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Abstract—This paper proposes a unified out-of-band emission
(OOBE) reduction framework with linear complexity for orthog-
onal frequency-division multiplexing (OFDM) systems. Unlike
conventional spectral precoding approaches which use orthogonal
precoding matrixes, this framework composes cancellation signals
from the linear combinations of data symbols and minimizes
the average OOBE power with a general least-squares solution.
A joint frequency domain cancellation subcarrier and data
domain cancellation symbol allocation scheme is also proposed
for discrete Fourier transform precoded OFDM, by which the
overall signal processing complexity of the OFDM transceiver is
further reduced without impact on other system performance.
The advantages of the proposed scheme is verified both ana-
lytically and by simulation as compared with some well-known
low-complexity OOBE reduction schemes.

Index Terms—Cognitive radio, OFDM, out-of-band emission,
and peak-to-average power ratio.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has
been widely used in various communications systems, such as
the wireless local area networks (WLANs), the 4th generation
mobile systems [1], and other high speed microwave systems
[2]. It is also very suitable for multiband cognitive radio
systems [3] due to its flexibility for subcarrier allocation. A
frequency band can be dynamically selected or de-selected
by turning on or off the subcarriers falling in the band, such
that the spectrum can be efficiently shared between licensed
users (primary users) and unlicensed users (secondary users).
However, OFDM also has some drawbacks. One of them is
the significant out-of-band emission (OOBE) due to the slow
sidelobe roll-off of the subcarriers. Without effective OOBE
reduction, interference would occur in adjacent bands and
therefore degrade the system performance.

There are a number of existing techniques developed for
OFDM OOBE reduction. The first straightforward technique
is to use a spectral shaping filter. However, a digital im-
plementation of this filter would increase considerably the
signal processing complexity, and an analogue implementation
would be less cost effective or flexible for dynamic spectrum
allocation.

The second technique is to introduce guard band between
two adjacent transmission bands, i.e., nulling the subcarriers
located on the edges of a given frequency band. Unfortunately,
this will sacrifice spectral efficiency and may not be able to
provide sufficient protection without using a significantly large
number of null subcarriers.

The third technique is to perform windowing to the time
domain OFDM signal. This would require an extended OFDM
symbol with extra signal power and cause inter-symbol in-
terference. Guard bands may also be needed together with
windowing to ensure satisfactory OOBE reduction.

The fourth technique is to use dedicated subcarriers, called
cancellation carriers, to cancel OOBE [4,6]. To achieve suffi-
cient OOBE reduction, significant power should be allocated
on the cancellation carriers, resulting in reduced power effi-
ciency. Inserting cancellation carriers may also increase peak-
to-average power ratio (PAPR) of the OFDM signal.

The fifth technique is the spectral precoding method which
has attracted significant research interests in recent years
[5,8-10]. The general approach for spectral precoding is to
use a data-independent matrix to precode the data sym-
bols in the frequency domain to reduce OOBE. It provides
more effective and dynamic OOBE reduction at the cost
of higher computational complexity as it generally requires
matrix multiplications at both transmitter and receiver. A low-
complexity sidelobe suppression with orthogonal projection
(SSOP) scheme has been proposed in [9]. However, the bit-
error-rate (BER) performance is slightly degraded due to the
noise enhancement for data symbol recovery at receiver.

In this paper, a general linear complexity OOBE reduction
framework for OFDM is proposed. It unifies a few well known
spectral precoding schemes and can be flexibly configured
to generate new schemes according to specific requirements
on the complexity and performance for OOBE reduction. We
also propose to use explicit frequency domain cancellation
subcarriers (FDCSs) and data domain cancellation symbols
(DDCSs) for OOBE reduction in precoded OFDM, which
achieves significant OOBE reduction without increasing sig-
nal PAPR or degrading BER performance. The complexity
required for OOBE reduction, which is proportional to the
number of the total in-band subcarriers, is only incurred at
transmitter without extra signal processing for data symbol
recovery at receiver.

The rest of this paper is organized as follows. In Section
II, the OFDM signal and its power spectral density are
formulated. The general OOBE cancellation framework is then
presented in Section III. In Section IV, the proposed framework
is applied to precoded OFDM, in which explicit FDCSs and/or
DDCSs are used. Section V provides performance comparison
among various OOBE reduction schemes. Finally, conclusions
are drawn in Section VI.



