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Abstract

Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently
high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However,
high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we
propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views
which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary
property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for
posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to
learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to
explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine
(SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on
our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly
outperforms the state-of-the-art method for human posture segmentation.
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Introduction

Posture segmentation, i.e. partitioning a human body into

semantic parts (such as, torso and limbs), is an indispensable step in

human motion analysis [1], [2], among various practical

applications, from security surveillance (abnormal detection,

human activities analysis), interfaces to games (seen in EyeToy

[3]), virtual reality and/or human-computer interfaces, and to

video annotation. However, inferring the pose of a highly

articulated object is considerably challenging due to its inherent

complexity caused by the changing of body pose and the diversity

of shape and appearance of individuals. Posture segmentation has

been a highly active research area for decades.

Early studies on human posture segmentation were mainly

based on conventional intensity images. There are several hurdles

to overcome in this direction of study, including (1) complex

environment situation, such as varied textures, lighting conditions,

scales, (2) ambiguity caused by missing depth information, such as

self-occluding problems, and (3) highly computational cost. Many

works run up against one or more of these difficulties. G. Mori et

al. [4] match up the test image with the stored exemplars using the

shape context descriptor. It falls into an embarrassment that more

exemplars containing complete appearance are required to get a

high accuracy while less exemplars are desired to achieve an

efficient matching. L. Pishchulin et al. [5] develop a complete and

controlled database to manage the appearance, shape and pose

variations. P. Felzenszwalb et al. [6] utilize the pictorial structure

models, which separately represent appearance of each part, to

reduce the large variation in shape and photometric information

in each object class. Z. Tu [7] proposes to learn the context

information by a discriminative [8] probability maps on local

image patches[9]. Combining the learned context information

with the original image patches, it trains an integrated low-level

context model to get the human body configuration. In the test

stage, it typically takes about 30,70 seconds per image of size

around 3006200, which is far from the requirement in real-time

applications. In [10], C. Bregler and J. Malik take the problem of

tracking humans as a differential motion estimation using the

product of exponential maps and twist motions. Given a close

initial pose, the algorithm would converge correctly and quickly.

However, the performance of the algorithm depends heavily on

the initialization.

The emerging of depth cameras stimulates new methodologies

for human posture segmentation, which overcomes the above-

mentioned first two weaknesses of intensity image based methods.

D. Simon et al. [11] utilize both conventional range sensors and
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CMU high speed VLSI range sensor to capture model and real-

time range data of the rigid object respectively. Then, iterative

closest point (ICP) algorithm, which tries to rigidly transform one

points cloud to another by minimizing corresponding points’

distances, is performed for real-time pose tracking and estimation.

The works [12], [13] also apply ICP algorithm to depth data to

track an initialized skeleton. Besides, the point cloud library (PCL)

[14] provides open source implementation of ICP algorithm.

Although those pose tracking and estimation methods accom-

plished with ICP can satisfy the real-time requirement, they need

to be re-initialized quickly because the tracking is not robust due to

fast human motion and accumulated errors.

Along the launch of Kinect [15], 3D points cloud can be

processed at consuming level [16]. J. Shotton et al. [17] introduce

the core of points cloud handling component of Kinect gaming

platform. They obtain the 3D locations of skeleton joints from

human point clouds through three steps. First, high-dimensional

features based on depth information for each pixel are extracted

from the depth images. Second, randomized decision forests are

trained to label each pixel which body part it belongs to. Finally,

joint positions are proposed from the body part recognition result

by local model-finding technique based on mean shift [18].

However, high dimensionality (2000-dimension features in exper-

imental setting of [17]) is a severe deficiency. To handle this

disadvantage, [17] proposes to use randomized decision forests to

select effective dimensions preserving most useful group informa-

tion. Even though the assumption that body joint locations are

independent from each other which is only approximately true in

practice [19], the algorithm achieves encouraging accuracy.

