0.876

Performance 0.784 0.782 0.889

It can be seen that the number of clusters determined by LDGC results in the
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best clustering quality and it achieve highest values in Modularity (0.884), Cover-

age (0.876) and Performance (0.889) followed by Cumulative percentage variance (Mod-

ularity (0.803), Coverage (0.822) and Performance (0.784)) and Scree graph (Modu-

larity (0.771), Coverage (0.803) and Performance (0.782)).

Table 4.4: Clustering results by spectral clustering and LDGC

Methods Spectral clustering LDGC

Clusters 206 206

Modularity 0.884 0.912

Coverage 0.876 0.908

Performance 0.889 0.932

In validating the effectiveness of Leader Detection and Grouping Clustering method

in community detection, both spectral clustering and LDGC have the same number

of clusters as an input which is determined by the proposed method in this chapter.

The clustering results generated by these two methods are compared by three com-

munity detection indices: Modularity, Coverage and Performance in Table 4.4. It can

seen from this table that the proposed LDGC method outperform spectral clustering

because it achieves higher values in these three indices than spectral clustering.

4.5 Contribution and discussion

The literature review of community detection shows that for most clustering methods,

accurate cluster numbers are of great importance to achieve a high-quality clustering.

However, determining the number of clusters before clustering is a challenge for both

homogeneous and heterogeneous network analysis.

This chapter addresses Contribution 2 of this thesis as listed in Section 1.5 by
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proposing a Leader Detection and Grouping Clustering to address this problem and

it is applicable for both homogeneous and heterogeneous networks. This method is

based on the social theory that a close connected community is constituted by one or

several leaders and their followers to investigate the different topological features of

group leaders and members in networks.

The proposed Leader Detection and Grouping Clustering method can distinguish

leaders from all objects based on their different topological features. Leaders not only

have more connections in clusters but also have a relationship to individuals in other

clusters. Degree-centrality and betweenness-centrality can reflect this characteristic.

Meanwhile, considering the situation that sometimes there are two or more leaders

in one potential group, this thesis proposes an algorithm to combine leaders when

they are close enough. Leaders who are similar should be grouped to form leader

groups. The number of leader groups is the number of communities. The proposed

Leader Detection and Grouping Clustering method can also detect communities in

both heterogeneous and homogeneous networks. After determining leader groups, the

remaining vertices are allocated into those groups which they are close to.

The proposed LDGC method is verified in two aspects: determining the number

of clusters and detecting communities. In the former aspect, the number of clusters

determined by LDGC is more accurate than cumulative percentage variance and

scree graph because spectral clustering with the number of clusters from LDGC can

achieve better clustering. In the latter aspect, LDGC is more effective than spectral

clustering in community detection. The clustering result of LDGC is better than

spectral clustering with accurate number of clusters determined by LDGC in terms

of Modularity, Coverage and Performance.
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For the proposed Leader Detection and Grouping Clustering method, the strategy

of identifying leaders can be improved. The experiment suggests that the error rate of

identifying leaders is high because the proposed method just applies degree-centrality

and betweenness-centrality to distinguish leaders and community members. It could

be possible that these two centralities may be insufficient to achieve this and other

topological features should be involved. Another limitation of this chapter is that the

laboratory directors are considered as leaders of communities and the SVM classifier

is trained based on this. In fact, some managers in companies or universities are not

leaders of communities. For example, department managers may have a close connec-

tion with project managers rather than all the staffs that they supervise. Training

the classifier by managers may give rise to biased results.



Chapter 5

Network evolution-based link
prediction

Link prediction is a fundamental question of heterogeneous network analysis. This

chapter aims to address it by proposing a novel link prediction method named Net-

work Evolution-based Link Prediction (NELP) which is designed for heterogeneous

networks. The major innovation of this method is to model vertex activeness by

their evolving patterns shown in network evolution so as to improve link prediction

accuracy.

Predicting whether two vertices in networks will develop a new connection or

maintain their current connection is mainly based on their “distance”. This means

the closer two vertices are, the higher possibility they will be connected in the future.

However, there are some exceptions that some vertices with a far distance may de-

velop a connection among them while some vertices with a close distance may not be

connected in the future. These exceptions are the main reason for failing to achieve

high link prediction accuracy.

Through observations and social theory (Carrington et al. 2005), different objects,

110
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particularly humans, displayed different tendency towards developing their connec-

tions. Active ones tend to have more new connections or strengthen their current

connections in a short timeslot while stable ones prefer to maintain their existing

connections. Another interesting phenomenon is that objects have different capaci-

ties of connections. For examples, extroverted people generally have more friends than

the introvert. All these features can be acknowledged and extracted from network

evolutionary process which means that treating objects individually and capturing

their own evolutionary tendency are necessary to improve the accuracy of link pre-

diction. This is the reason why this chapter considers network evolution instead of a

single network snapshot for making link prediction.

Traditional link prediction methods are based on similarity measures. The princi-

ple of these methods is that they use similarity measures to calculate the similarities

between vertices and predict that those links of r leading highest similarities will

appear in the future. Indeed, it is hard to determine the value of r. The proposed

can overcome this by involving matrix decomposition theory to exclude noisy data.

The chapter is organized as follows: Section 5.1 describes the proposed Network

Evolution-based Link Prediction method followed by the experimental dataset and

results in Sections 5.2 and 5.3. Section 5.4 presents the contribution and discussion

of this chapter.

This chapter, describing Contribution 3, is an extended description of my pub-

lication (Meng & Kennedy n.d.).
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5.1 Methodology

This section describes how to model vertex activeness followed by the descriptions

about the proposed Network Evolution-based Link Prediction method and evaluation.

5.1.1 Modeling vertex activeness

This section first describes how to model network evolution followed by determining

vertex activeness. Most social networks keep changing due to their dynamic nature.

But in a particular time point, these networks are static. From this perspective,

it is reasonable to model the evolutionary process of a dynamic network by using

a set of static networks captured at different time points to represent the network

evolutionary process. The closer the time points are, the more accurate the network

evolution can be modeled.

Definition 5.1. Given a heterogeneous network G = (V,E), there are n types of

object (V = {V1, . . . , Vn}) and m types of edges (E = {E1, . . . , Em}). The process

of the network evolution can be represented by a series of snapshots of this network,

Ω = (Gt1 , . . . , Gtn). These snapshots are captured at different time points, t1, . . . , tn.

Among them, Gti = (Vti , Eti) represents the network at ti. Then the link prediction

problem is to predict Gtn+1 based on these networks (Gt1 , . . . , Gtn).

This chapter determines vertex activeness based on their evolving patterns which

measures how fast vertices change their connections. Two speed indices are proposed

in this chapter to capture vertex evolving patterns on heterogeneous networks and

they are Neighborhood Changing Velocity (NCVelocity) and Neighborhood Changing

Accelerated Velocity (NCAVelocity). Neighborhood Changing Velocity (NCVelocity)

refers to a vertex speed of changing neighbors and the NCVelocity of vertex v (v ∈ V )
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at ti is defined as

NCV elocity(v, ti) =
1

ti − ti−1

· |neighbor(v, ti) ∩ neighbor(v, ti−1)|
|neighbor(v, ti) ∪ neighbor(v, ti−1)| (5.1.1)

where neighbor(v, ti) represents the neighbor set of vertex v at ti and |neighbor(v, ti)∩
neighor(v, ti−1)| is the number of common neighbors of vertex v at times ti and ti−1.