II. OFDM SIGNAL AND OOBE

OFDM is a multicarrier transmission technique by which
information data symbols are modulated on frequency domain
subcarriers. Time domain OFDM symbols are obtained by
performing inverse fast Fourier transform (IFFT) on frequency
domain subcarriers.

Let X (k), 0 ≤ k ≤ M − 1, denote the data symbols after
constellation mapping on M subcarriers and assume that the
IFFT size is N , satisfying N > M . The discrete-time OFDM
symbol can be expressed as

x (n) =
1√
N

M−1∑
k=0

X (k) ej
2π
N kng (n) (1)

where g (n) = g (t)|t=nTs
, g (t) is a continuous-time window

function, and Ts is the sampling period. g (t) can be a rect-
angular function with duration equal to NTs (corresponding
to an OFDM symbol with zero-padding) or longer than NTs

(corresponding to an OFDM symbol with cyclic prefix. The
frequency domain representation of x (n) can be expressed as

X̃ (f) =
+∞∑

n=−∞
x (n) e−j2πfnTs

=
1√
N

+∞∑
n=−∞

M−1∑
k=0

X (k) ej
2π
N kng (n) e−j2πfnTs

=
1√
N

M−1∑
k=0

X (k) G̃

(
f − k

NTs

)
(2)

where

G̃ (f) =

+∞∑
n=−∞

g (n) e−j2πfnTs =
1

Ts

+∞∑
k=−∞

G

(
f − k

Ts

)
(3)

and G (f) =
∫ +∞
−∞ g (t) e−j2πftdt are the frequency domain

representations of g (n) and g (t) respectively. Note that X̃ (f)
and G̃ (f) are periodic functions with period 1

Ts
.

The power spectral density (PSD) of x (n) is

S̃ (f) =E

{∣∣∣X̃ (f)
∣∣∣2} =

1

N

M−1∑
k=0

M−1∑
k′=0

E {X (k)X∗ (k′)}

· G̃
(
f − k

NTs

)
G̃∗
(
f − k′

NTs

)
(4)

where E {·} denotes the ensemble averaging and
E {X (k)X∗ (k′)} is the correlation among the data
symbols. Suppose that a pulse shaping filter with impulse
response p (t) is used to convert the discrete-time signal x (n)
to a continuous-time one. The final transmitted analogue
OFDM signal will have the PSD

S (f) = |P (f)|2 S̃ (f) (5)

where P (f) is the Fourier transform of p (t), i.e., the fre-
quency response of the pulse shaping filter.

Apparently, if X (k) for 0 ≤ k ≤ M − 1 are independent
with unit variance, the PSD of the OFDM signal becomes

S (f) = |P (f)|2
M−1∑
k=0

∣∣∣∣G̃(f − k

NTs

)∣∣∣∣2 . (6)

If the pulse shaping filter is not sharp enough, the transmit-
ted power outside the signal spectrum 0 ≤ f ≤ M

NTs
, referred

to as OOBE, will be significant due to the slow decay of the
sidelobes of G (f), which is in the order of 1

|f | .

III. GENERAL OOBE CANCELLATION FRAMEWORK

From (6) we see that designing a proper pulse shaping filter
and/or selecting a suitable window function would be able to
reduce OOBE. However, there are a lot of disadvantages as
mentioned in the Introduction section. From (4) we see that
changing the data symbol correlation through conventional
spectral precoding could also reduce OOBE, but it would
increase the implementation complexity.

We now propose a general linear precoding framework
for low-complexity OOBE reduction. For simplicity, we de-
note the original data symbols as an M × 1 column vec-
tor X =

(
X (0) X (1) . . . X (M − 1)

)T
, where (·)T

denotes matrix transposition, and the data symbols after
OOBE cancellation as an M × 1 column vector Y =(
Y (0) Y (1) . . . Y (M − 1)

)T . The proposed method
is derived as follows.

First, we define an attenuation matrix A of dimension
Q×M , where Q is the number of normalized frequencies (nor-
malized by subcarrier spacing 1

NTs
) ωq , q = 0, 1, · · · , Q− 1,

outside the transmission frequency band, called cancellation
points. The element at the qth row and the mth column in A
is the attenuation factor by which the data symbol X (m) at
subcarrier m produces an OOBE at the cancellation point ωq ,
i.e., 1

|ωq−m| . With this definition, AX will be the total OOBE
caused by signal vector X at all specified cancellation points.