Furthermore, M. Sun et al. [19] try to exploit the dependency

relationships among body parts through global prior knowledge,

i.e. torso orientation and/or person height, based on the work of

regression forests [20]. More techniques to deal with points cloud

are listed in PCL [14], such as min-cut based segmentation which

makes a binary segmentation of the points cloud, as well as several

features extracted from points cloud: Fast Point Feature Histo-

grams (FPFH), normals based segmentation, surface normals

estimation in points cloud. Our previous work [21], which is based

on surface normals, attempts to solve posture segmentation from a

different aspect. It constructs human body manifold space from

3D position features. In addition, it integrates surface normal

features as constraints into the final spectral space to get more

meaningful segmentation results. However, two eigen-decomposi-

tion operations on large matrix prevent the algorithm from real-

time applications. All of these state-of-art features are less popular

than the feature proposed in [17] in terms of highly computational

efficiency as well as sufficient information for categorizing pixels

into different body parts. However, high-dimensional features are

not preferred [22] for most posture segmentation techniques. In

this paper, we propose a novel biview learning algorithm for

human posture segmentation from 3D points cloud provided by

Kinect. Dimensionality reduction is a crucial way to deal with the

‘‘curse of dimensionality’’ [23]. Here, we apply the recently

proposed discriminative locality alignment (DLA) algorithm [23–

25] to transform the high-dimensional depth different features

(DDF) to a low-dimensional representation which reveals the

manifold distribution of depth pixels and owns more discrimina-

tive ability. To generalize the learned feature space from training

set, we introduce unsupervised 3D relative position feature (RPF)

for each depth pixel, which is another view independent of DDF,

and employ biview canonical correlation analysis (CCA) [26–28]

to unify those two views. Therefore, we can further reduce the

dimensionality of the dimension reduced DDF by maintaining

only the strongly correlated directions between the two views.

Finally, we train a multi-class SVM [29–32] to accomplish the task

of posture segmentation.

We specifically represent our proposed framework step by step

in Section 2. In Section 3, first, we verify the performance of the

DLA with our dataset, in terms of effectiveness of both recognition

rate and dimensionality reduction, in comparison with other

popular dimension reduction algorithms, such as PCA, LDA, etc.

Then, we validate the effectiveness of our two-stage dimension

reduction scheme for posture segmentation. Conclusions and

discussions are given in Section 4.

Method Overview

(We received the formal written waiver for the ethic issues of the

collected data. The ethics committees of Shenzhen Institutes of

Advanced Technology approve this consent procedure. There is

no problem to make the data used in the paper publicly available.

We didn’t conduct research outside of our country of residence.

All participants provide their written informed consent to

participate in this study.)

Given N 3D human points P~(p1,p2,:::,pN ) appearing both in

the 2D depth images I and 3D points cloud, and their

corresponding labelsL~(l1,l2,:::,lN ), where Nis the total

number of human points and each label li[ Head,Torso,f
LUA,LLA,RUA,RLA,LUL,LLL,RUL,RLLg. (LUA stands for

Left Upper Arm, LLA for Left Lower Arm, RUA for Right Upper

Arm, RLA for Right Lower Arm, LUL for Left Upper Leg, LLL

for Left Lower Leg, RUL for Right Upper Leg, and RLL for Right

Lower Leg.) In this paper, through biview learning, we aim to find

a low-dimensional representation Z~(z1,z2,:::,zK ) from two

different views, i.e., globally discriminative structure of point

expressed as high-dimensional depth difference features (DDF)

X 1~(x1
h1

,x1
h2

,:::,x1
hN1

) and local 3D geometric manifold coordi-

nates of point represented by the relative position features (RPF)

X 2~(x2
1,x2

2,:::,x2
N2

), for posture segmentation, where

KvvN1zN2. The dimensions of DDF and RPF are N1 and

N2 respectively, and here N2~3 . Fig. 1 illustrates the proposed

biview learning framework of the two-stage dimension reduction

scheme for posture segmentation. First, we extract DDF and RPF

from depth images. Second, DLA is applied in Stage 1 for

dimension reduction. Then, the learned low-dimensional DDF

feature space is regularized by unsupervised 3D RPF via CCA,

which is considered as Stage 2 for dimension reduction. Finally,

SVM is trained to complete the task of human posture

segmentation. Before we explain each step in detail in the

following subsections, we list all of notions throughout the paper in

Table 1.