Neighborhood Changing Accelerated Velocity (NCAVelocity), the accelerated speed

of NCVelocity, represents the changes of NCVelocity over time and NCAVelocity of

vertex v at ti is defined as

NCAV elocity(v, ti) =
NCV elocity(v, ti)−NCV elocity(v, ti−1)

ti − ti−1

(5.1.2)

With these two indices, it is possible to investigate into how vertices evolve over

time. These evolving patterns are about vertex preference of developing new connec-

tions or maintaining their existing connections. Through observations, the changing

patterns can be categorized into four groups: guest vertices, active vertices, stable

vertices and regular vertices and in terms of behaviors and activeness. Followings are

the detailed descriptions about these four groups.

Guest vertices

Guest vertices means those vertices that fail to stay in networks permanently.

They may stay in networks for a short time and then disappear or they jump

in and out networks from time to time. In link prediction, these vertices can

be considered as noise data as their behaviors are hard to be predicted. In this

chapter, those vertices who fail to appear in one or more collected snapshots of

networks are considered as guest vertices.
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Active vertices

Vertices in this group are very vigorous and they are the main contributors

to make networks keep changing. During network evolution, their connections

are growing fast and they also can maintain a large number of connections.

Meanwhile a connection of two isolated groups may often start from them.

This chapter regards these vertices that have positive NCAVelocity at every

time point as active vertices. This means these vertices not only have more

connections with others but also their speeds of having new connections are

increasing.

Stable vertices

Stable vertices tend to maintain their existing relationships (NCV elocity(v, ti) =

1, i ∈ (1, . . . , n)) as time goes. They may be viewed as inactive vertices because

they contribute little to the network evolution.

Regular vertices

The remaining vertices are defined as regular vertices. These vertices with

moderate speeds of changing connections are allocated in this category. In fact,

most vertices are in this category.

Due to the fact that vertices have different evolving preferences, it is necessary to

classify them before predicting links. In the task of link prediction, adopting different

strategies to handle vertices in different groups can not only increase the accuracy

of link prediction but can also improve the efficiency. For two active vertices, even

though they are far from each other, the possibility of them to develop a new link
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is high. For two stable vertices, even if they are near to each other, they are very

unlikely to develop a connection. The evolving patterns of guest vertices are often

unpredictable. This thesis treats them as noisy data and excludes them from link

prediction.

5.1.2 Network Evolution-based link prediction

Most link prediction methods in networks are based on distances which are calculated

by similarity measures. Generally, if two vertices are close in networks, they have a

higher possibility of developing a connection between them in the future. If they are

far apart, the possibility of developing a connection between them is low. However,

when the process of network evolution is considered, it can be seen that vertices have

different velocities of changing their connections. Some of them are fast while some

of them are low. The proposed Network Evolution-based Link Prediction method is

designed to consider vertex evolving patterns to improve link prediction accuracy and

is compatible with different heterogeneous network similarity measures.

The proposed Network Evolution-based Link Prediction method is designed to

work on a similarity matrix of heterogeneous networks which can be built by different

heterogeneous similarity measures. This means the proposed link prediction method

can improve accuracies of link prediction methods based on different similarity mea-

sures. Consider a similarity matrix S, sij is the similarity between vertex i and j.

The proposed Network Evolution-based Link Prediction method integrates similarity

matrix S with vertex involving patterns and redefines it as

P = ZSZT (5.1.3)
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where Z = (z1, . . . , z|V |)T is a vector containing vertex Neighborhood Changing Ve-

locity where |V | is the number of vertices, zi = NCV elocity(i, tn) and 1 ≤ i ≤ |V |.
Then the link prediction matrix P can be written as P = UDV T by the singular

value decomposition (SVD). Matrices U and V are orthogonal matrices and D is a

diagonal matrix of singular values σ1 > σ2 > . . . > σR > 0. According to truncated

matrix theory,

P ≈ UkDkV
T
k (5.1.4)

where Uk and Vk comprise the first k columns of U and V , and D is the k × k

principal submatrix of D. As a result, a matrix of predicted links can be written as

P ′ = UkDkV
T
k which contains the main features of matrix P . For link prediction,

if puv > 0 where puv is an element in link prediction matrix P , there will be a

connection between vertices u and v; otherwise, vertices u and v will not be connected

in the future.

There are two types of link prediction: new-link prediction and all-link prediction.

The problem of new-link prediction aims to find those links that do not exist in

current networks but will appear in the future. For example, in a friendship network,

predicting new links means whether two persons will become friends in the future.

For link prediction matrix P , if puv > 0 and vertices u and v are not connected

in the current network, it is predicted to develop a new link between them in the

future. The problem of all link prediction aims not only to find new links but also to

predict whether two vertices will maintain their existing links. For example, in a co-

authorship network, all link prediction aims to not only find links that do not exist in

the current network and will appear in the future, but also predicts whether current

links will be maintained in the future. For link prediction matrix P , if puv > 0,
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it is predicted to have a link between them in the future. The propose Network

Evolution-based Link Prediction method in this chapter can work on both of them.

According to the vertex evolving analysis in the previous section, it can be seen that

both active and regular vertices tend to have new connections. Stable ones keep their

existing connections and guest ones are noise. In this way, when predicting new links

by Equation (5.1.4), k is the number of active vertices plus the number of regular

vertices. When predicting all links, k is the total number of active, regular and stable

vertices. The complexity of the proposed Network Evolution-based link prediction

method is constituted by vertex activeness calculation O(|V ||t|) and SVD based link

prediction O(|V |3) (Skillicorn (2007)) where |V | is the number of vertices and |t| is
the number of time slots. Thus the overall complexity is O(|V |3).

5.1.3 Evaluation

This chapter evaluates the proposed Network Evolution-based Link Prediction method

on the UTS heterogeneous academic collaboration network for predicting new links

and all links. This chapter applies three similarity-based link prediction methods:

random-walk, SimPath (the descriptions about these two similarity measures can be

found in the literature review of this thesis) and the proposed semantic-path simi-

larity (Section 4.1.2) of this thesis. Then the proposed link prediction method works

on the link prediction matrices generated by these three methods for improving link

prediction accuracy.
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Figure 5.1: The schema of the heterogeneous academic collaboration network at UTS.

5.2 Experimental dataset

The experimental network of link prediction is a heterogeneous academic collabora-

tion network at UTS. In this network there are three types of objects: researchers (R),

publications (P ) and FoR codes (C). Researchers (R) are connected to their publi-

cations (P ) while publications (P ) are linked to research domains (C). The schema

of this heterogeneous network is illustrated in Figure 5.1.

