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Abstract—The report revolve on building construction engi-

neering and management, in which there are a lot of requirements
such as well supervision and accuracy and being in position to

forecast uncertainties that may arise and mechanisms to solve

them. It also focuses on the way the building and construction
can minimise the cost of building and wastages of materials. The

project will be based of heuristic methods of Artificial Intelligence

(AI). There are various evolution methods, but report focus on
two experiments Pattern Recognition and Travelling Salesman

Problem (TSP).

The Patter Recognition focuses Evolutionary Support Vector
Machine Inference System for Construction Management. The

construction is very dynamic are has a lot of uncertainties, no

exact data this implies that the inference should change according
to the environment so that it can fit the reality, therefore there

a need of Support Vector Machine Inference System to solve these

problems. TSP focus on reducing cost of building construction
engineering and also reduces material wastages, through its

principals of finding the minimum cost path of the salesman.

Keywords—TSP, genetic algorithms, GA, Support Vector Ma-
chines, SVM

I. INTRODUCTION

I
N the construction engineering is involve of a lot of

disparate activities, which usually relate to one another

and have impacts to one another. The construction building is

affected by various uncertainties, such as geological aspects,

weather, aspect of human judgement and market fluctua-

tion. Due to these facts professional construction engineering

profession is very important. The construction is a process

of achieving construction objective through application of

available materials or resources. Due to uncertainties in the

construction engineering, practical engineering aspect is very

complicated and ill structured [1]. The process of determining

mathematical model to solve this problem is very complicated

and costly at the same time. The viable alternative is use

of proximate inference which is fast and not expensive. Due

to the fact that information changes the inference process

should change accordingly. The construction is very dynamic

are has a lot of uncertainties, no exact data this implies that

the inference should change according to the environment so

that it can fit the reality. In this case it must emulate the
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human mind aspect, where human has the capability to solve

complex problems, even in time of uncertainty, imprecision

and incomplete [1].

The aspect of inference process to emulate the human brain

is the best solution to construction engineering. The artificial

intelligent (AI) which is branch of computer science design

can be adopted by inference process. AI emulates the human

mind in all aspects and solves things intelligently using logics

and pattern recognition [2].

Support Vector Machines (SVM) and fast messy genetic

algorithms (fm GA) are applied to solve this construction

problem. SVM can be trained by the user by selecting a kernel

function such as linear, polynomial.

II. SUPPORT VECTOR MACHINES APPROACH

On the SVM the learning theory has brought alternative

training technique of polynomial, radial based function classi-

fiers. SVM is oriented on structural risk minimisations (SRM)

reduction principle [3] which tries to mitigate generalised

errors to limited defined boundary. For the classification of the

case, RVM determines s separate hyper plane that mitigate the

margin between the two classes. Maximisation of the margin

is a quadratic programming (QP) problem that can be tackled

from its two problems by incorporating Lagrangian Multipli-

ers. The use of the linear programming is very important and

vary innovative due to its flexibility when used in large dataset.

In most cases to identify a suitable hyper plane in input

space is very challenging fact. The solution to this problem is

to map the input space into higher level feature space and then

try to identify the optimal hyper plane on the featured space.

When there is no knowledge of mapping the SVM uses the dot

product functions in the feature termed as kernel. The kernel

based on mercer theorem is used in SVM to map data from the

input to higher dimensional spaces [3]. The simple functions

defined on pairs of input data patterns are used in computing

dot product and a linear decision area.

The function definition:

Input space X , if there is a mapping φ : X → H that maps any

x, z ∈ X into Hilbert space H then a kernel, K : X ×X → R,

is constructed as K(x, z) = 〈φ(x), φ(z)〉H, where 〈·, ·〉H is

the scalar product operator in H. Kernel function k is the one

that satisfy the mercer condition, the kernel matrix is created
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by limiting k to definite subset of X is +V E semi defined

and this make to be called the mercer kernel and mercer

condition is very important to kernel design, when we apply

regression function and we give it the following training data

set{(x1, y1), . . . , (x n, y n)}C N ×K [4].

|ξ|ε =

{

0 if |ξ| ≤ ε
|ξ| − ε otherwise

(1)

N denote the space patterns Rk,ε SVM regression with the

goal to get a function f(x) the ε is the deviation from the real

obtained target yi in all trained data.