Second, we define a cancellation matrix C of dimension
L×M , where L is the number of cancellation values used to
cancel the OOBE caused by X. The L cancellation values are
calculated from X as CX, i.e., the L linear combinations of
data symbols. We will show how to determine the cancellation
matrix C at the final step.

Third, we define a distribution matrix D of dimension
M × L, which distributes the cancellation values CX onto
all subcarriers in the transmission frequency band to produce
cancellation signal DCX. Then, we have

Y = X−DCX (7)

which are the data symbols after OOBE cancellation and
used to generate time domain OFDM symbol via IFFT.
Multiplying Y by the attenuation matrix A, AY represents
the residual OOBE at the specified cancellation points ωq for
q = 0, 1, · · · , Q− 1.



Finally, we determine the cancellation matrix C by mini-
mizing the residual OOBE power

E
{
∥AY∥2

}
= E

{
∥(A−ADC)X∥2

}
= E

{
tr
{
(A−ADC)XXH (A−ADC)

H
}}

= tr
{
(A−ADC)E

{
XXH

}
(A−ADC)

H
}

= ∥A−ADC∥2 (8)

where ∥·∥2 denotes the Frobenius norm of a matrix, (·)H
the matrix transposition and conjugation, and tr {·} the trace
of a matrix. The least-squares solution of the unconstrained
minimization problem min

C
∥A−ADC∥2 is found to be

C = (AD)
+
A (9)

where (·)+ denotes the pseudo-inverse of a matrix. Under
different Q and L conditions, (AD)

+ can be calculated by

(AD)
+
=


(AD)

−1
, Q = L

(AD)
H
(
AD (AD)

H
)−1

, Q < L(
(AD)

H
AD

)−1

(AD)
H
, Q > L

. (10)

The above described framework generalizes some exist-
ing OOBE reduction techniques, such as the unconstrained
cancellation carrier (CC) method [4], the self-cancellation
for SC-FDMA [7], and the SSOP [9]. These techniques can
be recast as a general linear operation and linked to the
proposed framework by adequately choosing the D matrix.

For example, when D is selected as
(

1 0 · · · 0
0 · · · 0 1

)T

,

the cancellation carrier method is obtained with a frequency
domain cancellation subcarrier located on each side of the
transmission band; when D is selected as

(
1 1 · · · 1

)T ,
the self-cancellation method for SC-FDMA is obtained, which
equivalently uses the direct current component of the discrete
Fourier transform (DFT) precoded data symbols for OOBE
reduction; and when D is selected as AT , the SSOP method
is obtained.

From (7), Y can be expressed as Y = (IM − DC)X
where IM is the identity matrix of order M . So, the proposed
framework is also a kind of spectral precoding. However, the
precoding matrix is not an orthogonal matrix, but structured
in such a way that low-complexity can be achieved.

IV. OOBE REDUCTION FOR DFT PRECODED OFDM

Precoded OFDM is a variation of conventional OFDM,
where the original data symbols are pre-processed before IFFT.
Mathematically, precoding is a matrix multiplication with the
data symbol vector. Despite the additional complexity, this
operation will enhance some of the OFDM signal’s properties
such as reducing PAPR, improving frequency diversity, as
well as reducing OOBE. For clarity, we refer to the signal
domain before precoding as the data domain, whereas the
signal domains before and after IFFT as the frequency domain
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Fig. 1. Example of DDCS and FDCS allocation.

and the time domain respectively. In this section, we demon-
strate how to allocate explicit cancellation subcarriers in the
frequency domain (i.e., FDCSs) and cancellation symbols in
the data domain (i.e., DDCSs) for efficient OOBE reduction in
precoded OFDM system (i.e., X is precoded) and at the same
time preserve some of the precoded OFDM’s advantages.

The precoding matrix can be a single matrix, or, consist
of several sub-matrices. Each matrix can be orthogonal or
non-orthogonal, but shall be invertible such that the original
data symbols can be recovered at the receiver. Without loss of
generality, we consider the case where each sub-matrix is a
DFT matrix. Using a DFT matrix can reduce implementation
complexity thanks to FFT and also reduce the PAPR of the
transmitted OFDM signal.