Table 5.1: The experimental dataset from UTS

Year 2006 2007 2008 2009 2010 2011

Researchers 2763 2972 3148 3231 3548 3592

Publications 1941 1971 2010 1985 2047 2052

FoR Codes 584 584 584 584 584 584

Res-Pub links 5389 5739 5981 5893 6336 6963

Pub-FoR links 4562 4279 4632 4341 5457 5358

The datasets contains researcher (R), publication (P ), FoR codes (C), researcher-

publication links and publication-FoR codes links of each year from 2006 to 2011 (Ta-

ble 5.1). In the chapter, datasets from 2006 to 2010 are used to summarize the

evolution of the heterogeneous academic collaboration network which link prediction

is based on and the 2011 data is used to estimate the link prediction accuracies.
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5.3 Experimental results

This section describes the application of proposed Network Evolution-based Link

Prediction method on a real-world dataset. This method is applied to predict links

of UTS academic collaboration in 2011 based on the data from 2006 to 2010 and the

real situation in 2011 is used to verify the accuracy of the proposed link prediction

method.

5.3.1 Modeling vertex activeness evolution

As discussed in the previous section, network evolution can be represented by a set of

network snapshots. This chapter models the process of network evolution from 2006

to 2010 and builds one network for each year. The summary information of these

networks are listed in Tab. 5.2. It clearly illustrates that the academic collaboration

network is a mature network. The numbers of vertices and edges grow annually, but

the density of network (|E|/|V |2) keeps almost the same. Meanwhile, the network is

quite sparse because its density is very low.

Table 5.2: Statistics of the academic collaboration network from 2006 to 2011

Year Vertices Edges Density of Networks

2006 5288 9951 0.00035

2007 5527 9658 0.00032

2008 5742 10613 0.00032

2009 5800 10234 0.00031

2010 6159 11793 0.00031

2011 6228 12321 0.00032
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5.3.2 Determining vertex evolving patterns

The core step of increasing the accuracy of link prediction is to capture vertex evolv-

ing patterns. These patterns are based on their activeness which are measured by

two proposed evolving speeds: NCVelocity and NCAVelocity. According to Equa-

tions (5.1.1) and (5.1.2), these two speeds of researchers in the UTS heterogeneous

academic collaboration are calculated at years 2007, 2008, 2009 and 2010. Then re-

searchers are categorized into four groups: guest, active, regular and stable vertices

based on the definitions in Section 5.1.1. It can be seen in Table 5.3 that most vertices

are regular vertices, followed by stable vertices, guest vertices and active vertices.

Table 5.3: Categories of vertices

Category Vertex numbers Percentage

Active vertices 359 10.4%

Regular vertices 1713 49.6%

Stable vertices 854 24.7%

Guest vertices 526 15.3%

5.3.3 Link prediction

This section evaluates the proposed link prediction method on the UTS academic

collaboration network. The target object type is researchers (R) and the relationship

between them is co-authorship. The proposed Network Evolution-based Link Predic-

tion is applied to predict new links and all links respectively in 2011 based on the

network evolution from 2006 to 2010.

This experiment applies random walk and PathSim to predict links respectively.

These two methods calculate similarities of researchers (R) and the r leading highest
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similarities are predicted to happen in the future. As is shown in Table 5.1, the number

of edges grows steadily during the five years. There are 6336 edges in 2010 and then it

can be safely assumed that there are 6800 edges in 2011. As a result, for predicting all

links, the first leading 6800 largest similarities of researchers are predicted to appear

while for predicting new links, the first leading 464 (6800 - 6336) largest similarities

of researchers who are not connected before are predicted to connect.

This experiment compares the accuracies of random-walk, SimPath and the pro-

posed semantic-path similarity with and without the proposed link prediction method

and the comparative results are listed in Table 5.4. It can be seen that the proposed

semantic-path similarity measure outperforms random walk and SimPath in both

types of link prediction. For predicting new links, the accuracy of the proposed

semantic-path similarity is 0.62 followed by Simpath (0.51) and random walk (0.26).

For predicting all links, the accuracy of the proposed semantic-path similarity is 0.71

followed by SimPath (0.53) and random walk (0.34). This demonstrates that the pro-

posed semantic-path based similarity measure works better to measure the similarities

on heterogeneous networks than random walk and SimPath.

Table 5.4: Link prediction accuracy comparison.

Link prediction methods New Link All Link

prediction accuracy prediction accuracy

Random-walk 0.26 0.34

Random-walk with NELP 0.31 0.45

SimPath 0.51 0.53

SimPath with NELP 0.54 0.63

Semantic-path similarity 0.62 0.71

Semantic-path similarity with NELP 0.69 0.82
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When integrating the proposed link prediction method with these three similarity

measures, the accuracies of new-link prediction and all-link prediction are improved

significantly. For predicting new links, the accuracies of random walk, SimPath and

the proposed semantic-path similarity increases from 0.26 to 0.31, from 0.51 to 0.54

and from 0.62 to 0.69 respectively. For predicting all links, the accuracy of random

walk increases from 0.34 to 0.45, accuracy of SimPath increases from 0.53 to 0.63,

and accuracy of the proposed semantic-path similarity increases from 0.71 to 0.82.

This suggests that the proposed link prediction method is effective for integrating

with different similarity measures and it can improve their accuracies in both new-

link prediction and all-link prediction. These accuracies illustrate the proposed link

prediction works better in improving the accuracy of all-link prediction than it of

new-link prediction.

5.4 Contribution and discussion

Making an accurate link prediction requires including network evolution instead of

working on a single snapshot of networks. This is because vertices display varying

levels of activeness in network evolution. Active vertices tend to build and strengthen

their connections often while stable ones tend to maintain their existing connections.

Regular vertices expand their connections gradually. This chapter aims to improve the

accuracy of link prediction by developing a Network Evolution-based Link Prediction

method which can consider vertex evolving patterns, supporting Contribution 3 of

the thesis.
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The proposed Network Evolution-based Link Prediction determines vertex active-

ness by two velocities: Neighborhood Changing Velocity (NCVelocity) and Neighbor-

hood Changing Accelerated Velocity (NCAVelocity). The former velocity represents

the vertex speed of changing neighbors and the latter velocity the changes of NCVe-

locity over time. Then the method categories vertices into four categories and treat

them differently in link prediction. The experimental results illustrate that the pro-

posed link prediction method can be integrated with existing similarity-based link

prediction methods and improve their accuracies in link prediction, especially all-link

prediction.

There are two major issues about the proposed link prediction method. It can be

seen from the experimental results that the proposed link prediction method performs

better in all-link prediction than new-link prediction. This may be because of the loose

definition about guest vertices. The definition of guest vertices in this chapter is that

if vertices fail to stay in networks from years 2006 to 2010, they are guest vertices.

This definition may exclude active and regular vertices which joined the networks after

year 2006. Another issue is that the proposed link prediction method is evaluated

on a sparse heterogeneous network in the domain of academic collaboration. The

effectiveness of the proposed link prediction method on heterogeneous networks is

not clear and should be tested further.
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Co-ranking on complex bipartite
heterogeneous networks

This chapter aims to address the last research question of this thesis: how to rank

objects in complex bipartite heterogeneous networks where one type of object can be

connected directly or indirectly. This chapter proposes a novel co-ranking method

which can iteratively evaluate both types of object in complex bipartite heterogeneous

networks and describes supporting experimental results. This addresses Contribu-

tion 4 of the thesis.