Stage 1 for dimension reduction using DLA
Depth difference features (DDF). We adapt the depth

difference feature (DDF) [18] for each human point, which is

defined as below

X 1
h I ,Pið Þ~dI Piz

u

dI Pið Þ

� �
{dI Piz

v

dI Pið Þ

� �
ð1Þ

where Pi is one point in depth image I , dI Pið Þdescribes the depth

of point Pi , and parameterh~ u,vð Þ containing offsets u and v
demonstrates two point Pi-centered locations in the depth image.

The normalization of the offsets by 1=dI Pið Þ ensures that the

features are 3D translation invariant, which overcomes the scale-

variant problem in the traditional images. As defined, the DDF for

each point can be computed by five simple operations (two

Human Posture Segmentation from 3D Points Cloud
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divisions, two additions, one subtraction), which is computationally

efficient.

We illustrate parametershin Fig. 2 to get more straightforward

sense. As shown in Fig. 2, parameter h1 for point P1is

geometrically defined by two red arrows, P1-centric, correspond-

ing to pairwise offsets u and v. We take two different points, P1

located in the head and P2 located in the torso, as an example to

show DDF’s effectiveness. First, both P1 and P2 are assigned with

the same parameterh1, but they have different DDF responses,

namely, Xh1

1 I ,P1ð Þ=Xh1

1 I ,P2ð Þ. This reveals small discrimina-

tive power of DDF for posture segmentation. Second, combining

another different parameter h2 for point P2 with parameterh1,

apparently, Xh1

1 I ,P2ð Þ=Xh2

1 I ,P2ð Þ and we can get different

depth distribution among neighbors of P2. By combining more

DDF responses with different offset parameters for each point into

a high-dimensional DDF features, it tends to recovery global depth

manifold and provide strongly discriminative signals about which

body part the point belongs to. In our setting, 500 pairwise offset

parameters are randomly predefined for each human body point.

Demonstrated by dark red squares (dark blue squares) in Fig. 2,

the high-dimensional DDF features uniquely determine the depth

characteristic of P2(P1) in the whole depth image, which is crucial

information for labelingP2.

At last, we complete our DDF introduction by explaining lower

and upper limits for the depth difference. The depth difference for

pairwise offsets (u, v) ranging from 0, which indicates two points

locate in the same depth plane, to z?, which expresses the depth

difference between background points or between body points and

background points. Usually, the maximum depth difference

between two body points is around 1 m.

However, the high-dimensional features are hard to deal with

for most algorithms. This motivates us to employ DLA, a state-of-

the-art dimension reduction algorithm, to transform the DDF

features to low-dimensional representations. This reveals the

intrinsic structure of data distribution meanwhile preserves

discriminative information.

Review of DLA. Discriminative Locality Alignment (DLA) is

a dimension reduction technique, designed in particular to

preserve the local discriminative information of data distribution.

In the context of posture segmentation, suppose we have a set of

labeled training data, e.g., 24 samples are shown in Fig. 3, we

Figure 1. Biview learning framework for human posture segmentation. The first row demonstrates extracted original high-dimensional
depth features (DDF), and then using the training data, we apply DLA as our first stage for dimension reduction to obtain more discriminative
features. From the training sample, apparently, the points on different body parts are separated with high margins. The second row demonstrates the
extracted unsupervised relative position features. By CCA, it tries to explore complement information, namely, using the unsupervised RPF adjusts the
overfitting of the learned features while using learned DDF features to introduce more discriminative ability. Finally, the k-d features (k is much less
than the dimensions of DDF) are inputted to train a traditional SVM classifier.
doi:10.1371/journal.pone.0085811.g001

Table 1. Important notations used in the paper.

