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Abstract

The Region Connection Calculus (RCC) [41] is a well-known calculus for repre-
senting part-whole and topological relations. It plays an important role in qual-
itative spatial reasoning, geographical information science, and ontology. The
computational complexity of reasoning with RCC5 and RCC8 (two fragments of
RCC) as well as other qualitative spatial/temporal calculi has been investigated
in depth in the literature. Most of these works focus on the consistency of qual-
itative constraint networks. In this paper, we consider the important problem of
redundant qualitative constraints. For a set Γ of qualitative constraints, we say
a constraint (xRy) in Γ is redundant if it is entailed by the rest of Γ. A prime
subnetwork of Γ is a subset of Γ which contains no redundant constraints and
has the same solution set as Γ. It is natural to ask how to compute such a prime
subnetwork, and when it is unique.

In this paper, we show that this problem is in general intractable, but be-
comes tractable if Γ is over a tractable subalgebra S of a qualitative calculus.
Furthermore, if S is a subalgebra of RCC5 or RCC8 in which weak composition
distributes over nonempty intersections, then Γ has a unique prime subnetwork,
which can be obtained in cubic time by removing all redundant constraints simul-
taneously from Γ. As a byproduct, we show that any path-consistent network over
such a distributive subalgebra is weakly globally consistent and minimal. A thor-
ough empirical analysis of the prime subnetwork upon real geographical data sets
demonstrates the approach is able to identify significantly more redundant con-
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straints than previously proposed algorithms, especially in constraint networks
with larger proportions of partial overlap relations.

Keywords: Qualitative spatial reasoning, Region connection calculus,
Redundancy, Prime subnetwork, Distributive subalgebra

1. Introduction

Qualitative spatial reasoning is a common subfield of artificial intelligence
and geographical information science, and has applications ranging from natural
language understanding [13], robot navigation [47, 19], geographic information
systems (GISs) [17], sea navigation [55], to high level interpretation of video data
[48, 11].

Typically, the qualitative approach represents spatial information by introduc-
ing a relation model on a domain of spatial entities, which could be points, line
segments, rectangles, or arbitrary regions. In the literature, such a relation model
is often called a qualitative calculus [34]. In the past three decades, dozens of
spatial (as well as temporal) qualitative calculi have been proposed in the litera-
ture (cf. [10, 44]). Among these, Interval Algebra (IA) [1] and the RCC8 algebra
[41] are widely known as the most influential qualitative calculi for represent-
ing qualitative temporal and, respectively, spatial information. Other well-known
qualitative calculi include Point Algebra (PA) [52], Cardinal Relation Algebra
(CRA) [33], Rectangle Algebra (RA) [24], the RCC5 algebra [41], etc.

Using a qualitative calculusM, we represent spatial or temporal information
in terms of basic or non-basic relations in M, and formulate a spatial or tem-
poral problem as a set of qualitative constraints (called a qualitative constraint
network). A qualitative constraint has the form (xRy), which specifies that the
two variables x, y are related by the relation R. The consistency problem is to de-
cide whether a set of qualitative constraints can be satisfied simultaneously. The
consistency problem has been investigated in depth for many qualitative calculi in
the literature, e.g., [52, 51, 33, 40, 39, 43, 42, 14, 56, 37, 28, 35, 46, 30].

In this paper, we consider the important problem of redundant qualitative con-
straints. Given a set Γ of qualitative constraints, we say a constraint (xRy) in Γ
is redundant if it is entailed by the rest of Γ, i.e., removing (xRy) from Γ will
not change the solution set of Γ. It is natural to ask when a network contains
redundant constraints and how to get a non-redundant subset without changing
the solution set. We call a subset of Γ a prime subnetwork of Γ if it contains no
redundant constraints and has the same solution set as Γ.
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The redundancy problem (i.e., the problem of determining if a constraint is
redundant in a network) was first considered by Egenhofer and Sharma [18] for
topological constraints. They observed that a minimal set (i.e., a prime subnet-
work) contains somewhere between (n − 1) and (n2 − n)/2 nontrivial relations,
but did not provide efficient algorithms for deriving such a minimal set even for
basic topological constraints. In a recent paper, Wallgrün [53] proposed two al-
gorithms to approximately find the prime subnetwork. As observed in [53], and
explored in more detail in Section 6, neither of these two algorithms is guaranteed
to provide the optimal simplification.

The redundancy problem is also related to the minimal label problem (cf.
[38, 7, 20, 36]). A qualitative constraint network Γ is called minimal if for each
constraint (xRy) in Γ, R is the minimal (i.e., the strongest) relation between x, y
that is entailed by Γ. Roughly speaking, the minimal network removes ‘redundant’
or ‘unnecessary’ relations from each constraint, while the redundancy problem re-
moves ‘redundant’ or ‘unnecessary’ constraints from the constraint network.

