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1. The authors overviewed the contribution of microparticles (MPs) to the pathogenesis of cancer 
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"Microparticles in Cancer: A Review of Recent Developments and the Potential for Clinical 

Application.", a large part of the content of this manuscript occupied the refer and discussed on the 

publications of the authors' group. The authors should discuss more generally on state-of-the-art for 

clinical application of MPs or some other extracellular vesicles (EVs).  

The authors have now included an extra section on Page 10 discussing the clinical applications of 

extracellular vesicles in cancer.  

 

2. The authors should refer to sufficient publications in general, especially in cancer-derived 

extracellular vesicles.  

Other references relevant to this study have now been added.  

 

3. The term "microparticles" mainly used in this manuscript is not well documented. Is there any 

specific differences between MPs and EVs? If so please describe those appropriately in the text. 

An explanation has now been added on Page 3 to describe the different membrane vesicles. 

 

4. The authors described "exosomes" in the text in the section 4. However, there is no mentioned 

the differ from MPs. This is a very confusing. 
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including more other findings on tumor metastasis and drug resistance. 
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Abstract 

Once thought of as inert remnants of cellular processes, the significance of 

membrane vesicles is now expanding as their capacity to package and transfer 

bioactive molecules during intercellular communication is established. This ability to 

serve as vectors in the trafficking of cellular cargo is of mounting interest in the 

context of cancer, particularly in the dissemination of deleterious cancer traits from 

donor cells to recipient cells. Although microparticles (MPs) contribute to the 

pathogenesis of cancer, their unique characteristics can also be exploited in the 

context of cancer management. The detection of MPs in body fluids has the potential 

to provide an effective means for the diagnosis, prognosis and surveillance of cancer 

patients. The use of these readily accessible systemic biomarkers has the potential 

to circumvent the need for invasive biopsy procedures. In addition, the autologous 

nature of MPs may allow them to be used as novel drug delivery carriers. 

Consequently, the modulation of MP vesiculation to treat disease, the detection of 

MPs in disease monitoring, and the application of MPs as therapeutic delivery 

vehicles present prospective clinical interventions in the treatment of cancer.  

 

Keywords: Biomarker; cancer; drug delivery; metastasis; microparticle inhibitors; 

microparticles; multidrug resistance; P-glycoprotein.  
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1. Introduction  

Microparticles (MPs) are part of a general classification of extracellular vesicles 

termed microvesicles (MVs), which includes a population of membrane vesicles that 

are heterogeneous in shape, ranging in size from 0.1-1 μm and isolated from 

biological fluids or conditioned culture media [1]. Other extracellular vesicles include 

apoptotic bodies and exosomes, which differ on the basis of their size and origin. The 

irregularly shaped apoptotic bodies are released from cells undergoing apoptosis and 

fragmentation and range from 1-5 μm in size, whereas, exosomes (30-100 nm) are 

released by the fusion of multivesicular bodies with the cell membrane [1]. MPs, 

which are the focus of this review, are released from the surface of cells by the 

process of outward membrane budding through a loss of calcium-dependent 

membrane phospholipid asymmetry and cytoskeletal rearrangement [2]. MPs are 

therefore composed of fragments of the parent cell, which comprise the plasma 

membrane proteins and cytoplasmic and nucleic constituents of the parent cell. Once 

MPs bud from the parent cell, they are released into the systemic circulation, where 

they can effectively deliver their cargo long-range to recipient cells. In this way, MPs 

serve as systemic vehicles in mediating intercellular communication. MPs have been 

found to carry various bioactive molecules, proteins and nucleic acids including 

mRNA and microRNA (miRNA) [3-6]. Thus they are involved in multiple aspects of 

cancer progression including the development of drug resistance [5, 7-10] and 

metastases [11-13], tumor angiogenesis (by the dissemination of components such 

as sphingomyelin and VEGF) [14, 15] cellular survival (by the removal of cytosolic 

caspase 3) [16, 17] and evasion of immune surveillance via the expression of 

components such as latent membrane protein (LMP-1) [18] and Fas ligand [19, 20] 