Notation Description

X 1~(x1
h1

,x1
h2

,:::,x1
hN1

) high-dimensional DDF

X 2~(x2
1,x2

2,:::,x2
N2

) relative position features (RPF)

Z~(z1,z2,:::,zK ) final low-dimensional representation

P1
i x1

h1
,x1

h2
, . . . ,x1

hN1

� �
DDF features for point Pi

1
i

1
1,12, . . . ,1M1

� �
low-dimensional space for Pi

P1
i1 ,P1

i2 , . . . ,P1
ik1

Pi ’s k1 nearest neighbors with the
same class label

P1
i1

,P1
i2

, . . . ,P1
ik2

Point Pi ’s k2 nearest neighbors with
the same class label

P1
i ~(P1

i ,P1
i1 ,:::,P1

ik1
,P1

i1
,:::,P1

ik2
)T local patch ofPi in the original high-

dimensional spaceePP1
i ~(1

i ,1i1 ,:::,1
ik1

,1i1 ,:::,1ik2
)T local patch of Pi in the low-

dimensional space

doi:10.1371/journal.pone.0085811.t001
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apply DLA to obtain a low-dimensional representation of the DDF

feature. Specifically, given a point Pi from the training set, whose

DDF feature is P1
i x1

h1
,x1

h2
, . . . ,x1

hN1

� �
, we find its k1 nearest

neighbors from the training data points with the same class label,

i.e., P1
i1 ,P1

i2 , . . . ,P1
ik1

, as well as its k2 nearest neighbors with

different class labels, i.e., P1
i1

,P1
i2

, . . . ,P1
ik2

. We use these nearest

neighbors to construct a local patch for each point Pi,

P1
i ~(P1

i ,P1
i1 ,:::,P1

ik1
,P1

i1
,:::,P1

ik2
)T . The point Pi in the low-

dimensional space is presented as ePP1
i exx1

1,exx1
2, . . . ,exx1

M1

� �
, and

correspondingly, the local patch of Pi is:ePP1
i ~( ePP1

i , ePP1
i1 ,:::,ePP1

ik1
,ePP1

i1
,:::,ePP1

ik2
)T . We emphasize that M1 is the

dimensions of the low-dimensional representation andM1vvN1.

The core idea of DLA is that it tries to find a low-dimensional

representation to make the points from the same body part closer

while to keep the points from different parts further [20], by

exploiting both local geometry and discriminative information.

DLA is modeled as the following objective functions respectively

for the given point Pi

arg minePP1
i

Pk1

p~1

jjePP1
i {
ePP1

ip jj
2
, ð2Þ

arg maxePP1
i

Xk2

q~1

jjePP1
i {
ePP1

iq
jj2: ð3Þ

Combining within-class measures Eq.(2) with between-class

measures Eq.(3) by a scaling factor b[ 0,1½ �, we get

arg minePP1
i

Pk1

p~1

jjePP1
i {
ePP1

ip jj
2
{b

Pk2

q~1

jjePP1
i {
ePP1

iq
jj2

 !
:ð4Þ

Here, b tries to keep the two measurements in balance. There

are two factors that can cause the imbalance. First, the numbersk1

and k2, of the same-class and different-class nearest neighbors are

unequal, and usually it holds k2&k1 in the training set. Second,

for most of the points scattered in the human body, the distance

from point Pi to the same-class nearest neighbors are usually much

smaller than the distance to the different-class nearest neighbors.

We use the scaling factorb, ranging in [0, 1], to adjust the tradeoff

between the two measurements. For experiments, we simply set

b~0:5. Then we select values of k1 and k2 by adopting the same

procedure used in [23]. k1~4 and k2~5 are finally settings for

our experiments.

By introducing the coefficients vector

wi~ (1,:::,1
zfflfflffl}|fflfflffl{k1

{b,:::,{b)
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{k2

=t, we integrate the two parts into a

uniform format

arg minePP1
i

Pk1

p~1

jjePP1
i {
ePP1

ip
jj2 wið Þpz

Pk2

q~1

jjePP1
i {
ePP1

iq
jj2 wið Þqzk1

 !
:ð5Þ

Finally, by organizing the elements of the ith local patch into a

matrix, we get the objective function

arg minePP1
i

tr ePP1
i Li
ePP1T

i

� �
, ð6Þ

where

Li~

Pk1zk2

j~1

wið Þj{wT
i

{widiag wið Þ

264
375: ð7Þ

Assuming the local patch of Pi : ePP1
i is selected from a global

coordinate, i.e., ePP1~(ePP1
1,ePP1

2,:::,ePP1
N )T , where Nis the total number

of training points, namely,

ePP1
i ~
ePP1Si, ð8Þ

where Si[RN| k1zk2z1ð Þ is the index matrix of ith local patch.