To achieve effective OOBE reduction, DDCS and FDCS
are allocated before and after DFT precoding respectively, as
illustrated in Fig. 1. In this example, four DDCSs and four
FDCSs in the considered frequency band are allocated. In the
data domain, data symbols are grouped into four precoding
blocks (only one precoding block is shown in the shaded
area). In each precoding block, one DDCS is placed at the
first symbol position. In the frequency domain, two FDCSs
are placed on each edge of the transmission band.

With the above explicit DDCS and FDCS allocation, the
distribution matrix D is then designed as follows.

If the mth subcarrier is an FDCS and it takes on the lth
cancellation value in CX, l = 0, 1, · · · , L − 1, the element
at the mth row and the lth column in D is set to 1 and the
remaining elements in the row are set to 0s. Otherwise, all the
elements in the row are set to 0s, unless the arrangements
for DDCSs over-write them. For example, for an FDCS
located at subcarrier 0, the corresponding column in D is(
1 0 . . . 0

)T
. This ensures that a cancellation value for

an FDCS will not be distributed to other subcarriers.
When a precoded block of size K is allocated to subcarriers

m to m+K− 1 and a DDCS in the corresponding precoding
block takes on the kth (k ̸= l) cancellation value, the
mth to (m+K − 1)th elements in the kth column in D
are set to 1s. For example, for a DDCS allocated in the
precoding block which produces K precoded subcarriers with
indexes 2 to 2 + K − 1, the corresponding column in D

is

(
0 0 1 · · · 1︸ ︷︷ ︸

K 1s

0 · · · 0
)T

. This arrangement

will map the cancellation value only to a DDCS after the



inverse DFT and hence will not cause interference to other
data symbols.

One cancellation value will be distributed to one, and only
one, FDCS or DDCS. This ensures that D will always be a
full column-rank matrix.

From the above distribution matrix construction process,
we see that L, the number of columns of D, equals to
the total number of FDCSs and DDCSs, i.e., the precoding
redundancy[8].

Compared with existing OOBE reduction techniques, the
proposed framework using explicit FDCSs and DDCSs has
the following advantages. First, it has very low complexity.
According to (7), the number of multiplication operations is
only LM for calculating CX at transmitter where C is a
real-valued matrix, whereas conventional spectral precoding
would require M2 complex multiplications. The data symbols
are free from interference after DFT de-precoding at the
receiver, therefore, no extra signal processing is required for
data symbol recovery. Second, despite the slight increase of
transmitted signal power due to the insertion of FDCSs and
DDCSs, the data symbols are not distorted by any FDCS or
DDCS, so that there will be no BER performance degradation
under the same effective signal power carried on data symbols.
Third, as will be demonstrated later, jointly using FDCSs and
DDCSs for OOBE reduction also produces lower PAPR for
the transmitted OFDM signal.

V. PERFORMANCE COMPARISON VIA ANALYSIS AND
SIMULATION

In this section, we compare the OOBE reduction perfor-
mance among different methods under the unified framework.
For convenience, we only consider the case Q > L and select
the cancellation points as all out-of-band subcarriers away
from the left and right sides of the transmission band with
offset ωL and ωR (called left and right cancellation distances)
respectively.

Considering that the D and A matrices are real-valued, the
C matrix can be simplified from (9) and (10) as

C =
(
(AD)

H
AD

)−1

(AD)
H
A

=
(
DTATAD

)−1
DTATA

=
(
DTΦD

)−1
DTΦ (11)

where Φ = ATA is referred to as the kernel matrix of
dimension M ×M . An element in Φ at the ith row and the
jth column is defined as the kernel function φ (i, j), which
can be evaluated using a closed-form approximation as

φ (i, j) =
∞∑

ω=ωL

1

(ω + i) (ω + j)

+

∞∑
ω=ωR

1

(ω +M − 1− i) (ω +M − 1− j)

≈

{
1

i−j ln
(ωL+i)(ωR+M−1−j)
(ωL+j)(ωR+M−1−i) , i ̸= j

1
ωL+i +

1
ωR+M−1−i , i = j

· (12)

The PSD of the OFDM signal after OOBE reduction can
be obtained analytically as follows: For an OOBE reduction
method with D matrix specified, the C matrix is calculated
by (11) first. The PSD is then evaluated by (4) and (5)
with E {X (k)X∗ (k′)} replaced by E {Y (k)Y ∗ (k′)} which
is the element at the kth row and the k′th column of the
correlation matrix

E
{
YYH

}
= (IM −DC)E

{
XXH

}
(IM −DC)H

= (IM −DC)
⌢

IM (IM −DC)H (13)

where
⌢

IM is a diagonal matrix with diagonal element
being 1 corresponding to a precoded subcarrier and 0
corresponding to an FDCS. For example, if two FDCSs
are allocated on each side of the frequency band,

⌢

IM=
diag

{
0 0 1 1 · · · 1 0 0

}
.

