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Abstract

This paper gives constructions for optimal and near-optimal sets of
pairs for the estimation of main effects, and for the estimation of main
effects and two factor interactions, in forced choice experiments in which
all attributes have two levels. The number of pairs is much smaller than
that in many previously constructed optimal 2-level choice experiments.
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1 Introduction

Since proposed by Louviere and Woodworth (1983), interest in designed choice
experiments has steadily increased, and their use in marketing, transport, envi-
ronmental, resource economics and other fields has grown substantially. Despite
progress in understanding how to design multiple choice experiments that are
consistent with certain types of probabilistic discrete choice models (eg, multi-
nomial logit regression models), there is still much to learn about the efficiency
properties of various candidate designs. Work on determining the structure of
the optimal designs has been carried out by Berkum (1987a, b; 1989), Offen
and Littell (1987), Street, Bunch and Moore (2001) and Grossman, Holling and
Schwabe (2002), amongst others.

This paper investigates the efficiency of various small sets of choice pairs
in a setting in which estimates for main effects, or main effects and two factor
interactions, are required and respondents must choose one of the two options
presented in each choice set.

1



The ideas in Berkum (1987a, b) are extended in Berkum (1989) to develop
smaller sets of pairs that are optimal and near-optimal for the estimation of a
quadratic model. Since the model to be estimated is quadratic, the attributes
are quantitative and each has at least three levels. Thus these designs are not
appropriate to the situation discussed in this paper.

Street, Bunch and Moore (2001) established the form of the optimal paired
comparison design when there are k attributes (or factors), each with two levels
(or settings), and the set of possible choice pairs is restricted so that each pair
of treatment combinations in which there are i attributes with different levels
appears equally often. If all the possible treatment combinations are to be used
to generate the pairs (that is, the pairs are to be based on the complete factorial)
then the optimal design for the estimation of main effects is the design consisting
of all the foldover pairs. (One treatment combination is said to be the foldover
of another if the second one is obtained from the first by changing all 0’s to
1’s and all 1’s to 0’s.) An example of the foldover pairs with k = 4 appears in
Table 1. The information matrix for these optimal designs for estimating main
effects was shown to be diagonal and to have determinant [ 1

2k ]k.

{(0 0 0 0), (1 1 1 1)}
{(0 0 0 1), (1 1 1 0)}
{(0 0 1 0), (1 1 0 1)}
{(0 0 1 1), (1 1 0 0)}
{(0 1 0 0), (1 0 1 1)}
{(0 1 0 1), (1 0 1 0)}
{(0 1 1 0), (1 0 0 1)}
{(0 1 1 1), (1 0 0 0)}

Table 1: The fold-over pairs with k = 4

In the same setting Street, Bunch and Moore (2001) also established that
the optimal designs for the estimation of main effects and two factor interactions
were those with all pairs with (k + 1)/2 attributes different (when k is odd).
For even k the optimal designs were shown to be those with all pairs with k/2
or k/2 + 1 attributes different. The information matrix, C, for estimating main
effects and two factor interactions using these designs was shown to be diagonal
and to have determinant

det(C) =





[
k+1

k2k+1

]k+
k(k−1)

2 , when k is odd,
[

k+2
(k+1)2k+1

]k+
k(k−1)

2
, when k is even.

The same result appeared in Berkum (1987a) using a different method of proof.
Thus any design that is proposed for estimating either main effects or main

effects and two factor interactions can be compared to these optimal designs.

In general the D-efficiency of any design is given by
(

det(C )
det(Coptimal)

)1/p

where p is
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the number of parameters that have to be estimated in the model. For designs
that estimate main effects, p = k. For designs that estimate both main effects
and two factor interactions, p = (k + k(k − 1)/2).

This gives one way of comparing designs. Note that diagonal information
matrices are preferable since diagonal matrices mean uncorrelated estimates.
The constructions given later usually result in diagonal information matrices.

In the next section we recall a number of results about fractional factorial
designs and about the information matrix for a choice experiment. In the re-
mainder of this paper we will investigate the D-efficiency of various designs,
both those that have been routinely used by marketers and some small designs
that we are proposing as alternatives to the very large designs that arise from
the results in Berkum (1987a, b) and Street, Bunch and Moore (2001).

2 Preliminary Results

We use 2k−p to denote a 1
2p fraction of a 2k factorial design. A fraction is

said to be regular if it can be described by the solution space to a set of p
independent binary equations. For instance, the solutions to the binary equation
x1 + x2 + x3 = 0 are the 8 = 24−1 treatment combinations in Table 2(a).