(Figure 1). In this review, we will be focusing on recent developments in the role of 

MPs in cancer and how they can be utilized clinically in cancer management.  
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2. Microparticles provide a link between drug resistance and metastasis 

MPs have been shown to confer and transfer multidrug resistance (MDR) in cancer 

cells [5, 7, 10, 21]. This we showed was mediated through the intercellular transfer of 

functional resistance proteins, such as P-glycoprotein (P-gp) and Multidrug 

resistance protein 1 (MRP-1) Figure 2 is a confocal image which shows the transfer 

of P-gp-EGFP fusion protein transferred via MPs to recipient drug sensitive cancer 

cells. We observe significant co-localization with the membrane intercalating dye 

PKH-26 following a 4 hour co-culture period. This is consistent with our previous 

reports showing functionality of transferred resistance proteins contributing to the 

acquisition of MDR in recipient cells [5, 7, 10]. The MP-mediated acquisition of MDR 

was also shown to be associated with the promotion of an enhanced metastatic 

capacity in recipient breast cancer cells [11]. The elucidation of this relationship is 

significant, as these two deleterious traits were previously considered independent. 

Although an association between the emergence of the two phenotypes had been 

alluded to previously [22-24], a definitive link and the mechanism behind this 

remained unknown. Our laboratory was the first to show that MPs serve as a conduit 

in mediating this relationship [11].  

Recipient breast cancer cells, which were both lowly metastatic and responsive to 

drug treatment, acquired an enhanced metastatic capacity with the ability to resist 

drug treatment upon co-culture with MPs derived from highly metastatic, drug-

resistant donor cells [11]. MPs derived from breast cancer MDR cells were shown to 

mediate migration, invasion and drug resistance in recipient breast cancer cells to 

yield a population that was metastatic and drug resistant (Figure 3).  

The clinical relevance of MPs as the link between metastasis and drug resistance is 

that progression of either metastatic capacity or resistance may be indicative of 

progression of the other trait also. From a therapeutic perspective this provides 

opportunities for the prevention of these deleterious cancer phenotypes. 
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3. Microparticles mediate the enhancement of metastatic traits 

Metastasis is an especially unfavorable aspect of cancer progression, whereby a 

localized population of cancer cells spreads through the lymphatic system or 

bloodstream to other parts of the body. MPs have been shown to play a role in the 

induction of an enhanced metastatic capacity in cancer in a variety of ways. MPs 

have been found to transfer matrix metalloproteinase’s (MMPs), which are capable of 

degrading the extracellular matrix, allowing metastasis and invasion by cancer cells. 

MMP-2 and MMP-9 were found in MPs released from ovarian cancer cells and breast 

cancer cells and enhanced the metastatic capacity of recipient cells [12, 25, 26]. As 

mentioned above, we also showed that MPs formed are a conduit between drug 

resistance and metastasis. This appears to be mediated via the regulation of miR-

503 and proline-rich tyrosine kinase 2 (PYK2) to promote the migration and invasive 

capacity of recipient breast cancer cells [11].  

Specifically, we confirmed that miR-503 is required for the inhibition of migration and 

invasion in breast cancer as demonstrated by wound healing migration assays and 

Matrigel®-coated transwell invasion assays [11]. This finding supported previous 

observations of reduced migration and invasion following transfection of miR-503 in 

hepatocellular carcinoma cells [27], acute myeloid leukemia cells [28], chronic 

myelogenous leukemia cells [29], osteosarcoma cells, colon cancer cells [30], head 

and neck carcinoma cells [31] and in endometrioid endometrial cancer cells [32]. 