Then, the whole DLA model is given by

arg minePP1

PN
i~1

tr ePP1SiLiS
T
i
ePP1T

� �
~arg minePP1

tr ePP1 PN
i~1

SiLiS
T
i

� �ePP1T

� �
:ð9Þ

We assume that the matrix U projecting the dataset from the

original high-dimensional space to the low-dimensional represen-

tation is linear and orthogonal; then, the optimization problem is

transformed as

Figure 2. Denoting of depth different features (DDF). Parameter
h1 for point P1 is geometrically defined by two red arrows, P1-centric,
corresponding to pairwise offsets u and v. The depth difference for
(P1 ,h1) is the absolute value of depth difference between two points
located at the arrowheads. Apparently, the absolute values of depth
differences for (P1 ,h1), (P2 , h1), (P2 ,h2) are unequal.
doi:10.1371/journal.pone.0085811.g002

Human Posture Segmentation from 3D Points Cloud
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arg min
U

tr UT P1
XN

i~1

SiLiS
T
i

 !
P1T U

 !
s:t: UT U~I : ð10Þ

where P1~(P1
1,P1

2,:::,P1
N )T is a global coordinate of the original

high-dimensional space.

The optimal solution of (10) is given by eigen-decomposition,

P1
XN

i~1

SiLiS
T
i

 !
P1T m~lm: ð11Þ

To get L~P1 PN
i~1

SiLiS
T
i

� �
P1T , we can directly compute the

summation C~
PN
i~1

SiLiS
T
i , and then do matrix multiplication.

However, it is really memory-consuming when the size of training

set N is large, as the size of matrix C isN|N. So, here, we put P1

into the summation, and firstly computeL ~P1SiLiS
T
i P1T ,

whose size is N1|N1(the dimensions of DDF features) for each

training point, then iteratively do the sum operator. In this

manner, we just trade more training time for less memory

requirement. Besides, we can also implement it in distributed

computers efficiently.

After performing DLA, we learn a low-dimensional represen-

tation which preserves both discrimination information and

intrinsic local geometry for the training data. However, the

dimensionality reduced DDF features are learned from the

training data, which are only a small fraction of the whole dataset.

This makes the low-dimensional representation not well-general-

ized for the test data. We need to explore more generic

information to regulate the learned low-dimensional representa-

tion so as to obtain better generalization ability.

Stage 2 for dimension reduction using CCA
Relative position features (RPF). In addition to the view of

globally discriminative power provided by the DLA-reduced DDF,

we try to hold the 2D human surface manifold embedding in the

3D real-world coordinates by simply employing the 3D coordinate

values. We make use of the barycenter of human body points as

the origin point of the 3D coordinates and translate human body

points from real-world coordinates to the barycenter coordinate.

We term the new coordinate values for each point P2
i x2

1,x2
2,x2

3

� �
as

relative position features (RPF). On the one hand, RPF is directly

obtained from the original data and thus has no extra

computational cost. On the other hand, RPF straightforwardly

constructs the human surface manifold, an intrinsic view of human

body, and thus is useful for partitioning the articulated human

body parts.

We ultimately try to get a representation with both strong

discriminative power and better generalization ability. In partic-

ular, the unsupervised manifold information, i.e., RPF, improves

the generalization ability, meanwhile the supervised characteristic

of DDF helps to extract discriminative information from RPF.

Two views – the globally discriminative view provided by DLA-

reduced DDF and the local manifold view with more generaliza-

tion ability provided by RPF – should be combined by an effective

strategy.

Both canonical correlation analysis (CCA) and partial least

squares (PLS) [33] try to find the most correlated directions

between two different spaces. However, PLS performs well in the

situation that one feature representation is treated as regressor and

the other is as response. It does not fit to our situation well. In

contrast, CCA is preferable since it can retain multiple projections

for each view, and then a joint feature representation can be

obtained. Additionally, the first few correlated directions of CCA

usually hold the majority of relevant information between the

dimensionality reduced DDF and RPF, which indicates that we

get an even lower-dimensional representation.

