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Abstract: We perform density functional theory and non-equilibrium Green’s Function 

calculations of the conductance of a gold wire and a 1,4-phenylenedimethanethiol (XYL) 

molecule adsorbed between Au(111) electrodes using the TranSIESTA software package. 

The effect of varying different computational parameters is investigated. We find that the 

conductance is more sensitive to the reciprocal space sampling grid than the quality of the 

basis set employed. The conductance can vary up to a factor of five as a result of the 

choice of computational parameters. We report a set of computational parameters that 

yields a well-converged conductance value.  

 
 
PACS numbers: 73.63.-b, 73.40.Gk, 85.35.-p 

 

 
1. Introduction 

 

Molecular electronics is an active area of research with the eventual goal of 

building an electronic device with molecules as its active components [1]. Recent 
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advances in both the experimental [2] and theoretical [3] realm concerning the 

conductance of individual molecules are bringing this goal closer to reality. However a 

cause for concern is the large discrepancies that still exist between available data, both 

experimental and theoretical [4].  

Molecules with thiol endgroups form strong bonds to Au(111) substrates and their 

formation of self-assembled monolayers (SAMs) is well studied [5]. For this reason the 

thiol ‘alligator-clip’ is commonly used in molecular conduction experiments. Many 

experiments probe the current-voltage response of a SAM using scanning tunneling 

spectroscopy (STS).  Here the current between an STM tip and substrate under an applied 

bias [6-14] at fixed tip height is measured. Among other experimental tools are 

mechanical break junctions [15-17] and atomic force microscopes (AFM) with a 

conducting tip [18]. Various authors have claimed to measure the i(V) response of an 

individual molecule, e.g. [13, 14, 16, 18].  

Theoretically, experimental setups are usually approximated by two semi-infinite 

Au(111) slabs sandwiching the molecule under study. The theoretical determination of 

the current passing between these electrodes is complicated beyond the usual electronic 

structure calculation by the fact that the system, under an applied bias between the 

electrodes, is not in equilibrium. Density functional theory is typically used as the starting 

point for conductance calculations, and yields the equilibrium electronic structure of the 

molecule plus electrodes. The transmission function and hence current is then calculated 

according to the non-equilibrium Green’s functions method (NEGF). This combination is 

now an established tool for ab-initio molecular transport calculations (see for example a 

recent review by Lindsay and Ratner [19]). The choice of basis functions and sampling of 



3 
 

the Brillouin zone are critical factors that can affect the result when calculating the 

electronic structure. Care has to be taken that the result is converged with respect to these 

parameters, at least to the desired level of accuracy. Many molecular conduction results 

using the above technique now appear in the literature, but no thorough investigation has 

been published to clarify the effect of these parameters. Here we address this issue by 

studying two prototypical systems: an infinite one-dimensional gold chain and Au(111)-

XYL-Au(111) where XYL, or 1,4-phenylenedimethanethiol, is a short, thiol-terminated 

aromatic molecule that easily self-assembles on a gold substrate [9, 20, 21].   

 

2. Method  

 

The gold chain and surface adsorption geometries were initially optimized with the 

SIESTA software package [22], a density functional code employing a linear combination 

of numerical atomic orbitals as basis functions.  The basis set consists of double zeta plus 

single polarization orbital for each atom. The orbitals have finite extent in space, the 

cutoff radius being defined by an “energy cutoff” parameter which specifies the 

excitation energy due to this confinement. This parameter is set to 5 mRy, which 

corresponds to a cut-off radius for the gold atoms of 3.8 Å for s-orbitals and 2.7 Å for d-

orbitals. The local density approximation (LDA) to the exchange-correlation functional is 

used, incorporating the self-interaction correction by Perdew and Zunger [23]. 