The proposed co-ranking method is based on a set of customized rules which are

extracted from relationships among objects. According to these rules, the co-ranking

method ranks two types of object iteratively and uses the ranking result of each

iteration to reinforce the object ranking scores. The proposed co-ranking method is

potentially flexible because it is based on a set of user-defined rules and because it is

also applicable on both directed and undirected relationships.

This co-ranking method has been validated on a dataset collected from DBLP and

CiteSeer, and the results suggest that it is effective and efficient in ranking authors

and publications simultaneously in academic collaboration heterogeneous networks

124



Chapter 6. Co-ranking on complex bipartite heterogeneous networks 125

with fast convergence.

This chapter has five sections, Section 6.1 defines the data and matrix model used

in the proposed co-ranking method. Section 6.2 describes the principles and working

process of the co-ranking method followed by experimental dataset in Section 6.3 and

experimental results in Section 6.4. The conclusions and discussions about co-ranking

methods are listed in Section 6.5.

This chapter is an extended report of a published paper of the author of this

thesis (Meng & Kennedy 2013a).

6.1 Data model

This section describes the data model that co-ranking methods is based on, including

the network and matrix models.

6.1.1 Network model

The proposed co-ranking method is designed for ranking objects on complex bipar-

tite heterogeneous networks and the definition of complex bipartite heterogeneous

networks is given below:

Definition 6.1 Consider a complex bipartite heterogeneous network (Figure 6.1),

there are two types of object (A and B) and multiple typed relationships (R1, R2 and

R3). Relationship R1 connects two types of object together. Relationship R2 and R3

connect A-type objects and B-type objects together respectively.

It can be seen that the complex bipartite heterogeneous network G can be divided

into three sub networks: GAA, GAB and GBB. GAA is a homogenous network with
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Figure 6.1: An example of a complex bipartite heterogeneous network is used for
co-ranking.

type-A objects and the objects are connected by R2. GAB is a simple bipartite

heterogeneous networks with two types of objects, and objects in the same type are

not connected directly but connected indirectly by the other type of objects via R1.

GBB is also a homogenous network with type-B objects and the objects are connected

by R3

6.1.2 Matrix model

For the purpose of storing and calculating easily, a matrix is used to represent com-

plex bipartite heterogeneous networks. For the complex bipartite heterogeneous net-

work G, it can be represented as

M =

(
MAA MAB

MBA MBB

)
(6.1.1)

where M is the adjacency matrix of the network G, and MAA, MAB, MBA and MBB

each denote a type of relationship between object type A and object type B. Rela-

tionships R1, R2 and R3 are represented by adjacency matrices MAB, MAA and MBB

respectively. MAB is the transposed matrix of MBA.
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6.2 Methodology

In this section, a ranking method based on rules are described followed by the co-

ranking working process and finally evaluation of this ranking method.

6.2.1 Ranking based on rules

Like many state-of-the-art ranking methods in networks, such as PageRank, the pro-

posed co-ranking method is also inspired by a voting mechanism so that the rank of

a vertex in a network is determined by its incoming connections. The more incom-

ing connections a vertex receives, the higher it is ranked. For example, in an email

sending/receiving network, a person is important if he/she receives many emails from

others. Meanwhile the proposed co-ranking method takes weights of objects into con-

sideration. If an object is considered to have a high rank, its neighbors should also

be ranked highly (Sun & Han 2012).

Unlike these approaches which only work in homogeneous networks, the proposed

co-ranking method ranks objects in a complex bipartite heterogeneous network by

a set of rules and reinforces ranking results by an iterative ranking process. The

rules, given below, have parameters (αaa, αab, αbb, αba) taking values ranging from 0

to 1, which determine how much weight to put on each rule. The values for these

parameters can be assigned based on experience, special requirements or experimental

datasets. The experiment assigns them to be 1, which means they are considered

equally.
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The four rules are:

Rule 1: Type-A objects are ranked by type-A objects.

RankAA(j) = αaa

|VA|∑
k=1

MAA(j, k)RankA(k) (6.2.1)

Rule 2: Type-B objects are ranked by type-A objects.

RankAB(i) = αab

|VA|∑
j=1

MAB(i, j)RankA(j) (6.2.2)

Rule 3: Type-B objects are ranked by type-B objects.

RankBB(i) = αbb

|VB |∑
l=1

MBB(i, l)RankB(l) (6.2.3)

Rule 4: Type-A objects are ranked by type-B objects.

RankBA(j) = αba

|VB |∑
r=1

MBA(j, r)RankB(r) (6.2.4)

where |VA| is the number of type-A objects and |VB| is the number of type-B objects.

For these four rules, rules 1 and 3 are designed to rank both types of object

respectively while rules 2 and 4 are designed to rank one type of object by the other

type.

6.2.2 The co-ranking framework

The developed ranking rules show that the co-ranking method ranks both types of

objects in complex bipartite heterogeneous networks repeatedly and the ranking result

of former iteration becomes the input of next one. Thus the co-ranking framework is

a mutual reinforcement ranking method.
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Figure 6.2: The working flow between different rules in the co-ranking method.

Figure 6.2 illustrates the working process of the proposed co-ranking method. It

shows that apart from application of the four ranking rules, there is a starting point

and an end point to this co-ranking framework. The main task of the initial phase is

to assign initial ranking scores to type-A objects before starting the process. Actually,

the co-ranking method can start from any one of rules because the choice does not

strongly affect the ranking results and the mutually ranking process stably converges

to the primary eigenvector of MAA, MAB, MBA and MBB respectively (Sun, Han,

Zhao, Yin, Cheng & Wu 2009). There are many approaches ranging from basic in-

degree counting, through to random walk or the advanced PageRank in the initial

phase.

For the question of when to stop repetition, one way is that users can choose

the number of iterations. Another way of controlling the number of iterations is to
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terminate when the ranking stops changing between iterations. That is,

Diff(t, t+ 1) =

∑|V |
i=1 |rank(i, t+ 1)− rank(i, t)|

|V | (6.2.5)

where |V | is the number of vertices of network G and function rank(i, t + 1) is the

ranking score of vertex i in the t+ 1th iteration.

Another key point in this framework is normalization. After each round of co–

ranking, the elements in matrices MAA, MAB, MBA and MBB are linearly scaled into

[0, 1] respectively. Although this does not change the ranking position of objects, it

gives a relative importance score to each object.

The time complexity of the proposed co-ranking framework is O(t|2(|VA|+ |VB|)|),
where t is the number of iterations through the framework and |VA| is the number

of type-A objects and |VB| is the number of type-B objects. This is because for

each round of ranking, the proposed co-ranking method applied these four rules once.

The computational complexities of rules 1 and 2 are determined by |VA| and The

computational complexities of rules 3 and 4 are determined by |VB|. The proposed

ranking method in this thesis gives an importance measure to each type of objects

based on the whole network, rather than its local neighbourhood.