Moreover, we showed for the first time that MPs were involved in mediating the 

effects of miR-503 in breast cancer cells. One such mechanism for the down 

regulation of miR-503 by MPs was proposed to be via the activation of the NF-κB 

signaling pathway, as NF-κB has been shown to suppress the expression of miR-503 

in epithelial cells [33]. Moreover, NF-κB has been associated with the promotion of 

migration and invasion in breast cancer [34].  
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Furthermore, PYK2 protein and mRNA was found to be upregulated in recipient cells 

following co-culture with MPs [11]. PYK2, a member of the focal adhesion kinase 

subfamily of cytoplasmic tyrosine kinases, was correlated with an increased 

metastatic capacity in a breast cancer cell line [35], a squamous cell carcinoma of the 

head and neck [36], hepatocellular carcinoma [37, 38] and prostate cancer [39]. Both 

PYK2 and miR-503 may promote metastasis in recipient cells via regulation of the 

PI3K/AKT signaling pathway. The overexpression of PYK2 was associated with 

activation of the PI3K/AKT pathway and poor survival and metastasis in 

hepatocellular carcinoma [37]. Additionally, as miR-503 targets and inhibits PI3K/AKT 

activation [40, 41], the suppression of miR-503 in recipient cells may result in the up 

regulation of PI3K/AKT signaling and the subsequent promotion of metastasis.  

Although up regulated in recipient cells, PYK2 was not found in the cargo of the MPs 

themselves [11]. This was the first demonstration that it was the dissemination of 

intermediary mediators that led to the MP-mediated regulation of PYK2 in recipient 

cells rather than the direct transfer of components packaged within the MP cargo. 

Therefore, the scope of MP involvement in the promotion of migration and invasion is 

continuously broadening.  

4. Clinical applications of microparticles and other extracellular vesicles in 

cancer 

Modulation of MP release in the management of cancer 

The subject of MP inhibitors is an emerging focus in the field. Calcium channel 

blockers [42], ROCK inhibitors [43] and pantethine [44] have been shown to prevent 

the production and release of MPs in various cell types. This new class of 

compounds has potential to provide a novel strategy in circumventing MP-mediated 

dissemination of deleterious traits and preventing cancer progression [45, 46]. In a 

recent study, we elucidated the effects of Calpain inhibitor II, vitamin B5 derivatives 

and the calcium channel blocker Verapamil hydrochloride on modulating MP-
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biosynthetic pathways. Interestingly, Calpain inhibitor II (ALLM) showed a significant 

inhibition of MP production in both resting as well as cells activated with a calcium 

ionophore, A23187, while a ROCK inhibitor (Y-27632) inhibited MP synthesis in 

activated cells only. Thereby, these novel molecules may serve as potential 

candidates in strategies employed for the prevention of MP-mediated disease 

progression in cancer [46]. 

MPs as novel drug delivery systems 

In addition to their role as indicators of disease, the capacity of MPs to carry a 

multitude of components as part of their cargo can also be exploited in drug delivery. 

Since MPs naturally function as vehicles for the delivery of bioactive molecules, the 

refinement and modification of these processes may allow MPs to be used as novel 

therapeutic vehicles in the treatment of cancer.  

MPs have been found to sequester chemotherapeutic drugs [9]. In doing so, they 

provided another means by which MPs facilitated cancer MDR. MPs do this by both 

passive and active mechanisms. Passive sequestration occurs via diffusion of 

clinically relevant chemotherapeutic drugs such as the anthracyclines daunorubicin 

and doxorubicin across the MP membrane followed by incorporation within the 

intravesicular cargo of nucleic acids and phospholipids [9]. Once trapped, the drugs 

are no longer freely available to the target site and thus cancer cells evaded therapy. 

Active sequestration occurs in MPs derived from drug-resistant cancer cells that 

carry the drug efflux transporter P-gp on their surface. A number of this P-gp is 

inside-out in orientation such that rather than its traditional function of effluxing drugs, 

this results in the actively influx of drugs into MPs where they become trapped.  

Such a mechanism for drug trapping may be harnessed for therapeutic use in a 

similar manner to that employed by synthetic liposomes [47-50]. Indeed, a study 

conducted by Tang and colleagues in 2012 [51] showed that malignant cells 

incubated with chemotherapeutics drugs were able to package these drugs in the 
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MPs released from them. These drug-loaded MPs in turn were shown to have an 

anti-tumor effect in murine tumor models without the typical side effects [51].  