We may include error less than ε and we done not allow

the error greater than ε (1) is the ε insensitive function.

The regression can be made non linear by through map-

ping training patters(xi) via nonlinear transformation process

ε Φ : N → F to dimension feature (F ) as shown in the EQ. 2

where best fitting is estimated in feature space F [4].

f(X) = w.Φ(x) ± b (2)

In order to eliminate over fitting there is need to add

capacity control. In the formal SVM regression model should

be written as shown the (3).

min
w,b,ξi,ξ

∗

i

1

2
|w|2 + C

N
∑

i=1

(ξi + ξ∗i )

Subject to

yi − (wt < I > (xi) + b) ≤ ε− ξi
(wt < I > (xi) + b)− yi ≤ ε− ξ∗i
ξiξ

∗

i ≥ ∀i.
(3)

The constant C > 0 is the one that determines the relation-

ship between the complexity of f(x) and the extent to which

deviation greater than ε are accepted. That interesting thing

about RVM is that it can be expressed into form of functions

both linear and non linear [5]. There are other functions such

as polynomial, radial basis (RBF) and sigmoid kernel. In the

case of kernel parameters there is need to set them properly

to improve forecast accuracy in building construction.

k(xi, xj) = (1 + xi · xj)
d (4)

Radial basis function kernel:

k(xi, xj) = exp(−y|xi − xj |
2) (5)

Sigmoid kernel:

k(xi, xj) = tanh(kxi · xj − δ) (6)

III. FAST MESSY GENETIC ALGORITHMS APPROACH

The fm GA is based on the approach of its flexibility, it

emulate genes of chromosome which are represented in pairs

allele value and allele locus. Allele locus represents gene

position while allele represents the value of the gene in the

position [6]. Such example is ((3 1) (1 0) (2 1) (4 1) (5 0))

and ((2 1) (5 0) (3 1) (1 0) (4 1)).

In this step, the SVM uses default parameters and a training

dataset to train a prediction model.

Fig. 1. Training SVM [4].

Fig. 2. RVM System Architecture [4].

IV. ADAPTATION OF TRAVELLING SALESMAN PROBLEM

(TSP) TO REDUCE COST AND MATERIAL WASTAGES IN

BUILDING CONSTRUCTION ENGINEERING

TSP focus on reducing cost of building construction en-

gineering and also reduces material wastages, through its

principals of finding the minimum cost path of the salesman.

Due to complexity in the building construction and uncertainty

due to various factors, a well designed mechanism is needed

to tackle this problem [7]. The best option is to adopt TSP

that is based on heuristic that emulate the human activities.

TSP major on the aspect of a salesman and a set of cities.

The salesman has to go or visit all the cities starting from one

and return to back to the original city. The biggest challenge

is how the salesman will minimise the aggregate travelling

cost to visit all the cities [7]. The form definition of TSP is

described as follows

TSP = {(G, f, t) : G = (V,E) a complete graph,

f is a function V × V → Z,
t ∈ Z,

(7)

The problem is how to find a minimal route passing

from all the nodes. for example if you take path one from
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Fig. 3. A Graph with Weights on Its Edges [7].

{A,B,C,D,EA} and the path two that is {A,B,C,E,D,A}
you have passed all the cities, but path one has a sum of

twenty four and path two has a sum of thirty one. It implies

that the path two has the longest distance and path one has

the shortest distance. On Hamilton cycle, is a cycle in a graph

that goes around in all nodes [7].

Definition:

P = {A,B,C,D,E} is the Hamilton cycle. The issue is

identifying cycle of Hamilton in a graph is NP -complete.

Theorem of travelling salesman problem is NP complete.

Proof: Prove that TSP belongs to NP.

When we check a tour quality, then we check that the tour

visit each vertex once. Then we have sum cost of the edges

and finally we check whether the path is minimum path or has

less cost. This can be termed as completed polynomial time,

which implies TSP belongs to NP (The Travelling Salesman

Problem, n.d).