Review of CCA. Canonical Correlation Analysis (CCA) tries

to linearly project the two different views from their individual

spaces to their most correlated lower-dimensional subspace, which

is a special case of popular multiview analysis [34–42] Let

a[RM1|M1 and c[RN2|N2 be the projection matrices for the

learned DDF ePP1 and unsupervised RPF P2 respectively, M1 and

N2 are maximum correlated dimensions. The correlation coeffi-

cient between the two projected variables is defined as:

Figure 3. Sample frames for different persons (columns) performing different activities (rows). Eight persons with variance of height,
weight, gender are selected from our training dataset (from our labeled dataset) and three frames of different activities per person are shown. From
these frames, we can see that our dataset contains a variety of daily activity frames.
doi:10.1371/journal.pone.0085811.g003

Human Posture Segmentation from 3D Points Cloud
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r aePP1,cP2
� �

~
Cov aePP1,cP2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var aePP1

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var cP2

� �q

~
aCov ePP1,P2

� �
cTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aVar ePP1
� �

aT

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cVar P2

� �
cT

q ,

ð12Þ

where Cov ePP1,P2
� �

is the covariance between ePP1 and P2,

Var ePP1
� �

and Var P2
� �

are variances of ePP1 and P2 respectively.

Suppose Var aePP1
� �

~1 and Var cP2
� �

~1 , CCA can be solved

by the optimization below

max aCov ePP1,P2
� �

cT s:t: aVar ePP1
� �

aT~1 cVar P2
� �

cT~1:ð13Þ

The optimal solution of (13) is given by the Singular Value

Decomposition (SVD) on Cov Y 1,X 2
� �

[33]

C~Cov ePP1,P2
� �

~aT Sc, ð14Þ

where a is the left singular matrix of C, the diagonal entries of S is

the singular values, and c is the right singular matrix. As the left

and the right singular vectors correspond to the maximum singular

value project the original variables ePP1 and P2 into the most

correlated subspace, we concatenate first d1 columns of aePP1 and

d2 columns of cP2 as our final low-dimensional representation

Zi z1,z2, . . . ,zKð Þ, where K~d1zd2.

SVM for human posture segmentation
Based on the low-dimensional representation, we finally train a

multi-class SVM classifier to partition the human body points into

different semantic parts. SVM [29] is based on structural risk

minimization inductive principle and tries to divide samples in

separate categories by a clear margin as wide as possible in a high-

dimensional space projected by a kernel function. There are two

advantages for training SVM to predict the test set human points.

First, SVM avoids the curse of dimensionality but keeps power of

linear separability. Second, the solution based support vectors

which determine the parameters of the discriminant function are

sparse. We can do predictions depending only on a subset of the

training data points rather than all of them. Obviously, it is helpful

for real-time applications.

We apply LIBSVM [30], [31] to train our multiclass SVM by

building 10 binary SVMs through the one-against-the-rest

strategy. New instance is classfied as the class whose corresponding

classifier outputs the highest score. The kernel function we employ

here is the Gaussian redial basis function (RBF):

K z,znð Þ~exp {z{z2
n=2s2

� �
, as RBF-SVM is capable of both

low error rate for training set and well-generalization for testing set

once given an appropriate variance s. We use five-fold cross

validation to select the optimal value for s.

Experimental Results

We collect our database utilizing Kinect sensor. We assume that

four persons are trying to control the human-computer interac-

tions. Usually four different persons face the sensor, stand nearly

1.2 m away from the Kinect sensor and do random activities as

they want. They can twist their torso within 630 degrees during

their activities. If more perspectives are performed, more strategies

should be applied as our human body are symmetrical which is

hard to be identified under our framework. Each person performs

different activities, and contributes to balanced pose dataset with

four 5-min videos with poses of turning around, left-lifting,

squatting, arm-carrying. Finally a dataset containing around

12,000 frames is constructed. First, we remove points of

background and ground floor. Then, we manually label each

point with auxiliary of joints’ positions outputted by Kinect. We

implemented a software modular to assist in blockily labeling

points with the initialized joint position. Even so, labeling the

points is still a labor intensive work and each frame takes 30

seconds to be labeled on average. Besides, we allow several outliers

to exist to build the sense of robustness of our algorithm. We

randomly choose 70% of frames as the training set and use the

remaining 30% as the test set. Samples of human activities in

training set are shown in Fig. 3. We extract 500-dimensional DDF

for each human point by generating 500 pairs of offset parameters.