The OOBE reduction performance can be also evaluated
by simulation. We consider a zero-padded OFDM system
occupying a transmission bandwidth of M = 68 subcarriers.
Two subcarriers on each side of the band are reserved as
FDCSs. The remaining 64 subcarriers are divided into 2 or
4 blocks of precoded subcarriers, each block having 32 or 16
subcarriers. For each precoding block of 32 or 16 data domain
symbols, one symbol is reserved as DDCS. The IFFT size is
selected as N = 512. For simplicity, the pulse shaping filter
p(t) is omitted and the PSD is taken as one period of S̃ (f).
The analytical and simulated results on the PSD performance
are in perfect match. With simulation, the PAPRs of the
transmitted OFDM signals, measured using the complimentary
cumulative density function (CCDF), i.e., the probability of
PAPR greater than a threshold PAPR0, are also compared.

Fig. 2 and Fig. 3 show respectively the PSDs and PAPRs
of the OFDM signals with and without OOBE reduction. The
cancellation distances are set to ωL = ωR = 1. The OOBE
reduction methods include the cancellation carrier method
(denoted as CC) with four FDCSs only, the self-cancellation
method for SC-FDMA (denoted as SC-FDMA) corresponding
to L = 1 since only one DDCS is used, the SSOP method
(denoted as SSOP) with 4 cancellation points selected at −N

2 ,
−1, M and M − 1+ N

2 , and the proposed method using both
FDCSs and DDCSs (denoted as FDCS+DDCS). Two cases for
the FDCS+DDCS method are considered: one uses two FDCSs
each located at each side the frequency band and two DDCSs
each located in a precoding block of size 32 (i.e., L = 4)
and the other uses 4 FDCSs, 2 on each side of the frequency
band, and 4 DDCSs each located in a precoding block of
size 16 (i.e., L = 8). We see that the CC method requires
significantly higher power on cancellation subcarriers and also
causes larger PAPR. SC-FDMA has the lowest PAPR due to
the DFT precoding but the OOBE self-cancellation is not so
effective since the precoding redundancy is only 1. The SSOP
method can achieve comparable OOBE reduction performance
and it does not affect the PAPR. The major disadvantage is
the BER performance degradation as analyzed in [9]. The
proposed method using both FDCSs and DDCSs can achieve
better OOBE reduction and also improve PAPR.
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Fig. 2. PSDs of various OOBE reduction methods (ωL = ωR = 1).
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Fig. 3. PAPRs of various OOBE reduction methods (ωL = ωR = 1).

The cancellation distance also plays an important role in
OOBE reduction. Generally speaking, if ωL or ωR is smaller,
the OOBE will roll-off more quickly. With larger cancellation
distance, the OOBE will roll-off more slowly but more OOBE
reduction can be achieved. This is shown in Fig. 4 where PSDs
of the precoded OFDM using the FDCS+DDCS approach with
L = 4 but various cancellation distances are displayed. The
correspondng PAPR performance is also shown in Fig. 5. We
see that the PAPR only increases slightly with larger cancel-
lation distance but is still lower than that of the conventional
OFDM.

VI. CONCLUSIONS

A unified linear complexity OOBE reduction framework
for OFDM is presented in this paper. It has been shown
that jointly using frequency domain cancellation subcarriers
and data domain cancellation symbols for DFT precoded
OFDM can achieve larger OOBE reduction than other existing
methods with similar complexity. The PAPR performance is
also improved at the same time. By properly designing the
distribution matrix, the proposed framework provides great
flexibility for an OFDM system to satisfy different perfor-
mance requirements in different applications.
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Fig. 4. PSDs of proposed method using both FDCSs and DDCSs (L = 4).
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