Calculations were spin-polarised with the (111) surface represented by a 3x3 atom unit 

cell, 4 layers thick. The surface layer is not relaxed during optimization. A reciprocal 

space grid with 5x5 k-points in the plane parallel to the surface is constructed according 
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to the method of Monkhorst and Pack [24]. We have previously examined the reliability 

of this type of calculation against the computational conditions used [25]; the parameters 

used here correspond to intermediate level I in this previous work and yield adsorption 

energies that are reliable to better than 0.45 eV. Higher level calculations improve the 

calculated adsorption energy but do not change adsorption geometries. Here we are 

concerned only at locating the minimum adsorption geometry rather than calculating a 

chemically accurate binding energy. Note that the optimum geometry is determined for 

the XYL molecule adsorbed through one of the thiol groups to a single gold surface.  It is 

then assumed in the transport calculation, where the molecule spans two surfaces, or 

electrodes, that the same optimized configuration occurs at both electrodes. 

The relaxed geometry is then input into the transport calculation using the ATK 

package, based on the original TransSIESTA [26]. This uses the SIESTA method to obtain 

the electronic structure and calculates transport by using the non-equilibrium Green’s 

function method. This code has now been used extensively in the literature, for example, 

other studies have been undertaken to investigate the effect of different bonding 

geometries of small organic molecules between gold electrodes on the current-voltage 

characteristics of the system [27-29]. 

[Insert figure 1 about here] 

The molecule with two layers of Au atoms on either side is modeled as the device region, 

connected on the left and right by semi-infinite electrodes (Fig. 1b).  Including two layers 

in the central region is enough to ensure that the bulk approximation is accurate for the 

electrodes. A test case calculation with three layers of gold included in the central region 
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yielded no change in the result. In the Au chain calculations, three atoms are included in 

the device region (Fig. 1a). 

We again use the local density approximation with parametrisation by Perdew and 

Zunger. In the interest of time the calculations are done without spin-polarization. This 

does not introduce an error, since the above (spin polarized) SIESTA optimisation yielded 

optimised geometries with a total spin of zero, as expected. The effects of the basis set 

size describing the gold atoms, the orbital energy cutoff and the number of k-points used 

in the plane parallel to the surface are investigated within the ATK package. The basis 

sets used on the atoms within the molecule spanning the electrodes are kept fixed at 

double zeta plus polarization orbitals (DZP) for each atom. The calculation time is much 

more sensitive to the basis set size on the gold atoms; this is alternated between DZP (ζAu 

= 2) and single zeta plus polarization (ζAu = 1). The orbital confinement parameter Ec is 

varied between 0.02 mRy and 20 mRy. In the case of transport calculations the 

determination of the transmission function is a post-electronic structure calculation. The 

self-consistent electronic structure is characterized by the density matrix, given within the 

NEGF formalism by [30] 
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where f(E-µ1(2)) and Γ1(2) are the Fermi functions and coupling matrices of the left 

(right) electrodes and Gd is the device Green’s function in the presence of the electrodes. 

The electron density and resulting Kohn-Sham operator can be used to evaluate the 

Hamiltonian at a denser k-point grid, using [22] 
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where µ’≡µ indicates all the periodic images of the basis function labeled µ, 

centered at Rµ, without repeating the SCF at this denser grid. If the electronic structure is 

converged with respect to the k-point grid used in the SCF cycle, then the lack of self-

consistency at the denser grid should not have a large effect. From the Hamiltonian, the 

Green’s function and hence transmission function and current is calculated from [30] 
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where the transmission function can be identified as T(E)=Tr(Γ1GdΓ2Gd*). 

For the calculation of the Au-XYL-Au system, we use the same number of grid 

points N in both the x and y direction. We vary the number of grid points for the self-

consistent electronic structure calculation NE and the transmission function calculation 

NT. For the gold chain, only the gamma point is required in either the SCF or 

transmission function calculation, as there is no periodicity in the transverse direction. 

The device region is not periodic and hence no k-point sampling in the direction 

perpendicular to transport is done in the two-probe calculation. However for the 

calculation of the electrodes a large number of k-points, generally 100, is used in this 

direction to ensure the metallic behaviour of the electrodes. 