0 0 0 0
0 0 0 1
0 1 1 0
0 1 1 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1

(a) Resolution 3

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(b) Resolution 4

Table 2: OMEPs with k = 4

A particular class of fractional factorial designs are the orthogonal main
effect plans. Recall that a k attribute, n run, two-level orthogonal main effect
plan (OMEP) is an n by k array of 0’s and 1’s such that each column contains
the same number of 0’s as of 1’s and all main effects are independently estimable.
Such an array is said to have resolution 3. The design in Table 2(a) is an example
of an OMEP with k = 4 and n = 8.

Subsequently we will need designs of resolution 4 and 5. A design is said to
have resolution 4 if two-factor interactions may be confounded with each other
but never with main effects. An example of a design of resolution 4 with k = 4
and n = 8 appears in Table 2(b). A design is said to have resolution 5 if main
effects and two-factor interactions can be independently estimated. A design of
resolution r is also a design of resolution r − 1.
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Note that if we represent the two levels of an OMEP by −1 and 1 then the
inner product of any two columns of the OMEP is 0.

For a regular fractional factorial design there is a link between the resolution
of the fractional factorial and the equations that define it. Consider the p
independent binary equations that define a regular 2k−p design. Calculate all the
linear combinations of these binary equations. If each of the original equations
and each of the linear combinations have at least r non-zero coefficients then
the 2k−p fraction is of resolution r. For instance the design in Table 2(b) is the
solutions to the binary equation x1 + x2 + x3 + x4 = 0.

The following results about the information matrix will be helpful subse-
quently.

We let the information matrix of the set of choice pairs be denoted by C
and, following El-Helbawy, Ahmed and Alharbey (1994) and Street, Bunch and
Moore (2001), we let Λ be the matrix of second derivatives of the log-likelihood
function (assuming the Bradley-Terry model is used). With this model, an as-
sumption that all the πi are equal and this definition of Λ, we find that Λij , i 6= j,
is one-quarter of the negative of the proportion of pairs in the choice experiment
that compare treatments i and j, where we have ordered the treatment combi-
nations in some fixed, but arbitrary, way. Note that here we are using i and j
to refer to k-tuples of 0’s and 1’s. The diagonal elements of Λ are such that the
row and column sums of Λ are 0. The Λ matrix for the pairs in Table 1 (where
we use lexicographic order for the treatment combinations, that is, 0000, 0001,
0010, 0011 and so on) is I16 − R16, where In is the identity matrix of order n
and Rn is an order n matrix with 1’s on the backdiagonal and 0’s elsewhere.

Let Bmc be the normalised contrast matrix for main effects in the complete
factorial.

With these definitions it can be shown that the information matrix for es-
timating main effects, Cm = BmcΛBT

mc, although if a fractional design is used
some rows and columns of Λ will be 0. When comparing two, or more, designs,
we assume that all treatment combinations could have been involved in the de-
sign. Otherwise we are implicitly restricting attention to only those designs that
can be obtained from a fraction of the treatment combinations. Designs con-
structed from fractions may be quite uninformative compared to ones obtained
from the complete design.

In the next section we will investigate the D-efficiency of two classical con-
structions for choice experiments. In the section following we will look at the
D-efficiency of designs obtained from using the pairs that result by adding one,
or more, vectors to each of the treatments in a regular fraction.

3 Two Classical Constructions

The two constructions that we consider in this section are used frequently; see
Louviere (1988), Kuhfeld (2000) or Louviere, Hensher and Swait (2000), for
example.

The first construction is found as Option 3 in Appendix A5 of Louviere,
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Hensher and Swait (2000). No formal proof of the properties of these designs is
given there.

Construction 1 To construct a set of pairs to compare products with k at-
tributes, first construct a regular orthogonal main effect plan with k attributes.
From each row of this OMEP obtain a choice pair by pairing the row with its
foldover. If any pair appears twice then the duplicate choice set is omitted. Thus
each treatment combination, and each pair, appears only once in the final set of
choice pairs. The design has a diagonal information matrix and a D-efficiency
of 100% for estimating main effects.