6.2.3 Evaluation

This section evaluates the proposed co-ranking method in a heterogeneous academic

collaboration network built from the DBLP and CiteSeer bibliographic datasets. The

co-ranking method is applied to rank authors and publications simultaneously and the

ranking results are compared with two state-of-the-art ranking methods: PageRank

and Hyperlink-Induced Topic Search (HITS) (a review of these two methods can
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be found in Section 2.4). However, PageRank and HITS cannot work on complex

bipartite heterogeneous networks. Because of this, this chapter sets up two citations:

a small citation set and a complete citation set. For the proposed co-ranking method,

the experiment in this chapter collects a small citation set which contains citation

relationships among selected publications. For PageRank and HITS, the experiment

in this chapter collects a complete citation set to have all citations that the selected

publications have. The ranking results generated by these three ranking methods are

compared in Jaccard similarity and object ranks comparison.

Jaccard similarity (Lü & Zhou 2011) evaluates the ranking results of different

ranking methods by their correlation. Ranking results can be regarded as object sets

and Jaccard’s similarity is efficient to compare the similarity between sets. Consid-

ering two ranking approaches a and b, rw(a) and rw(b) are two sets containing the

top w ranked objects on a dataset. The correlation of two ranking methods can be

defined as

C(a, b) =
|rw(a) ∩ rw(b)|
|rw(a) ∪ rw(b)| (6.2.6)

If the ranks of elements in rw(a) and rw(b) are taken into consideration, the

correlation of the two methods a and b is computed as

CP (a, b) = 1−
∑|rw(a)∪rw(b)|

i=1 |F (rw(a), i)− F (rw(b), i)|
w(w + 1)

(6.2.7)

where function F (rw(a), i) returns the rank of element i in ranking method a. If

F (rw(a), i) = 5, the rank of element i in method a is 5 and if i /∈ ra(w), F (ra(w), i) = 0.

The main reason for this evaluation is to evaluate the effectiveness of the proposed

co-ranking methods, as it provides a way to compare new approaches with existing

ones.
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Figure 6.3: The data sources of the experimental dataset.

6.3 Experimental dataset

The dataset depicting the heterogeneous network used in the experiment is built

from the DBLP digital library (Ley 2009) and website (Giles et al. 1998). The ver-

sion (downloaded on 2011-10-18) of the DBLP1 dataset includes more than 1.8 million

publications by 0.8 million authors. Those records provide a way to trace the work

of researchers and to retrieve bibliographic details when composing lists of references

for new papers. However, it fails to provide citation relations among publications and

this is the reason why the CiteSeer2 database is used. CiteSeer website is a popular

search engine and digital library with a collection of 1.2 million scientific documents.

1http://dblp.uni-trier.de/
2http://citeseer.ist.psu.edu/
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Table 6.1: Statistics of the academic network used to validate the proposed co-ranking
approach

Number of Authors 34,342

Number of Papers 17,786

Number of co-authorships 87,384

Number of authorships 62,251

Number of citations 34,265

Time Interval 2006 — 2010

Selected Conferences SIGMOD, ICDE, PODS, KDD, SSDBM

ICDM, VLDB, EDBT, SDM, DASFAA

In the experiment, data from DBLP is regarded as the main information as it has

a clear and effective mechanism to disambiguate names. CiteSeer mainly provides

information about citations. In the formed heterogeneous academic network, each

vertex represents an author who published at least one paper in one of the major

venues for the data mining and database communities between 2006 and 2010. Each

edge links two authors who co-authored at least one paper. The vertex properties are

the number of publications in each of the 10 selected conferences, which are highly

ranked conferences. The reason for choosing these conferences cover frequently cited

papers and famous authors that people are familar, and therefore readers are able to

understand the experimental results clearly.

Two different citation sets are gathered to test the effectiveness and efficiency of

the proposed co-ranking method: a small citation set and a complete citation set.

For the proposed co-ranking method, the experiment in this chapter collects a small

citation set which contains 34,265 citation relationships between selected publications

from 10 venues. For PageRank and HITS, the experiment in this chapter collects a

complete citation set to have all citations that the selected publications have. The
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complete citation set has 67,258 references and 282,463 citation relationships which

is much larger and more complex than the small citation set. The configuration of

this is to verify that compared with PageRank and HITS, the proposed co-ranking

method is effective to rank authors and publications with a small citation set in the

domain of academic collaboration.

6.4 Experiment

This section evaluates the performance of the proposed co-ranking method on ranking

authors and publications in a complex bipartite heterogeneous academic collaboration

network built from the DBLP dataset. It includes extracting ranking rules, co-ranking

authors and publications, ranking-result evaluation and divergence analysis.

6.4.1 Extracting ranking rules

The considered complex bipartite heterogeneous network contains two types of objects

(authors and publications) and three types of relations (social relationship, authorship

and citation). However, the social ties among researchers are hard to fetch and

measure. The experiment adopts co-authorship to represent the social relationship

based on an assumption that the more publications two researchers coauthored, the

closer their social relations are. Based on the dataset collected from the DBLP

website, the experiment firstly builds a complex bipartite heterogeneous network G =

(V,E) which has researchers, publications and the relationships among them. The

schema of the experimental complex bipartite heterogeneous network is illustrated in

Figure 6.4. From this network schema, it can be seen that the network G consists of
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Figure 6.4: The schema of the experimental complex bipartite heterogeneous network
built from the DBLP website.

three sub-networks: the co-authorship network GA, the citation network GP and the

authorship network GAP .

GA = (VA, EA) is the weighted undirected graph (co-authorship network) of

authors. VA is the set of authors, while EA is the set of edges, representing co-

authorships. The number of authors is n = |VA| and the set of authors is VA =

(a1, · · · , an). Weights of the edges are the number of publications two authors coau-

thored.

GP = (VP , EP ) is the unweighted directed graph (citation network) of publica-

tions, where VP is the publication set, EP is the set of links, representing citations

between publications. The number of publications is m = |VP |. Individual documents

are denoted as VP = (p1, · · · , pm)
GAP = (VAP , EAP ) is the weighted bipartite graph representing authorship. VAP =

VA ∪ VP . Edges in EAP connect each publication with all of its authors. In the au-

thorship network the order of authors is considered. It is assumed that given a
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Figure 6.5: The academic collaboration network is represented by a matrix for further
computation.

publication in the author list, the earlier listed authors contribute more to the publi-

cation than the later authors and that the first author has the highest weight. Then

the weight of author ai to publication pj is defined as wAP (ai, pj) = 1/order(ai, pj),

where order(ai, pj) is a function to retrieve the position of author ai in the naming

list of publication pj. For example, the weight of first author is 1, and that of nth

author is 1/n.

The corresponding adjacency matrices of the networks G, GA, GAP and GP are

MAA, MAP , MPP . The weight of author–author (MAA) edges is the number of co-

authored papers. MAP indicates the number of papers that an author has published

taking into consideration the order of the author lists. The citation relationships are

described in MPP . MPA is the transposed matrix of MAP .

With the network built, the ranking rules of the network is given below:
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Rule 1: Highly ranked papers tend to cite other highly ranked papers.

RankPP (j) =
m∑
k=1

MPP (j, k)RankP (k) (6.4.1)

In this equation, a publication j is ranked highly if the m papers which refer

to it, indexed by k, have high ranking scores.

Rule 2: Highly ranked authors publish many highly ranked papers.

RankAP (i) =
m∑
j=1

MAP (i, j)RankP (j) (6.4.2)

The above equation describes that author ranking scores are determined by

the quantity and quality of papers they publish. A high rank publication j

with rank RankP (j) can increase the ranking score of author i.