 

 3. Results And Discussion 

 

3.1 Gold chain 
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Fig. 2 shows the current-voltage and conductance-voltage characteristics of a gold 

chain, calculated with a SZP basis set (ζAu = 1) and Ec = 5 or 10 mRy. The I(V) 

characteristics seem virtually unaffected, but changing the energy shift parameter clearly 

has a larger effect on the conductance. The latter however remains close to the 

conductance quantum, G0 = 2e2/h = 77.48 µS, as expected for a one-dimensional gold 

chain [30]. The response of the chain is almost Ohmic, but the conductance decreases 

slightly at higher voltages. This behaviour has been observed in similar calculations and 

in experiments [26]. In what follows we shall refer to the conductance in units of G0. 

[Insert figure 2 about here] 

The conductance can either be calculated from the difference between successive 

current evaluations 
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or by the analytical derivative of the expression for the current, equation (3), which 

gives 
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   (5)The 

conductance given in Fig. 2b is based on equation (4) with ΔV = 0.2 V and T = 300 K. 

Although equation (5) is exact, it is not necessarily the better option, since 

discontinuities in the transmission function at energies close to the chemical potentials of 
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the electrodes, can lead to an unreliable conductance value. This is illustrated in Fig. 3. At 

0 V the transmission function is discontinuous near E = 0, where the number of 

transmission channels changes between one and three. The zero-volt conductance 

evaluated from equation (5) with T = 0 K can therefore be 1 or 3, depending on the exact 

location of the discontinuity, E = ε. Introducing a finite temperature into equation (5) 

reduces the sensitivity to ε. The sensitivity is further reduced by using equation (4), 

where the evaluation of the current integrals occurs over an interval spanning E = ε. 

[insert figure 3 about here]Fig. 4 shows the zero-volt conductance of the gold chain 

calculated from equations (4) and (5) with both T = 0 and 300 K. An SZP basis set is used 

and Ec is varied over a wide range. Some results for a DZP basis set are also shown for 

comparison.  
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[insert figure 4 about here] 

The conductance is very sensitive to the energy shift parameter and approaches the 

expected value of G = G0 = 2e2/h as the basis set orbitals become less confined. When 

equation (4) is used (fig 4a), the conductance is converged at Ec = 1 mRy. Convergence 

with respect to the orbital confinement is faster at T = 0 K. Using equation (5) (fig 4b), 

the conductance is converged at Ec = 1 mRy when T = 0 K, but only at Ec = 0.1 mRy 

when T = 300 K. However, at zero temperature the convergence is discontinuous and the 

conductance jumps from G0 to 3G0 between Ec = 1 mRy and Ec = 5 mRy.  

At Ec = 1 mRy and 10 mRy the conductance was recalculated with a DZP basis set 

(hollow data points). These conductance values are invariably very close to their SZP 

counterparts, the values when Ec = 1 mRy and T = 0 K being identical. 

For accurate conductance results, it is therefore imperative to use an orbital 

confinement corresponding to an energy shift parameter of 1 mRy or lower. Table 1 lists 

the orbital confinement radii corresponding to different values of Ec. Use of a DZP basis 

set does not provide a significant improvement over SZP and is therefore not 

recommended, as it implies a significant increase in computational time. For Au, an SZP 

basis set includes 9 orbitals per atom and a DZP basis set 15 orbitals per atom. When 

using a sufficiently accurate orbital confinement, the zero-temperature conductance is 

more accurate than the finite-temperature conductance; however, case must be taken 

when using a less accurate orbital confinement, since a discontinuous transmission 

function may lead to an incorrect conductance value. 
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3.2 Au-XYL-Au 

 

[insert figure 5 about here] 

The potential energy surface (PES) of XYL adsorbed on the Au(111) surface is 

shown in Fig. 5. The optimal binding site is slightly offset from the bridge site, towards 

the fcc site. The binding height is 2.0 Å. The minimum energy position was initially the 

result of a conjugate gradient (CG) optimisation of the molecule on the surface and the 

PES was produced by manually varying the binding site and height of the sulphur atom 

on the surface. This manual scanning of the molecule confirms that the CG result is a 

global minimum with respect to the sulphur position above the surface.  

Fig. 6 shows the variation in interaction energy with two independent rotation 

angles of the molecule on the surface. Firstly the plane of the phenyl ring was rotated 

with respect to the surface to make an angle of θ degrees with the surface normal (Fig. 