Proof of Construction 1
Assume that all the equations that define the OMEP have an even number

of coefficients. Let
∑

i ηixi = 0 be one of these equations. Then
∑

i ηi =
0. If (a1, a2, . . . , ak) is a solution of this equation then

∑
i ηiai = 0. Hence∑

i ηi(1−ai) =
∑

i ηi−
∑

i ηiai = 0 and so the OMEP consists of foldover pairs.
Let the levels for the factors be -1 and 1 and let A denote the n×k array for

the OMEP. Since A consists of fold-over pairs, we can represent A as
[

A1

−A1

]
.

Thus AT A = nIk = 2AT
1 A1. We can write the pairs as (A1,−A1). Then

the B matrix for the treatment combinations that are actually involved in the
design is Bmf = 1√

2n
(AT

1 ,−AT
1 ). Considering only the treatment combinations

in the design, we have that Λf = 1
2n

[
I −I
−I I

]
. Then we get BmfΛfBT

mf =
1
n

1
2n4AT

1 A1 = 1
nIk. If we now use Bmc and the Λ matrix for the complete

factorial we see that Cm = n
2k

1
nIk = 1

2k Ik. Thus det(Cm) = [ 1
2k ]k and so this

design has a D-efficiency of 100%.
Next suppose that the set of binary equations that define the OMEP, A, say,

has at least one equation with an odd number of coefficients. Thus there are
no foldover pairs in the experiment and the pairs are given by (A,−A) and the
argument proceeds as above.

Example 1 Let k = 4 and consider the OMEP in Table 2(b). The pairs derived
from Construction 1 and this OMEP are given in Table 3. There are only 8 of
the 16 possible treatment combinations involved in these pairs but this design is
as efficient as the design, based on all 8 foldover pairs, given in Table 1. If the
same construction is used on the foldover from the OMEP given in Table 2(a),
we get the pairs in Table 1. In other words, we get the same design as we get
when we take the foldover pairs in the complete factorial.

As initially described, Construction 1 did not include the restriction that
the OMEP used in the construction be regular. However Example 2 shows
that without that restriction the pairs that result may not have a diagonal
information matrix or be 100% efficient.

Example 2 Let k = 6 and consider the OMEP in Table 4(a). Observe that
it has one foldover pair of treatments and that it is not regular. Applying
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{(0 0 0 0), (1 1 1 1)}
{(0 0 1 1), (1 1 0 0)}
{(0 1 0 1), (1 0 1 0)}
{(0 1 1 0), (1 0 0 1)}

Table 3: The pairs from the OMEP with k = 4 of resolution 4

Construction 1 to this OMEP gives 11 distinct pairs with information matrix
1

26∗44 (48I − 4J) and a D-efficiency of 97.2%.

0 0 0 0 0 0
1 1 1 1 1 1
0 1 0 1 1 0
1 0 1 0 1 0
0 1 1 1 0 0
0 0 0 1 1 1
0 0 1 0 1 1
1 0 0 1 0 1
1 1 0 0 1 0
1 1 0 0 0 1
0 1 1 0 0 1
1 0 1 1 0 0

(a) k = 6

0 0 0 0
1 1 1 1
0 0 0 1
1 1 1 0
0 1 0 0
1 0 1 1
0 1 0 1
1 0 1 0
1 0 0 0
1 0 0 0
0 0 1 1
0 0 1 1
1 1 0 1
1 1 0 1
0 1 1 0
0 1 1 0

(b) k = 4

Table 4: Non-regular OMEPs of resolution 3

Construction 1 can be extended to the union of regular designs. For instance
the design in Table 4(b) is the union of a 24−1 and two copies of a 24−2. Thus
it has 8 treatment combinations in which the foldover occurs in the design and
four which do not (and which are repeated). However Construction 1 applied
to this design gives a set of pairs that are 100% efficient.

The second construction is found as Option 4 in Appendix A5 of Louviere,
Hensher and Swait (2000).

Construction 2 Construct an OMEP with 2k attributes and use the first k
attributes to describe the first entry in the pair and the second set of k attributes
to describe the second entry in the pair.

In some descriptions of this construction you are warned that main effects
are only estimable if respondents are given the choice of not choosing either of

6



the options. This is usually referred to as having a “neither of these” option
in each pair. Even if a “neither of these” option is not required to be able to
estimate main effects in a particular design, not all OMEPs of a given size are
equally good, as the following example illustrates.