The development of MPs as a viable mechanism for the delivery of therapeutic 

molecules would be advantageous over artificial vesicles as they can be isolated 

from the patient, loaded with the desired drug(s) and reintroduced into the patient 

during treatment. Therefore, complications associated with rejection and 

immunogenicity would be avoided through the use of these autologous and 

biocompatible vehicles. The potential for using such vehicles for therapeutic delivery 

has been described for exosomes [52]. The clinical viability of dendritic cell-derived 

exosomes was assessed in Phase I trials with melanoma patients [53] and in patients 

with non-small cell lung carcinoma [54], with results showing that the therapy was 

well tolerated and could produce the required therapeutic effects. In particular, there 

is mounting interest in the delivery of nucleic acids for cancer therapy using this 

same approach.  

Loaded exosomes were used to deliver exogenous short interfering RNA to the brain 

tissue of mice, resulting in specific gene knockdown of BACE1, a therapeutic target 

in Alzheimer’s disease, and reduction in β-amyloid 1-42 levels, a component of the 

amyloid plaques associated with Alzheimer’s disease [55]. Furthermore, 

microvesicles harboring suicide gene mRNA and protein from donor cells reduced 

the growth of schwannoma tumors in an orthotopic mouse model [56]. MPs have also 

been shown to selectively package miRNAs and deliver them to recipient cells to 

regulate target gene expression and cellular function [6, 57, 58]. Therefore, there is 

extensive potential to use endogenously or exogenously loaded MPs in gene therapy 

as part of cancer therapy. 

Role of MPs as biomarkers of cancer 

In addition to the applications described above, there is emerging evidence for the 

role of extracellular vesicles in disease monitoring and diagnosis by serving as 
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biomarkers in cancer. MPs have been shown to have an incredible capacity to 

incorporate constituents from the parent cell and deliver them to recipient cells, 

contributing to cancer progression and resistance [5-7, 21]. It is this very capacity 

that makes MPs a promising biomarker for the diagnosis, prognosis and surveillance 

of cancer. Circulating MPs have been detected in the blood, urine and ascites of 

cancer patients [26, 59-62]. Furthermore, elevated levels of circulating MPs have 

been detected in patients with non-small cell lung carcinoma [63] and newly 

diagnosed glioblastoma patients [64] compared to healthy controls. Additionally, 

breast cancer patients have higher levels of MPs than healthy controls or patients 

with benign breast tumors [65-67]. This supports their potential as relevant diagnostic 

markers of malignancy. 

The detection of MPs has been associated with the prognosis and clinical status of 

cancer patients. An example is provided in pancreatic cancer. Tissue factor is an 

initiator of the blood coagulation cascade and has been detected in MPs extracted 

from the plasma of patients. Increased levels of tissue factor expressing MPs were 

found to be indicative of the presence of an aggressive, metastatic and poorly 

differentiated malignant pancreatic state that could easily infiltrate peripancreatic 

vessels in patients [68]. Consistent with this was the strong association with 

thrombosis and increased mortality in patients with pancreaticobiliary cancers [69]. 

This study amongst many others lends support to the diagnostic and prognostic 

potential MPs have in cancer management. 

Due to their presence in easily extracted body fluids and their capacity to reflect the 

characteristics of the parent cell, the proteomic and nucleic profile of MPs also has 

potential to be employed in diagnosis and prognosis. This may potential circumvent 

the need in the future for invasive biopsy procedures in staging and grading of 

cancers. The determination of the molecular status of tumors allows for detection of 

specific disease markers, surveillance of cancer progression and supports 
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approaches used in individualized and targeted therapies. This has potential for fast 

and efficient implementation of tailored interventions, resulting in improved clinical 

outcomes for the patient.  