This step is to prove or show that TSP is NP hard. To

prove this is to show that Hamilton cycle ≤p TSP in the sense

that Hamilton cycle problem is NP complete. Let assume that

G = (V,E) to be an instance cycle of Hamilton then construct

an instance. The creation of complete graph to prove is needed

and is G′ = (V,E′), where E′ = {(i, j) : i, j ∈ V and i 6= j,

hence the cost function is defined as:

t(i, j) =

{

0 if (i, j) ∈ E,
1 if (i, j) /∈ E.

(8)

Suppose that a Hamiltonian cycle h exists in G. It is then

clear that the cost of each edge is h is o in G′ because each

edge belong to E. In this regard G has a Hamilton cycle it

implies g’ has o tour cost., let assume then that G′ has a tour

h’ of cost of at most zero. The cost of edges in E′ is zero

and one by definition. Therefore each edge must have a cost

of zero as the cost of h’ is zero. Then we can conclude that

h’ contains only edges in E [7].

In that case we have proven that G has a Hamilton cycle if

G′ has a tour of cost zero, hence TSP is NP complete.

V. TSP APPROACH USING EVOLUTIONALLY ALGORITHMS

TSP is classical NP hard combinatorial optimization prob-

lem and there is a lot studies that has been done on it. Taking

n cities and costs or distances between two cities, then we

want to get the minimum cost tour that will visit each city

one time only. The assuming that di,j , as the cost of visiting

Fig. 4. Genetic Algorithm and Genetic Local Search [8].

city i and city j, then the TSP can be formulated so that we

can get a permutation π of {1, 2, . . . , n} that is minimal [8].

C(π) =

n−1
∑

i=1

dπ(i),π(i+1) + dπ(n),π(1) (9)

(a) GA flowchart

(b) GLS is a combination of GA together with local search

heuristics

(c) Priority-Based GLS and uses a greedy algorithm and

also a Lamarckian feedback process to exchange between

genotype and phenotype.

Regarding to symmetric TSP (STSP), di,j = dj,i for any

two adjacent cities i and j, but in asymmetric the condition

may not hold. The Euclidean TSP is a unique case of STSP,

in this case cities are located in Rm distance for some m. and

the cost obey the triangle inequality; di,k + dk,j ≥ di,j for all

unique i, j and k [8].

VI. CONCLUSION

The travelling salesman problem can be adopted to handle

complicated work of construction engineering .the travelling

salesman problem has capability to do what is needed in

the construction industries with a lot of ease and maintain

accuracy and associated risks. It has the capability of de-

signing and implementing building construction projects at

high professional level. The reason behind this is that it

emulates human behaviours and way of reasoning. TSP focus

on reducing cost of building construction engineering and also

reduces material wastages, through its principals of finding the

minimum cost path of the salesman.

Genetic Algorithms are important in building construc-

tion due to these facts professional construction engineering

profession is very important. The construction is a process

of achieving construction objective through application of

available materials or resources. Due to uncertainties in the

construction engineering, practical engineering aspect is very

complicated and ill structured and can be solved well by

Genetic Algorithms.



128 R. A. WAZIRALI, A. D. ALZUGHAIBI, Z. CHACZKO

REFERENCES

[1] H. Li, “Case-based reasoning for intelligent support of construction

negotiation,” Information & Management, vol. 30, no. 5, pp. 231–238,

1996.

[2] I. Mareels and J. W. Polderman, Adaptive Systems: An Introduction.

Boston, Massachusetts: Birkhauser, 1996, pp. 1–3.

[3] L. Chun-fu, “Fuzzy support vector machines,” Ph.D. dissertation, De-

partament of Electrical Engineering, National Taiwan University, Taipei,

Taiwan, 2004.

[4] B. Yang and N. Yau, “Integrating case-based reasoning and expert system

techniques for solving experience-oriented problems,” Journal of the

Chinese Institute of Engineers, vol. 23, no. 1, pp. 83–95, 2000.

[5] C. Burges, “A tutorial on support vector machines for pattern recognition,”

Data Mining and Knowledge Discovery, vol. 2, pp. 121–167, 1998.

[6] J. Lin and C. Hsu, “A simple decomposition method for support vector

machine,” Machine Learning, vol. 46, no. 1-3, pp. 219–314, 2002.

[7] T. Travelling Salesman Problem, n.d.

[8] J. Wei, “Approaches to the Travelling Salesman Problem Using Evolu-

tionary Computing Algorithms,” 2008.