Example 3 Let k = 4 and consider the OMEP in Table 5(a). This is the set
of solutions to the equations x2 + x3 + x4 + x5 = 0, x1 + x3 + x4 + x6 = 0,
x1 + x2 + x3 + x7 = 0 and x1 + x2 + x4 + x8 = 0. The pairs derived from
Construction 2 are indicated by the wide column. Although all the treatment
combinations appear in the pairs, four of the pairs consist of the same treatment
combination repeated. This design has an information matrix for estimating
main effects which is not diagonal, and a D-efficiency of about 60%. If the pairs
with repeated treatment combinations are removed then C = 1

24I and the D-
efficiency is about 67%. The pairs from the OMEP given by x2+x3+x4+x5 = 0,
x1+x3+x4+x6 = 1, x1+x2+x3+x7 = 1 and x1+x2+x4+x8 = 1 again involve
all 16 treatment combinations but no pair has repeated choices; see Table 5(b).
This design has C = 1

32I and hence a D-efficiency of about 50%. The best
available design for estimating main effects is that of Table 3. It has a diagonal
information matrix, uses only 4 foldover pairs and has a D-efficiency of 100%.
Thus none of the other designs described here is very good.

{(0 0 0 0), (0 0 0 0)}
{(1 0 0 0), (0 1 1 1)}
{(0 1 0 0), (1 0 1 1)}
{(1 1 0 0), (1 1 0 0)}
{(0 0 1 0), (1 1 1 0)}
{(1 0 1 0), (1 0 0 1)}
{(0 1 1 0), (0 1 0 1)}
{(1 1 1 0), (0 0 1 0)}
{(0 0 0 1), (1 1 0 1)}
{(1 0 0 1), (1 0 1 0)}
{(0 1 0 1), (0 1 1 0)}
{(1 1 0 1), (0 0 0 1)}
{(0 0 1 1), (0 0 1 1)}
{(1 0 1 1), (0 1 0 0)}
{(0 1 1 1), (1 0 0 0)}
{(1 1 1 1), (1 1 1 1)}

(a)

{(0 0 0 0), (0 1 1 1)}
{(1 0 0 0), (0 0 0 0)}
{(0 1 0 0), (1 1 0 0)}
{(1 1 0 0), (1 0 1 1)}
{(0 0 1 0), (1 0 0 1)}
{(1 0 1 0), (1 1 1 0)}
{(0 1 1 0), (0 0 1 0)}
{(1 1 1 0), (0 1 0 1)}
{(0 0 0 1), (1 0 1 0)}
{(1 0 0 1), (1 1 0 1)}
{(0 1 0 1), (0 0 0 1)}
{(1 1 0 1), (0 1 1 0)}
{(0 0 1 1), (0 1 0 0)}
{(1 0 1 1), (0 0 1 1)}
{(0 1 1 1), (1 1 1 1)}
{(1 1 1 1), (1 0 0 0)}

(b)

Table 5: Two OMEPs with k = 8

The reason that the designs derived from Construction 2 are so variable in
performance is that we only know something about the 2k attributes, rather
than about each set of k attributes. In the next section we will describe a
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construction for small sets of choice pairs to estimate main effects and two
factor interactions in which a fixed number of attributes are different between
the options in each pair in the choice set or which are unions of such sets. We
believe that this construction overcomes some of the difficulties that we have
identified above.

4 Constant Difference Pairs

Consider a regular fractional factorial design of resolution 5, F say. Choose
any treatment combination not in the fraction, e say, and form pairs by pairing
f ∈ F with f+e, where the addition is done component-wise modulo 2. We will
write the complete set of pairs as (F, F + e). We refer to e as the generator of
the pairs.

To evaluate the information matrix of these pairs we need to define two
incidence matrices, Dm,e and Dt,e. We define a diagonal matrix Dm,e by
(Dm,e)XX = 1 if eX = 0 and (Dm,e)XX = −1 if eX = 1, where the attributes
label the rows and columns of Dm,e. We can define a diagonal matrix Dt,e

of size k(k − 1)/2 by (Dt,e)XZ,XZ = 1 if eX = eZ and (Dt,e)XZ,XZ = −1 if
eX 6= eZ (where we label the rows and columns of Dt,e by the ordered pairs of
attributes).

We then have the following result.

Lemma 1 Consider only the treatment combinations involved in the pairs (F ,
F + e). Then the information matrix, Ce, say, for these pairs is given by

Ce =
1
4n

[
2Ik − 2Dm,e 0

0 2Ik(k−1)/2 − 2Dt,e

]
.