In this section, we carefully validate that DLA is applicable to

our dataset for dimension reduction in comparison with other

supervised or unsupervised[43] dimension reduction algorithms,

e.g. LDA, PCA along with classifiers of SVM and decision tree

(DT) in terms of recognition rate. We also perform random forest

(RF) algorithm in terms of recognition rate, which is the state-of-

the-art algorithm for human points classification and incorporates

dimensionality reduction functionality and classifier functionality

together to achieve the human pose segmentation task. Then, we

show that our biview learning algorithm with the two-stage

dimensionality reduction scheme outperforms other natural

schemes, such as direct views concatenation scheme, single view

scheme, etc.

DLA results
To validate the effectiveness of DLA for our application, we

conduct experiments of comparing DLA with other two typical

dimension reduction algorithms on DDF in terms of the

recognition rates, i.e., PCA [44] for unsupervised dimension

reduction and LDA [45] for supervised dimension reduction. We

train two classifiers based on SVM and decision tree (DT) [46] for

classification. In the experiment, each test frame contains around

2000 body points, and we take the average recognition rate over

all test frames as final performance measurement. We select k
dimensions (the number of the reduced dimensions) from the low-

dimensional feature space randomly, and measure all of them in

each splitting node in DT to make the comparison with SVM

more reasonable. The result is shown in Fig. 4.

As shown by Fig. 4, the overall trends of DT and SVM are

similar when using the same dimension reduction algorithms.

However, SVM generally outperforms DT in the low-dimensional

case at nearly 6% improvement in terms of recognition rate.

Concerning the dimension reduction algorithms, DLA performs

better than PCA and LDA. In general, features learned by

supervised information own more discriminative power than the

unsupervised ones. This explains why DLA gets a higher

recognition rate than unsupervised PCA. Further, both as

supervised methods, DLA outperforms LDA. This is because

LDA tries to construct the whole data distribution by considering

the within class variance and the between classes mean and thus

ignores the local discriminative information but emphasized by

DLA, which is especially essential for constructing the boundary

between different categories. In our application, as the dataset of

Human Posture Segmentation from 3D Points Cloud
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human points is really large and always varies greatly, the rough

whole distribution is incapable of capturing enough discriminative

information. This is verified by the result that LDA even performs

badly than the unsupervised PCA.

We further compare our method with Random forest (RF) [47],

randomly selects discriminative dimensions from the high-dimen-

sional DDF. RF utilizes entropy information to train several

decision trees (DTs) and finally obtain a decision forest. RF is

employed by [17] and achieved state-of-the-art performance in

human pose estimation. We train a RF with 10 DTs. Unlike the

above DT, we randomly select k dimensions from the original

DDF for each splitting node to train the RF, where k is the current

reduced dimension. As shown in Fig. 4, the recognition rate of RF

is even lower than DT with the low-dimensional features, e.g.,

supervised LDA features, DLA features and unsupervised PCA

features. And DLA performs better than RF in selecting

discriminative features.

Biview learning results
To validate the effectiveness of our two-stage dimension

reduction scheme (DLA+CCA+SVM), we compare it with other

four feature-integrating schemes for training the SVM in terms of

recognition rate:1) only one view with 3D unsupervised RPF

(3D+SVM), 2) only one view with the dimensionality reduced

DDF by DLA (DLA+SVM), 3) biview representation learned by

CCA from high-dimensional DDF and RPF (CCA+SVM), and 4)

direct concatenation of the two views of dimensionality reduced

DDF and RPF (DLA+3D+SVM). The statistical performances of

all these schemes are shown in the boxplot Fig. 5.The median and

variability are computed from all of the test frames.

In our method (DLA+CCA+SVM), we first transform the 500-d

DDF into k-d low-dimensional representation, k is designed as 5,

10, 15, 20, 25. Then, by CCA, we project the k-d DDF and 3D

RPF into d1 and d2 lower-dimensional representation respectively.