Rule 3: Highly ranked authors tend to co-author with other highly ranked authors.

RankAA(i) =
n∑

l=1

MAA(i, l)RankA(l) (6.4.3)

Rule 4: Highly ranked authors generally publish highly ranked papers.

RankPA(j) =
n∑

r=1

MPA(j, r)RankA(r) (6.4.4)

The above ranking rules show that publications are ranked through other pub-

lications and authors and those authors are also ranked through publications and

other authors. Thus the co–ranking framework is based on mutual reinforcement by

repeatedly ranking authors and publications.
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(a) Initial Phase (b) Iteration = 1

(c) Iteration = 3 (d) Iteration = 5

(e) Iteration = 7 (f) Iteration = 9

Figure 6.6: Mutual improvement of co–ranking publications and authors through
iterations. Each of the six pairs of graphs shows the distributions of publication and
author ranks. The x axis in each diagram is ranking score and the y axis is the
frequency of objects.

6.4.2 Co-ranking authors and publications

The experiment starts from ranking publications by citations because the number

of citations is an indispensable index to rank the papers and assessment of publica-

tions before co–ranking can accelerate the rate of convergence. In this phase, the

importance of papers is estimated by applying a citation count on network GP .

The iterative process of co–ranking is shown in Figure 6.6. In the initial phase,

citation count is applied to rank publications and authors have no ranks. However,
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due to the limited number of citations, most publications have a very low value (from

0 to 0.1) except for some widely cited papers such as (Lee et al. 2007) and (Backstrom

et al. 2006). Highly ranked papers in this phase have the common feature that they

are very general and therefore receive many citations. After the first iteration, more

than 50% of publications are assigned relatively large ranks ranging from 0.2 to 1

and authors are ranked based on co–authorship, authorship and ranking scores of

publications. After the third iteration, the distributions of both publication and

author ranks show a similar pattern. Nevertheless, most authors have low ranks.

From iteration 5 on, distributions of both papers and authors are becoming consistent

and stable, showing a Gaussian distribution. It is interesting to see that most low

ranked authors are students or junior researchers with a few papers such as the first

authors of the papers (Henderson et al. 2010, Dourado et al. 2009, Poelmans et al.

2009).

The top 10 papers and authors is listed by the co–ranking approach (Table 6.2).

It is pleasing to see that the researchers and papers are all highly ranked in Cite-

Seer (Table 6.3). CiteSeer provides the ranking scores of authors by h-index which

is an index that measures both the productivity and impact of the published work

of scholars and this index takes all publications of an author and all received cita-

tions of these publications. The reason why the last two authors of Table 6.2 receive

high ranking scores by h-index but relatively low ranks by co-ranking is because the

collected publications in the experiment are from 2006 to 2010. This means the ap-

proach is effective in ranking authors and papers with limited citations. The paper

“Mondrian multidimensional k-anonymity” (LeFevre et al. 2006) is the highest ranked

paper as it is coauthored by two top 10 ranked authors: David J. DeWitt and Raghu
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Table 6.2: Top 10 authors and publications by co–ranking

Rank Top 10 Authors Top 10 Publications

1 H. V. Jagadish Mondrian multidimensional

k-anonymity (LeFevre et al. 2006)

2 Jiawei Han Frequent pattern mining: current status

and future directions (Han et al. 2007)

3 Surajit Chaudhuri A comparison of approaches to large-scale

data analysis (Pavlo et al. 2009)

4 Divesh Srivastava PNUTS: Yahoo!’s hosted data serving

platform (Cooper et al. 2008)

5 David J. DeWitt Materialization strategies in

a column-oriented DBMS (Abadi et al. 2007)

6 Jeffrey F. Naughton Trajectory clustering: a partition-and-group

framework (Lee et al. 2007)

7 Michael Stonebraker Finding k-dominant skylines in high dimensional

space (Chan et al. 2006)

8 Raghu Ramakrishnan A primitive operator for similarity joins

in data cleaning (Chaudhuri et al. 2006)

9 Hector Garcia-Molina Aggregate query answering on anonymized

tables Zhang et al. (2007)

10 Rakesh Agrawal Declarative information extraction using datalog

with embedded extraction predicates (Shen et al. 2007)

Ramakrishnan. Han is usually ranked after Srivastava in many experiments (Zhou

et al. 2007, Sun & Han 2012) as Srivastava has co–authored more papers. In fact,

when considering the order of authors in papers, Han outperforms Srivastava as he is

often the first or second author. Another interesting finding is that the top 10 ranked

papers are from three conferences: ACM Special Interest Group on Management of

Data Conference (SIGMOD) (accounting for 4 of the top 10 papers), IEEE Interna-

tional Conference on Data Engineering (ICDE) (4) and International Conference on
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Table 6.3: Top 10 authors by co–ranking and their H-index scores by CiteSeer

Rank by co-ranking method Top 10 Authors H-index scores by CiteSeer

1 H. V. Jagadish 32

2 Jiawei Han 39

3 Surajit Chaudhuri 24

4 Divesh Srivastava 31

5 David J. DeWitt 39

6 Jeffrey F. Naughton 31

7 Michael Stonebraker 28

8 Raghu Ramakrishnan 34

9 Hector Garcia-Molina 56

10 Rakesh Agrawal 42

Very Large Databases (VLDB) (2), which implies that these three venues have higher

ranks than others. This result is also confirmed by Han’s experiment (Sun & Han

2012) ranking venues using a combined ranking and clustering framework.

6.4.3 Evaluation

This experiment evaluates the effectiveness of the proposed co-ranking method by

comparing its ranking results with these of PageRank and HITS. The proposed co-

ranking method is applied on the small citation set to rank authors and publications

simultaneously. PageRank is applied on the citation network with the small and

complete citation sets to rank publications. HITS is applied to rank authors through

publications based on the results of PageRank on the small and complete citation

sets. The top 100 ranked authors and publications of these three ranking methods are

chosen to form ranking sets for comparison and the similarities of these ranking sets

are listed in Table 6.4. The most interesting finding is that the ranking results of the
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Table 6.4: Evaluation of ranking results by co–ranking, PageRank and HITS

Object Citation set Evaluation Result

Publications

small
C(PageRank,Co− ranking) 0.62

CP (PageRank,Co− ranking) 0.54

complete
C(PageRank,Co− ranking) 0.92

CP (PageRank,Co− ranking) 0.88

Authors

small
C(HITS,Co− ranking) 0.82

CP (HITS,Co− ranking) 0.76

complete
C(HITS,Co− ranking) 0.94

CP (HITS,Co− ranking) 0.91

co–ranking method with the small citation set are similar to those of PageRank and

HITS with the complete citation set. For publication ranking, the similarities of the

ranking sets are 0.92 and 0.88 when considering element orders. For author ranking,

the similarities of the ranking sets are 0.94 and 0.91 when considering element orders.

The results of PageRank and HITS using a small citation set are not satisfactory,

giving the low correlation values of 0.62 for publications and 0.82 for authors. The

less the number of citations, undoubtedly, decreases the cost of computation. As a

result, it can be safely concluded that the proposed co–ranking method is effective as

it can achieve good results via the small citation set.