Proof Let Bm be the normalised contrast matrix for main effects associated
with F and let Bt be the normalised contrast matrix for two-factor interac-
tions associated with F . Then, assuming there are k attributes, we know that
BmBT

m = Ik, BtB
T
t = Ik(k−1)/2 and BmBT

t = 0.
For convenience we order the treatment combinations in the paired compar-

ison experiment as f1, f2, . . . , fn (for some fixed but arbitrary order) followed by
f1 + e, f2 + e, . . . , fn + e. Then, considering only the treatment combinations in
the pairs,

Λ =
1
4n

[
I −I
−I I

]

To calculate the information matrix we need to calculate the B matrix for the
pairs. If a particular attribute, X say, has a 0 in e then the X contrast in F +e
is the same as it is in F whereas if attribute X has a 1 in e then the X contrast
in F + e is the negative of the one in F . So the matrix for main effect contrasts
is given by

[
Bm Dm,eBm

]
.

Similarly consider two attributes X and Z. If eX = eZ then the two factor
interaction contrast for the attributes X and Z is the same in F + e as it is in
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F . If eX 6= eZ then the two factor interaction contrast for attributes X and
Z is the negative in F + e of the one it is in F . So the matrix for two factor
interaction contrasts is given by

[
Bt Dt,eBt

]
.

Then, ignoring treatment combinations not in the pairs for the time being,

Ce =
1
4n

[
Bm Dm,eBm

Bt Dt,eBt

] [
I −I
−I I

] [
BT

m BT
t

BT
mDT

m,e BT
t DT

t,e

]

=
1
4n

[
2Ik − 2Dm,e 0

0 2Ik(k−1)/2 − 2Dt,e

]
,

as required.

Thus Ce is diagonal and the non-zero entries in Ce correspond to those
positions in e where there is a 1, for the “main effects” part of Ce and to those
positions, in the two factor interaction part, where one attribute corresponds to
a 1 and one to a 0 in e.

Consider the following example.

Example 4 Let k = 5 and let F be the solutions to x1 + x2 + x3 + x4 +
x5 = 0. Let e = (00111). Then the B matrix for the pairs (F, F + e) is
the B matrix for the complete factorial. If we order the treatments in F as
00000, 00011, 00101, 00110, 01001, 01010, 01100, 01111, 10001, 10010, 10100,
10111, 11000, 11011, 11101, 11110 then the contrast, within F , for the main
effect of the first attribute is (−1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1, 1).
If we then add e to each treatment combination in F we see that the contrast,
within F + e, for the main effect of the first attribute is exactly the same as
that in F . However the contrast for the main effect of the third attribute is
(−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1) in F and is
(1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1) in F + e.

Lemma 2 Consider the pairs generated by e and g where e,g /∈ F but where
e + g ∈ F . Then the information matrix, Ce,g, say, for these pairs is given by

Ce,g =
1
8n

[
4Ik − 2Dm,e2Dm,g 0

0 4Ik(k−1)/2 − 2Dt,e − 2Dt,g

]
.

Proof As e + g ∈ F , no further treatment combinations have been used in
the construction of the additional pairs. Hence we can write, again suppressing
rows and columns corresponding to treatments not in any pair,

ΛFeg =
1
8n

[
2I −I − P

−I − P 2I

]
,

where P is a permutation matrix that ensures that ΛFeg contains the correct
pairs. Consider C = (BΛBT ) and consider it as a 2 × 2 block matrix. Then
similar calculations to those in Lemma 1 give (BΛBT )12 = −Dm,eBmPBT

t −
BmPBT

t DT
t,e. If we define Dm,g and Dt,g for the generator g in the same way
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we defined Dm,e and Dt,e for the generator e then we have that BmP =
Dm,eDm,gBm since BmP is a permutation of the columns of Bm and can
be thought of as a permutation of the treatment combinations in F . P is a
permutation of the treatments in F + e so that the order of the treatments
corresponds to that of F + g. Since F = F + e + g we see that the con-
trast matrix for the treatments in this order is Dm,e+gBm = Dm,eDm,gBm,
giving the result. Thus (BΛBT )12 = 0. Again we find that (BΛBT )11 =
1
8n (4Ik − 2Dm,e − 2Dm,g). Finally noting that BtP = Dt,eDt,gBt we see that
(BΛBT )22 = 1

8n (4Ik(k−1)/2−2Dt,e−2Dt,g). Hence we see that C is again diago-
nal and the effects that can be estimated are those that correspond to a non-zero
entry in one of the generators (for main effects) and those that correspond to
positions with unequal entries, for two-factor interactions.