6a). Secondly the molecule was rotated within the plane of the phenyl ring so that an 

angle of σ degrees is made between the surface normal and the vector connecting the 

carbon atoms in the 1 and 4 positions in the ring (Fig. 6b). The inserts in Figs. 6a and 6b 

clarify these rotations. In both cases the rotations are done about the sulphur atom bound 

to the surface. In the CG optimised geometry the rotation angles are θ = -21° and σ = 0°. 

θ and σ are then varied independently with the other angle fixed at the CG optimised 

value. Manually varying these rotation angles confirms that the CG result is a global 

minimum with respect to rotation of the molecule on the surface. The minima in Figs. 6a 

and 6b therefore correspond to the same minimum energy structure, shown in Fig. 6c.  
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The interaction energy and optimum geometry is similar to that calculated 

previously for other thiol-bound molecules; however, the rotation angle may be optimised 

more reliably by using a Z-matrix optimiser [31]. 

[insert figure 6 about here] 

The ATK electronic structure and transport calculations are set up accordingly with 

the molecule bonded identically to both electrodes.  

Firstly, the total energy and the eigenenergies of the highest occupied molecular 

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are calculated with Ec 

= 20 mRy and ζAu = 1 (SZP), varying NE between 1 and 13. The results are shown in Fig. 

7. At NE =3 the total energy has converged to within 1 eV (or 0.01 eV/atom) and the 

HOMO and LUMO eigenenergies to within 0.005 eV of the limiting values. Here we 

have assumed that using a value of Ne=13 gives a converged result. 

[insert figure 7 about here] 

It is not surprising that the electronic structure is sensitive to k-point sampling for 

this device configuration, which is periodic in two dimensions and therefore possesses 

dispersive energy bands in k-space.  However, the total energy and HOMO and LUMO 

eigenenergies are seen to be well converged at the relatively modest 3x3 k-space 

sampling grid. It should also be noted that more reliable total energy results are obtained 

by including the gamma point in the k-space integration, which in the present code is 

achieved by using an odd numbered k-grid.  

For efficiency only the 0 V transmission function was calculated for the XYL 

system. The zero-volt conductance in what follows was therefore calculated from 

equation (5), which does not make use of the current at finite voltages. The use of a finite 
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temperature avoids the problem of a discontinuous transmission spectrum described in 

section 3.1. 

Fig. 8 shows the zero-volt conductance of the system calculated from equation (5), 

using T = 300 K, as a function of NT for various choices of NE, ζAu and Ec. Keeping Ec = 

20 mRy, ζAu = 1 fixed and varying NE, NT (Fig. 8a), the converged value at NE = NT = 13 

is G = 0.0401 G0. A modest 2x2 k-point grid for the SCF calculation seems sufficient for 

a well converged conductance value and with NE = 2, NT = 5, the zero-volt conductance is 

converged to within 10% of the limiting value. We use NT = 13, since the calculation of 

the transmission function occurs post-SCF, and therefore NT contributes only a small 

amount to the total computational time. This is quantified in Fig. 9. The transmission 

function calculation time is about two orders of magnitude smaller than the electronic 

structure calculation time and hence the size of the NT x NT grid has negligible effect on 

the total computation time.  

[insert figure 8 about here] 

In Fig. 8b, Ec, ζAu and NE are varied simultaneously. For NT =1, G changes by up to 

a factor of three depending on the other parameters, although the errors introduced by ζAu 

and Ec appear to cancel. However when convergence is reached with respect to NT, it 

seems that the basis set parameters (orbital confinement and basis set size) do not affect 

the converged value, whereas the k-point sampling used for the electronic structure does 

have an effect. 

[insert figure 9 about here] 

Finally we test the convergence of the total energy and zero-volt conductance with 

respect to the energy shift parameter, Fig. 10. We set ζAu = 1 and NE  =1. We use the 
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gamma point only here in the interest of speed; although the absolute values are therefore 

not necessarily correct, the convergence behaviour should be unaffected. Taking the 

values at Ec = 0.01 mRy to be converged, the total energy at Ec = 2 mRy is converged to 

within 4 eV (or 0.04 eV/atom) of the limiting value. G evaluated with NT =13 is 

converged to within 6% at Ec = 5 mRy. However G evaluated with NT =1, is only well 

converged at Ec = 0.5 mRy, to within 10% of the limiting value. This is consistent with 

the finding from Fig. 8b, i.e. when convergence is reached with respect to NT, the basis 

set parameters have less effect on the converged G value. 