As shown in the boxplot, our proposed biview feature learning

scheme achieves the best recognition rate nearly 85%. It is also can

be concluded that our proposed scheme is robust with respect to

the reduced dimensions k. d1~1,d2~2 is the best setting for the

highest recognition rate. Clearly, that only 3-d representation

achieves highest accuracy proves the effectiveness of our dimen-

sion reduction scheme.

Comparing with the representation learned by DLA

(DLA+SVM), our method raises the recognition rate by 5%.

While comparing with RPF (3D+SVM), the recognition rate

achieved by our method is nearly 3% higher. We conclude that the

regularization of supervised low-dimensional DDF established

from unsupervised 3D RPF via CCA improves the generalization

and recognition rate accordingly.

Concerning the scheme of CCA+SVM, we directly try to learn

correlation relationship between high-dimensional DDF and RPF.

And the best setting for the highest recognition rate is

d1~1,d2~2. On one hand, most of the originally high-

dimensional DDF have no discriminative information for labeling

each human point and may introduce unexpected noise. On the

other hand, CCA actually is an unsupervised method and it can

also bring down the recognition rate in comparison with our

proposed biview learning method.

Finally, we analysis the scheme of (DLA+3D+SVM): directly

concatenating the dimensionality reduced DDF and the 3D RPF.

Concatenating simply joints the unsupervised and supervised

information together. On one hand, the manifold information

embraced by RPF is complementary to the discriminative learned

DDF and the recognition rate is higher than the only dimension-

ality reduced DDF representation. On the other hand, the

representation of DLA+3D is redundant as the uncorrelated

dimensions are not removed, which leads to that the accuracy of

this scheme is lower than our proposed one’s.

To Sum up, our proposed two-stage biview learning scheme

achieves robustly highest recognition rate no matter how many

dimensions are left comparing with other schemes. Besides, the

final 3-d representation achieves as high mean value of recognition

rate as other higher dimensions. This verifies the effectiveness of

our proposed scheme for dimension reduction.

Conclusion

In this paper, we have proposed a two-stage biview-learning

dimension reduction scheme for human posture segmentation.

First, we extract DDF and RPF from two independent views.

Then, we apply DLA to learning a discriminative and low-

dimensional representation from the high-dimensional DDF and

take this procedure as our stage 1 for dimension reduction.

Thirdly, we employ CCA to combine the two views to generalize

the learned low-dimensional DDF by unsupervised RPF as well as

to shape boundary of human manifold by the supervised

Figure 4. Performance for different dimension reduction
algorithms and different classifiers. Seven different combinations
of dimension reduction algorithms and classifiers perform differently
and verify the effectiveness of DLA in our application. The overall trends
of DT and SVM are similar when using the same dimension reduction
algorithms. However, SVM generally outperforms DT in the low-
dimensional case at nearly 6% improvement in terms of recognition
rate. Concerning the dimension reduction algorithms, DLA performs
better than PCA and LDA. DLA gets a higher recognition rate than
unsupervised PCA regardless with the classifiers while the learned LDA
performs worst as LDA tries to construct the whole data distribution by
considering the within class variance and the between classes mean
and thus ignores the local discriminative information which is
emphasized by DLA. In our application, as the dataset of human points
is really large and always varies greatly, the rough whole distribution is
incapable of capturing enough discriminative information. This is
verified by the result that LDA even performs badly than the
unsupervised PCA. The smooth plateau part of LDA curve is caused
by that the most reduced dimensions of LDA is C-1, where C is the
number of classes and is 9 in our application. Comparing with Random
forest (RF), we try to show the ability of our proposed schema in terms
of selecting discriminative features. The result shows that the
recognition rate of RF is even lower than DT with the low-dimensional
features, e.g., supervised LDA features, DLA features and unsupervised
PCA features.
doi:10.1371/journal.pone.0085811.g004
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low-dimensional DDF features. Experimental result validates the

effectiveness of our proposed dimension reduction scheme. Not

only our scheme achieves the highest recognition rate, but also our

dimensionality reduction scheme gets an inspiring low-dimension-

al representation. In the future, we will capture more human

activities with more persons to enlarge our dataset, on which we

will measure the performance of our method to prepare it for

human activity analysis applications.
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