Lemma 3 Consider the pairs generated by e and g where e,g /∈ F and where
e + g /∈ F . The information matrix, Ce,g, say, for these pairs is given by

Ce,g =
1
8n

[
4Ik − 2Dm,e − 2Dm,g 0

0 4Ik(k−1)/2 − 2Dt,e − 2Dt,g

]
.

Proof We have pairs (F, F + e) and (F, F + g). Thus there are 2n pairs and
n treatments are in 2 pairs each and 2n treatments are in one pair each. From

the discussion above we know that B = 1√
(3n)

[
Bm Dm,eBm Dm,gBm

Bt Dt,eBt Dt,gBt

]

and Λ = 1
8n




2I −I −I
−I I 0
−I 0 I


 . Evaluating the information matrix for these

treatment combinations only, we get that

CF =
1
8n

[
4Ik − 2Dm,e − 2Dm,g 0

0 4Ik(k−1)/2 − 2Dt,e − 2Dt,g

]
.

Including all treatments we get C = 8n
2k CF as we had before.

Finally we need to consider generators that come from F . In this case we
can use such a generator to define a fraction of F and use one of the results that
we have given above on that smaller fraction.

Thus whether or not the generators, or their sum, is in F does not have any
bearing on the estimability properties of main effects and two-factor interactions.

Lemma 4 Consider a set generators such that

• for each attribute there is at least one generator with a 1 in the corre-
sponding position, and

• for any two attributes there is at least one generator in which the corre-
sponding positions have a 0 and a 1.

Then all main effects and two-factor interactions will be estimable from the pairs
generated by this set of generators.
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Proof From Lemma 2 and Lemma 3 we see that diagonal entries in C will
be 0 only if all the D matrices have entries of 1 in some position. For main
effects this happens only if none of the generators have a 1 for that attribute.
For two-factor interactions this happens only if all of the generators have the
same entry for two attributes. But the properties of the generators given in the
statement of the lemma preclude these situations from arising.

We will define an estimable set of generators to be one which satisfies the
conditions of Lemma 4.

In Construction 1 we have shown that using a regular OMEP and the single
generator (1, 1, . . . , 1) gives designs that are 100% efficient for estimating main
effects. Thus we only consider pairs for estimating main effects and two factor
interactions in the remainder of this paper.

We would like to find a minimum set of generators from which all main
effects and two-factor interactions can be estimated. For the estimation of main
effects and two-factor interactions in the complete factorial, generators of weight
k+1
2 have been shown to be optimal for odd k. For even k, generators of weights

k
2 and k

2 + 1 have been shown to be optimal. We choose generators with these
weights below, although we do not know that these weights are optimal in this
setting.

In the next result we give a recursive construction for sets of generators with
k+1
2 non-zero entries if k is odd and k

2 non-zero entries if k is even. A similar
result appears in Roberts (2000).

Lemma 5 If 2m ≤ k < 2m+1 then there is a estimable set with m+1 generators.

Proof The proof proceeds recursively once we have the first two cases. When
k = 2 use the generators (1,0) and (0,1). When k = 3 use the generators (1, 1,
0) and (0, 1, 1).

For the recursive construction it is advantageous to write the generators as
two sets, those positions in which the generator contains a 1 and those positions
in which the generator contains a 0. Hence we get the partitions ({(1),(2)},
{(2),(1)}) for k = 2 and ({(1,2), (3)}, {(2,3), (1)}) for k = 3.

Consider k = 2s + 1. We write the first partition as {(1, 2, . . . , s + 1), (s +
2, s+3, . . . , 2s+1)}. We then partition the sets of size s and s+1 and take the
union of the first set in the first partition of each and the union of the second
set in the first partition of each to get the second partition for k = 2s + 1. We
continue in this way to get all the partitions for k = 2s + 1. The only time that
this might not work is when s+1 is a power of 2 since in that case s+1 has one
more partition than s. However using the initial generators given above we see
that the final generator for a power of 2 is just the foldover of the second last
generator. This generator is required only so that main effects can be estimated,
not for the estimation of two-factor interactions, and all the main effects for the
first s + 1 attributes can be estimated from the first generator. Hence we can
ignore this generator when doing the recursive construction. This completes the
construction for odd k.
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Consider k = 2s. Do exactly the same construction as for odd k, using an
initial partition of {(1, 2, . . . , s), (s + 1, s + 3, . . . , 2s)}.