Clinical applications of other membrane vesicles in cancer 

The immunotherapeutic effect of ascites derived exosomes in combination with GM-

CSF has been assessed in Phase 1 trials for the treatment of colorectal cancer. In 

this study, exosomes could induce an antigen-specific anticancer cytotoxic T 

lymphocyte response in patients, with minimal toxicity and tolerated administration 

[70]. Furthermore, an ongoing Phase II trial which assesses the efficacy of dendritic 

cell derived exosomes as autologous therapeutic vaccines in advanced non-small 

cell lung carcinoma (NSCLC) patients to stimulate their natural defences to prevent 

tumor progression [71]. The preclinical [72] and clinical data [72] are promising 

showing that dendritic cell derived exosomes serve as maintenance immunotherapy 

in patients bearing inoperable NSCLS by T-cell priming and restoring T- and NK-cell 

functions in end stage patients. Likewise, mesenchymal stem cells (MSC) derived 

MPs were shown to induce cell cycle arrest and apoptosis of different tumor cells as 

well as inhibit in vivo tumor growth [73]. This approach is potentially beneficial as MP 

inhibition of disease progression occurs in the absence of MSC differentiation into 

stromal fibroblasts which would otherwise be conducive to tumor growth [74, 75]. 

Given their small size, lack of toxicity, target specificity and tolerance in host cells, 

membrane vesicles may serve as therapeutic agents for the treatment of cancer as 

well as clinical biomarkers for disease diagnosis and monitoring based on their 

cancer specific protein, nucleic acid and lipid cargo. Clinical applications of 

membrane vesicles are still in the developmental stage and their full potential waits to 

be explored.  
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5. Conclusion 

Elucidation of the pathological role of MPs in cancer is ongoing. Understanding this 

role is critical in the development of interventions to prevent the progression of 

cancer, as well as in harnessing this natural mechanism and using it in clinical 

practice. In this way, there are three avenues by which MPs are being studied for 

improved clinical outcomes. Firstly, through the formulation of MP inhibitors as a 

novel therapeutic class in the treatment of numerous conditions arising from MP 

release and the MP-mediated intercellular communication. Secondly, harnessing 

MPs as natural vehicles in drug delivery. Utilizing circulating MPs as cancer 

biomarkers providing an effective and non-invasive form of cancer diagnosis, 

prognosis and surveillance to tailor and personalize therapy. These strategies 

highlight MPs as attractive therapeutic candidates in disease state management.  
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8. Figure Legends 

Figure 1: The role of MPs in cancer progression. MPs facilitate (A) the 

development of drug resistance through the transfer of functional drug resistance 

proteins such as P-gp and MRP-1, (B) the enhancement of metastatic potential 

enabled by the acquisition of proteases, miRNAs and protein tyrosine kinases (C) 

promotion of angiogenesis by the dissemination of components such as 

sphingomyelin and VEGF, and (D) cellular survival and evasion of immune 

surveillance via the expression of components such as caspase 3, latent membrane 

protein (LMP-1) and Fas ligand.  

Figure 2: MPs transfer P-gp to drug sensitive cells. 100 μg of MPs derived from 

human breast adenocarcinoma cells (MCF-7) transfected with EGFP tagged P-gp, 

transfer P-gp to drug sensitive MCF-7 cells following a 4 hour co-culture period. Cells 

were fixed, labeled with PKH-26 membrane dye and the cell nuclei with DAPI as per 

the manufacturer’s protocol (Sigma Aldrich, Australia). Panel A shows the merged 

channels captured, Panel B shows P-gp-EGFP in the 488 nm channel, Panel C 

shows PKH-26 in the 561 nm channel. Images were acquired on a Nikon A1 laser 

scanning confocal microscope at 100x magnification. Imaris 8 software (Bitplane AG) 

was used for 3D reconstruction of the images. Scale bar as indicated. Data are 

representative of a typical experiment. 

 
Figure 3: MPs link the development of drug resistance to an enhanced 

metastatic capacity in cancer. (A) MPs shed from highly metastatic, drug-resistant 

donor cells transfer components such as P-gp protein, mRNA and associated 

miRNAs, PYK2 and miR-503 to up regulate P-gp expression and metastatic capacity 

in lowly metastatic, drug-sensitive recipient cells. (B) Recipient cells acquire both 

drug resistant and metastatic traits to promote the evasion of chemotherapy and 

metastatic spread of cancer.  
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