[insert figure 10 about here] 

The best value for the zero-volt conductance of the Au(111)-XYL-Au(111) system 

presented here is G = 0.0493 G0, with NE = 3, NT = 7, Ec = 5 mRy and ζAu = 2. This is a 

factor 82 larger than the experimental measurement of G = 0.0006 G0 [13]. Discrepancies 

of this order between calculated and experimental conductances of thiol-bound molecules 

on gold have been noted before in DFT calculations [32, 33]. 

There is an additional constraint associated with the energy-shift parameter which 

must be considered in calculations where a vacuum gap is incorporated into the 

geometry.  This would be the case for simulating an STM experiment, or for modeling 

the effect of moving the molecule away from one electrode [34].  Because the orbitals fall 

strictly to zero, a sufficiently large orbital confinement radius must be used in order to 

ensure the gap is spanned by the molecule / electrode orbitals.  In other words, a small 

energy-shift parameter must be used in the transport calculations; the exact value of this 

parameter will depend upon the geometry. Table 1 gives energy-shifts and the 

corresponding confined radius for carbon and gold atoms; confinement will vary for 
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different elements even with a common energy-shift. The confinement radii suggest that 

it may be desirable to use an energy-shift parameter as small as Ec = 0.1 mRy when there 

is a distance of 5-7 Å between molecule and electrode, to ensure significant orbital 

overlap. This is more accurate than is usually needed to obtain converged adsorption 

geometries and interaction energies of molecules on surfaces [25]. This is another point 

that has not been addressed in DFT calculations of transport in the literature. Orbital 

confinement is not relevant in plane wave codes, but the above discussion is applicable to 

all codes that use the linear combination of atom orbitals (LCAO) ansatz, where the 

atom-centred basis functions generally have finite spatial extent. 

[insert table 1 about here] 

 

4. Conclusion 

 

In summary, we have conducted a large set of DFT electronic structure and 

transmission calculations on a gold chain as well as the model Au-XYL-Au system, 

which is a commonly studied system in the context of single-molecule conductance. For 

the gold chain, which requires no k-point sampling, we test the effect of altering the basis 

set parameters on the current and conductance. We find that the I(V) characteristic is 

relatively insensitive to the basis set, but that the conductance can be highly sensitive to 

the basis set when the transmission function is discontinuous or rapidly changing. The 

orbital confinement radius appears to be more important than the number of distinct 

orbitals per angular momentum channel. This sensitivity can be reduced by applying a 
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finite temperature or by using successive current integration to evaluate the conductance, 

rather than using the analytical value.  

For k-point the Au-XYL-Au system, we test the variation of the calculated 

conductance of the system at equilibrium (i.e. 0 volt bias) when certain important 

variables are changed and find a set of parameters that appear to yield a converged 

conductance. Including two layers of gold atoms on either side of the device region 

making up the “extended molecule” is sufficient for a converged result. Changing the 

basis set size and the orbital confinement and the sampling for both the electronic 

structure and transmission calculations independently, can change the conductance by 

typically a factor of three, and even up to a factor of five. We find that the k-point 

sampling has a more critical effect than the basis set (size and orbital cutoff parameters). 

The k-point sampling for the electronic structure can be coarser than that of the 

transmission spectrum calculation. For the Au-XYL-Au system 3x3 and 10x10 

Monkhorst-Pack grids for the two calculations respectively are sufficient. With these 

grids, using a single zeta plus polarization orbital for gold atoms with the orbital 

confinement defined by a 5 mRy energy shift parameter gives a converged conductance. 

The energy-shift parameter may need to be reduced when considering geometries other 

than the optimal binding geometry, e.g. with a gap between the molecule and one 

electrode. 
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