This proof is completed by noting that the set of generators satisfies the
conditions of Lemma 4.

Example 5 Let k = 8. Then the partition that arises is ({(1,2,3,4), (5,6,7,8)},
{(1,2,5,6), (3,4,7,8)}, {(1,3,5,7), (2,4,6,8)}, {(2,4,6,8), (1,3,5,7)}). The final
partition is only required to ensure that the main effect of attribute 8 can be
estimated. Now construct the partition for k = 15. We get ({(1,2,3,4,5,6,7,8),
(9,A,B,C,D,E,F)}, {(1,2,3,4,9,A,B,C), (5,6,7,8,D,E,F)}, {(1,2,5,6,9,A,D,E),
(3,4,7,8,B,C,F)}, {1,3,5,7,9,B,E,F), (2,4,6,8,A,C,D)}) and the final partition
from k = 8 is not required since the main effect of attribute 8 can be estimated
because there is a 1 in position 8 in the first generator.

The efficiency of the designs that result from the lemma above depend on
the particular resolution 5 design that is used; see Table 6.

For odd k it is possible to use balanced incomplete block designs (BIBD)
to give a set of generators in which each main effect and each interaction effect
is estimated using the same number of generators. (Recall that a balanced
incomplete block design is a collection of b k-sets, or blocks, of a v-set such that
each element of the v-set appears in exactly r blocks and any pair of elements
appears in λ blocks. We write (v, b, r, k, λ) BIBD. If v = b then r = k and the
design is said to be symmetric (SBIBD), written (v, k, λ). Realise that it is the
v of the BIBD setting that is the k of the choice set setting.) The pairs that
result from Lemma 6 are often very efficient and relatively small. However there
does not appear to be a general expression for the efficiency of these designs.

Lemma 6 1. The blocks of a (4t+3, 2t+2, t+1) SBIBD can be used to give
4t + 3 generators, each with weight 2t + 2, such that each main effect and
each two factor interaction can be estimated from 2t+2 of the generators.

2. The blocks of a (4t + 1, 2(4t + 1), 2(2t + 1), 2t + 1, t + 1) BIBD can be used
to give 2(4t + 1) generators, each with weight 2t + 1, such that each main
effect can be estimated from 4t + 2 of the generators and each two factor
interaction can be estimated from 6t + 2 of the generators.

3. For even k, estimable sets with high efficiency can be found by deleting
one treatment from the designs above.

Proof The results follow by counting the number of blocks with one specific
treatment, for main effects, and the number of blocks with only one of two
specific treatments, for interaction effects.

In the following table we give some fractions and generators, the number of
pairs in the choice set and the D-efficiency of the set of pairs. For each value of
k, the set of generators that come from Lemma 5 are indicated by an * and those
that come from Lemma 6 are indicated by †. In Table 6 we use I ≡ ABCDE,
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say, to represent the solutions to the equation x1 + x2 + x3 + x4 + x5 = 0 and
I ≡ ABCDE ≡ DEFGH to represent the solutions to both the equations
x1 + x2 + x3 + x4 + x5 = 0 and x4 + x5 + x6 + x7 + x8 = 0. In the table MR
refers to Mathon and Rosa (1996).

The designs for k = 4 with 48 pairs and with 32 pairs are equivalent to
designs given in van Berkum (1987b, Chapter 5). The method of construction
is quite different, however, as he focuses on finding sets of pairs within one
or more fractions and we specify the fraction and one, or more, generators for
the pairs. For k = 5 for example, van Berkum’s design with 80 pairs has an
efficiency of 84% compared to our design with 80 pairs with an efficiency of
96.5%.

Table 6: D-efficiency and number of pairs for some constant differ-
ence choice pairs

k F generators number efficiency
of pairs (%)