6.4.4 Divergence analysis

All three ranking methods are based on a repetitive process and each of them runs for

twenty times. Figure 6.7 illustrates how these methods converge when ranking authors

and publications. From the diagram, the differences of iterations is calculated (refer

to Equation (6.2.5)) and it is clear that the differences for co-ranking become small

and stable at iteration 6 which means the ranking results have converged while the
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Figure 6.7: Convergence analysis: the rates of convergence from the proposed co–
ranking method, PageRank and HITS are illustrated: (a) describes the process of
publication ranking by co–ranking and PageRank; (b) compares the converge rate
between coranking and HITS for author ranking.

other two only become stable later in iterations 15 and 10 respectively. This is partly

because they work on the complete set of citations. HITS converges more quickly than

PageRank in the experiment because HITS is applied to rank authors by publications

and their ranks, which are determined by PageRank on the complete set of citations.

This means that the proposed co-ranking method is efficient because it has a fast

convergence rate.

6.5 Contribution and discussion

Almost all ways of ranking objects are based on the voting mechanism that the

neighbors of highly ranked objects should have a high ranking score. The major

problem of ranking objects in heterogeneous networks is that different types of objects



Chapter 6. Co-ranking on complex bipartite heterogeneous networks 144

are influenced by others in terms of ranks and it is unreasonable to consider only one

type but ignore others.

This chapter addresses Contribution 4 as listed in Section 1.5 by proposing and

verifying a new co–ranking method. The proposed co-ranking method is based on a set

of customized rules which are extracted from relationships among objects. According

to these rules, the co-ranking method ranks two types of objects iteratively and uses

the ranking result of each iteration to reinforce the object ranks. The proposed

ranking approach is potentially flexible because it is based on a set of customized

rules taking into account topological features and because it is also applicable on

both directed and undirected relationships.

The developed approach is a flexible framework based on a set of customized rules

taking into account both topological features of networks and the included citations.

In academic networks, the approach ranks authors and publications iteratively and

uses the ranking scores of each round to reinforce the ranks of authors and publica-

tions. Unlike traditional approaches to assess publication based on a great number

of citations, this approach can make a correct ranking based on a very small set of

citations.

In this chapter, the experiment on the DBLP dataset suggests that the proposed

co–ranking approach is effective in ranking authors and publications in heteroge-

neous academic networks via a small citation set because it can achieve similarity

results with PageRank and HITS which have to work on a complete citation set. The

proposed co-ranking method is efficient with a fast convergence rate. Experimental

results illustrate that the rules can be customized easily, for example to consider the

order of authors on publications, and that this has a strong effect on the results.
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A major issue of the proposed co-ranking methods is that it works in heterogeneous

networks with two types of object and cannot applied to those heterogeneous networks

with more than two types of object.



Chapter 7

Conclusions

Conventional networks, also named as homogenous networks have not scaled to model

complex social phenomena, especially those with more than one relationship type

and/or object type. This is because they are limited to one type of relationship and

object. Relaxing this limitation gives rise to heterogeneous networks. These networks

are complex, having multi-type relationships and objects. Because of this feature,

heterogeneous networks have been becoming a more widely used network model than

homogenous networks. However, current research on heterogeneous network analysis

are insufficient because the complex topological features make many state-of-the-

art methods proposed for homogenous networks not applicable in the heterogeneous

context. Thus, there is an urgent demand for researching on heterogeneous networks.

The research in this thesis is motivated to work on heterogeneous network analysis

for the following reasons:

1. Although heterogeneous networks are advantaged in modeling general and ab-

stract concepts via involving multi-type relationships and objects, it is challeng-

ing to estimate the contributions of relationships to these concepts.

146
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2. Determining an accurate number of clusters beforehand is important for com-

munity detection methods, because the quality of clustering highly depends on

whether the chosen number of clusters is appropriate. However, there is no a

universal method for determining the number of clusters in both homogeneous

and heterogeneous networks.

3. Link prediction accuracy is low. The reason for this is that most current link

prediction methods are based on vertex similarity in both homogenous and het-

erogeneous networks. They believe similar vertices have a higher possibility to

connect than dissimilar ones. However, there are some exceptions that some-

times dissimilar vertices can develop a new connection while similar ones cannot

because of their activeness. This interesting phenomenon provides an insight

into improving the accuracy of link prediction by investigating and modeling

vertex activeness based on network evolution.

4. Current ranking studies in heterogeneous networks mainly focus on bipartite

heterogeneous networks where one type of objects are connected indirectly by

the other type of objects, and ignore the research on complex bipartite het-

erogeneous network which allow one-type of objects connected to themselves

directly and indirectly.

In light of these issues, this research makes the following main contributions:

Contribution 1 describes a Multiple Semantic-path Clustering method proposed

in Chapter 3, which is designed for achieving a user-desired clustering in heterogeneous

networks. This proposed method uses semantic paths to represent object relation-

ships. The selection and the contributions of the semantic paths are assessed by their



Chapter 7. Conclusions 148

correlations to user-guided information. The proposed method can build a collective

similarity matrix of target vertices based on the combination of the semantic paths

and their weights and then can detect community structure in heterogeneous net-

works. The experiment in Chapter 3 compares the clustering results of the proposed

Multiple Semantic-path Clustering method with spectral clustering. The results illus-

trate that the proposed method outperforms spectral clustering in terms of achieving

a user-desired clustering. The results also suggest that the Multiple Semantic-path

Clustering method is effective in community detection, achieving high values in cover-

age, performance and modularity. A major issue of the proposed Multiple Semantic-

path Clustering method is that it clusters just one-type of object (target objects) in

heterogeneous networks instead of all types of object. This limits the efficiency of the

proposed method.

Contribution 2 in Chapter 4, develops a Leader Detection and Grouping Clus-

tering (LDGC) method for determining the number of clusters in heterogeneous net-

works. The proposed method determines the number of clusters based on the social

theory that communities are generally formed by leaders and group members. Leaders

are the core of communities, keeping close connections with members in the commu-

nity, while members have fewer connections and are often connected to each other

via leaders. The proposed Leader Detection and Grouping Clustering method iden-

tifies leaders by capturing the topological differences between leaders and members

and combines leaders when they are close enough to form leader groups. Then, the

number of clusters is the number of leader groups.

The experimental results in Chapter 4 illustrate that the proposed Leader Detec-

tion and Grouping Clustering method outperforms cumulative percentage variance
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and scree graph in determining the number of clusters because the clustering result

generated by spectral clustering with the number of clusters from LDGC achieves

higher values than these with the number of clusters from cumulative percentage

variance and scree graph. The experimental results also suggest that the proposed

Leader Detection and Grouping Clustering method is effective in community detec-

tion and it can achieve high values in performance, modularity and coverage.

The possible issues of the proposed Leader Detection and Grouping Cluster-

ing method are these: 1) This method identifies leaders by degree-centrality and

betweenness-centrality and this practice gives rise to a relatively low accuracy of

leader identification. This means that depending on these two centrality measures

may be insufficient to identify leaders accurately. 2) Another limitation is that the

laboratory directors are considered as leaders of communities in the experiment and

the SVM classifier is trained based on this. In fact, many managers in companies

or universities are not leaders of communities. For example, department managers

may keep a tide connection with project managers instead of staffs in terms of emails

or face-to-face talks. Training the classifier with managers may give rise to biased

results.