3† complete 011, 101, 110 12 100
3* complete 011, 101 8 94.5
4 complete all vectors of weights 2 and 3 80 100
4 complete omit any one weight 2

or weight 3 vector 72 99.6
4 complete omit any two weight 2 vectors

or any two weight 3 vectors 64 99.21
4 complete six weight 2 vectors and

any weight 3 vector 56 98.95
4† complete 1100, 1010, 1001

0110, 0101, 0011 48 99.03
4 complete 1110, 1101, 1011, 0111 32 98.01
4* complete 1100, 1010, 0101 24 93.98
5† I ≡ ABCDE all weight 3 vectors 160 100
5 I ≡ ABCDE any nine weight 3

vectors 144 99.60
5 I ≡ ABCDE any eight weight 3

vectors 128 99.08
5 I ≡ ABCDE 11100, 10011, 10101,

11010, 01110, 00111,
11001 112 98.46

5 I ≡ ABCDE 11100, 10110, 10101,
11010, 11001, 10110 96 97.92

5 I ≡ ABCDE 11100, 10110, 10101,
11010, 11001 80 96.49

5 I ≡ ABCDE 11100, 10110, 10101,
11010 64 95.72

5* I ≡ ABCDE 11100, 11010, 01101 48 91.32
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6† complete 110100, 111010, 011101,
001110,100111, 010011,

101001 224 100
6 complete any 6 of the generators above 192 98.98
6 complete any 5 of the generators above 160 97.44
6 complete the four weight 3 vectors

from above 128 96.61
6† I ≡ ABCDEF 110100, 111010, 011101,

001110, 100111, 010011,
101001 176 99.46

6 I ≡ ABCDEF 111100, 001111, 100111,
111010, 111001, 010111 96 95.71

6 I ≡ ABCDEF 111100, 001111, 100111,
111010, 111001 80 93.75

6 I ≡ ABCDEF 111100, 001111, 100111,
111010 64 92.49

6* I ≡ ABCDEF 111000, 001011, 100110 96 91.85
7† I ≡ ABCDEFG 1110100, 0111010, 0011101,

1001110, 0100111, 1010011,
1101001 224 100

7 I ≡ ABCDEFG any 6 of these 7 vectors 192 98.98
7 I ≡ ABCDEFG any 5 of these 7 vectors 160 97.44
7* I ≡ ABCDEFG 1111000, 1100110, 1010011 96 91.85
8* I ≡ ABCDE 11110000, 11001100, 10101010,

≡ DEFGH 01010101 256 92.96
8† I ≡ ABCDE generators from first

≡ DEFGH (9,18,10,5,5) in MR 1120 99.97
8† I ≡ ABCDE generators from sixth

≡ DEFGH (9,18,10,5,5) in MR 1120 99.88
8† I ≡ ABCDE generators from 11th

≡ DEFGH (9,18,10,5,5) in MR 1056 99.90
8* I ≡ ABCDEF 11110000, 11001100, 10101010,

≡ DEFGH 01010101 224 86.51
8† I ≡ ABCDEF generators from first

≡ DEFGH (9,18,10,5,5) in MR 992 99.81
8† I ≡ ABCDEF generators from sixth

≡ DEFGH (9,18,10,5,5) in MR 960 99.68
8† I ≡ ABCDEF generators from 11th

≡ DEFGH (9,18,10,5,5) in MR 1056 99.9

5 Concluding Remarks

The results in Section 4 can be used to construct designs in which each attribute
has a number of levels equal to a power of two. Broadly one does this by replac-
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ing each attribute with an appropriate number of pseudo-factors and ensuring
that all interactions between pseudo-factors associated with the same original
attribute can be estimated in the proposed design.

For example, to construct a design to estimate main effects for four at-
tributes, three with two levels and one with four levels, construct a design for
five attributes, A, B, C, D and E, say, and ensure that the interaction be-
tween D and E is also estimable. Thus the generators (1,1,1,1,1), (1,1,1,1,0)
and (1,1,1,0,1) give 48 pairs from which all main effects in the original attributes
can be estimated. This set of pairs appears to be optimal for this situation.

To construct a design to estimate main effects for three attributes, one with
two levels and two with four levels, we again construct a design using A, B,
C, D and E but now the interaction between B and C must also be estimable.
The generators of the previous paragraph will not work since this interaction is
not estimable. Instead use the generators (1,1,1,1,1), (1,1,0,1,0) and (1,0,1,0,1).
Again this appears to be the optimal set of pairs for this setting. If these
generators are used in the previous paragraph, then they have a D-efficiency of
4
9 relative to the generators given in the previous paragraph.

To use these ideas for attributes with 8 levels will require that three factor
interactions be estimable in the design involving the pseudo-factors.

In this paper we have used D-efficiency to compare various designs. We
have not given any consideration to task complexity. If more attributes differ
between options in a choice set does the task of choosing become more complex
and is respondent consistency affected? Designs constructed using the methods
of Section 4 have been used to investigate these questions in Severin (2000).
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