Contribution 3 in Chapter 5, introduces a Network Evolution-based Link Pre-

diction (NELP) method for improving the link prediction accuracy further in het-

erogeneous networks. The proposed method models the evolutionary process of a

network by a set of its continuous snapshots and captures vertex activeness by two

proposed indices: Neighborhood Changing Velocity (NCVelocity) and Neighborhood

Changing Accelerated Velocity (NCAVelocity). The former velocity represents the

vertex speed of changing neighbors and the latter velocity the changes of NCVelocity
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over time. Then vertices are categorized into four categories based on their active-

ness: guest, active, regular and stable vertices. For link prediction, the link prediction

matrices generated by similarity measures are adjusted by vertex activeness. The ex-

perimental results in Chapter 5 illustrate that the proposed link prediction method

can be integrated with existing similarity-based link prediction methods and improve

their accuracies in link prediction, especially all-link prediction.

There are two major issues with the proposed link prediction method. The first one

is that the proposed link prediction method can significantly improve the accuracy in

all-link prediction but little in new-link prediction. This may be because of the loose

definition of guest vertices. The definition of guest vertices in this chapter is that if

vertices fail to stay in networks from years 2006 to 2010, they are guest vertices. This

definition may exclude active and regular vertices which joined the networks after

year 2006. The second issue is that the proposed link prediction method is evaluated

on a sparse heterogeneous network. The effectiveness of the proposed link prediction

method in dense heterogeneous networks is not clear and should be tested further.

Contribution 4 in Chapter 6, develops a co–ranking method for ranking objects

in complex bipartite heterogeneous networks. This proposed method is a flexible

framework based on a set of customized rules which are defined via topological fea-

tures and user requirements. Chapter 6 evaluates the proposed co-ranking method

on the DBLP dataset to rank authors and publications simultaneously. The experi-

ment sets up two citation sets: a small citation set and a complete citation set. The

small citation set contains citation relationships between selected publications. The

complete citation set has all citations that the selected publications have. The exper-

imental results verify that the proposed co-ranking method with the small citation



Chapter 7. Conclusions 151

set can obtain similar ranking results as with PageRank and HITS with the complete

citation set in author ranking and publication ranking. The small citation set can

alleviate the computational complexity of the proposed co-ranking method so as to

achieve a high efficiency. A possible issue of the proposed co-ranking method is that

it can only work on bipartite heterogeneous networks, which limits its applications

on heterogeneous networks with more than two types of object.

To sum up, the proposed methods of addressing heterogeneous network problems

have potential benefits for understanding academic collaboration and for heteroge-

neous network analysis. The proposed methods are applicable on other real-world

heterogeneous networks. Compared with the proposed co-ranking method which can

only work on complex and simple bipartite networks, the Multiple Semantic-path

Clustering method, the Leader Detection and Grouping Clustering method and the

Network Evolution-based Link Prediction method have relatively loose requirements

to networks. These three networks can work on multipartite heterogeneous networks.

The latter two methods can work on homogenous networks as well because they focus

on one-type of objects and their topological features. Thus, this research has a broad,

promising vision to be applied on real world networks.

7.1 Future research directions

This thesis focuses on solving a series of heterogeneous network analysis problems from

Chapter 3 to 6 including community detection, determining the number of clusters,

link prediction and object ranking. The following research plans to focus on extending

the applications of the proposed methods in this thesis, overcoming limitations of the
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methods and investigating other topological features of heterogeneous networks.

One potential research direction is to test and evaluate the proposed methods

further. The experimental heterogeneous networks in this thesis are from the UTS

research datasets and the DBLP dataset. As these two datasets are in the domain of

academic collaboration, the built heterogeneous networks display some special topo-

logical features: 1) these heterogeneous networks are relatively sparse; 2) academic

collaboration heterogeneous networks often display a strong community structure

and it can be seen via the terms of their research areas and venues; 3) these net-

works contains little missing and noisy information because the collected information

is complete. In fact, many heterogeneous networks have no such features. For ex-

ample, online social networks like Facebook, may have many missing or incorrect

connections. Users may have a friendship connection with others that they do not

know. Meanwhile, different ratios of the number of edges and the number of vertices

can affect the computational complexity of the proposed methods significantly. As a

result, it is necessary to test the effectiveness and efficiency of these methods in other

domains so as to guarantee their robustness.

Another research direction is to investigate the use of other topological features of

networks. The methods proposed in the thesis are based on two topological features:

paths and centralities. In potential future research, it is reasonable to evaluate the

contributions of different topological features and to cover more important features to

enhance the performance of these methods. For example, neighborhood is one impor-

tant topological feature and it is widely applied in homogeneous networks. The usage

and advantages of this feature are not well investigated and exploited in the context
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of heterogeneous networks. This is because vertices in heterogeneous networks are of-

ten connected to vertices in other types. For example, in bibliographic heterogeneous

networks, authors are connected to each other via publications. Other topological

features can be considered as degree distributions of different types of vertices, clus-

tering coefficients, the hierarchical structure of communities, correlations of edges,

multiplex patterns with nested structures, or strong and weak ties, cores, islands,

rings and cliques.

The current research in this thesis mainly focuses on observed academic collab-

oration network but ignores the investigation of unobserved networks (also marked

as hidden networks) such as emerging research areas and researcher friendship net-

works. Detecting unobserved networks from observed academic collaboration will be

a promising research direction.

This thesis measures the academic collaboration relationship based on the com-

bined effects of different measurable collaborating relationships such as co-working

and co-authoring. But it is often observed that people have different levels of close-

ness to others in terms of relationships. For example, two lecturers may work together

closely in teaching but may not be co-authors on publications. This phenomenon is

marked as dynamics heterogeneity. Detecting this phenomenon and investigating why

it happens on some people but not on the others will be another important research

direction.

The research in this thesis on network evolution just considers one type of object

in heterogeneous networks and further research is planned to focus on co-evolving

phenomenon of all types of object. For example, in a heterogeneous network with
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researchers and their topics, as time goes, researchers may change their topics and

research topics can be combined or split into new ones. For addressing this problem,

it is necessary to model the evolution patterns both in one type of objects and among

different types of object.

The proposed co-ranking method in this thesis can only applied on bipartite net-

works and extending it to be applicable on multipartite networks may be an interest-

ing direction.

This thesis only considers the topological features of vertices and fails to con-

sider vertex attributes in addressing heterogeneous network analysis problems. This

practice constrains the applications to those heterogeneous networks where vertices

have no attributes. Proposed future work should focus on this limitation and get

vertex attributes involved because vertex attributes work well in distinguishing ver-

tices. For predicting friendship in a social network, taking gender, age and interests

and occupations into consideration could be a way to improve the link prediction

accuracy.

Finally, heterogeneous network analysis has becoming a major research area of

data mining because it can help us to model and understand the informative, universal

connected world better. This thesis developed a set of methods to address a series of

fundamental problems in heterogeneous networks and innovations of these proposed

methods have the potential to provide people with new methods for addressing these

problems.
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