We show in this paper that it is in general co-NP hard to determine if a con-
straint is redundant in a qualitative constraint network. But if all constraints in Γ
are taken from a tractable subclass1 S then a prime subnetwork can be found in
polynomial time. For example, if S is a tractable subclass of RCC5 or RCC8 that
contains all basic relations, then we can find a prime subnetwork in O(n5) time.
Furthermore, if S is a subalgebra of RCC5 or RCC8 in which weak composition
distributes over nonempty intersections, then Γ has a unique prime subnetwork,
which is obtained by removing all redundant constraints from Γ. We also devise a
cubic time algorithm for computing this unique prime subnetwork, which has the
same time complexity as the two approximate algorithms of Wallgrün [53].

As a byproduct, we identify an important class of subalgebras of qualitative
calculi, which, called distributive subalgebras, are subalgebras of qualitative cal-
culi in which weak composition distributes over nonempty intersections. We show
that any path-consistent network over such a distributive subalgebra is weakly
globally consistent and minimal, where weakly global consistency is a notion sim-
ilar to but weaker than the well-known notion of global consistency (cf. Defini-
tion 5). For RCC8, we identify two maximal distributive subalgebras which are
not contained in any other distributive subalgebras, one contains 41 relations and
the other contains 64. The 41 relations contained in the first subalgebra are exactly

1Here a subclass S is tractable if the consistency of any constraint network defined over S can
be determined in polynomial time.

3



the convex RCC8 relations identified in [7].
In this paper, we are mainly interested in topological constraints, as these are

the most important kind of qualitative spatial information. A large part of our
results can easily be transplanted to other qualitative calculi like PA, IA, CRA
and RA. In particular, letM be one of PA, IA, CRA and RA and S a distributive
subalgebra ofM over which path-consistency implies consistency. Then we can
show that any path-consistent network overM is globally consistent and minimal.
For ease of presentation, we state and prove these results only for RCC5 and
RCC8, but indicate in Table 5 which result is applicable to which calculus.

1.1. Motivation
As in the case of propositional logic formulas [32], redundancy of qualitative

constraints “often leads to unnecessary computation, wasted storage, and may
obscure the structure of the problem” [4].2 Finding a prime subnetwork can be
useful in at least the following aspects: a) computing and storing the relationships
between spatial objects and hence saving space for storage and communication;
b) facilitating comparison (or measure the distance) between different constraint
networks; c) unveiling the essential network structure of a network (e.g., being a
tree or a graph with a bounded tree-width); and d) adjusting geometrical objects
to meet topological constraints [53].

To further motivate our discussion, we focus on one specific application to
illustrate the application area a. and briefly explain how redundancy checking or
finding a prime subnetwork helps to solve the application areas b–d.

Figure 1 gives a small example of a set of spatial regions formed by the geo-
graphic “footprints” associated with placenames in the Southampton area of the
UK. The footprints are derived from crowd-sourced data, formed from the convex
hull of the sets of coordinate locations at which individuals used the placenames
on social media (cf. [50, 25]). Communicating and reasoning with the qualitative
aspects of such data may require the storage and manipulation of large numbers
of complex geometries with millions of vertices or large constraint networks with
millions of relations.

Even for the small example in Figure 1, the 84 footprints then require 84 ∗
83/2 = 3486 stored relations. The moderate-sized footprint data set from which
Figure 1 is adapted contains a total of 3443 footprints which leads to a constraint
network with 5, 925, 403 relations. Similarly, a moderate-sized geographic data

2It is worth noting that redundancy can also enhance propagation during computation (cf. [9]).
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Figure 1: Examples of crowd-sourced geographic placename “footprints” around Southampton,
UK

set of only 1559 statistical areas in Tasmania, explored further in later sections,
contains in total 3, 093, 551 vertices. In the case of both footprints and statis-
tical areas, many of the relationships can be inferred, and computing the prime
subnetwork can potentially reduce the number of stored relationships to be ap-
proximately linear in the number of regions (i.e., average-case space complexity
of O(n)), as opposed to linear in the number of relations (i.e., space complexity
Θ(n2)) (see Section 6). In the case of the Southampton constraint network, 1324
redundant relations lead to a prime subnetwork with only 2162 relations needing
to be stored. For the full data set, 5, 604, 200 redundant relations lead to a prime
subnetwork of just 321, 203 relations (in contrast to the full constraint network of
almost 6 million relations).

As for application area b., suppose Γ,Γ′ are two constraint networks over the
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same set of n variables. The similarity of Γ and Γ′ can be measured by comput-
ing the distance of each constraint (xRy) in Γ with the corresponding constraint
(xR′y) in Γ′ and sum them up (see e.g., [12, 54, 29]), i.e.,

dist(Γ,Γ′) =
∑
{dist(R,R′) : (xRy) ∈ Γ and (xR′y) ∈ Γ′}.

Clearly, if Γ and Γ′ are complete networks, we need O(n2) additions. This num-
ber, however, can be significantly reduced if we use prime subnetworks. Let Γpr

and Γ′pr be, respectively, prime subnetworks of Γ and Γ′. We define

distpr(Γ,Γ′) =
∑
{dist(R,R′) : (xRy) ∈ Γpr or (xR′y) ∈ Γ′pr}.

That is, the distance of Γ and Γ′ is approximated by distpr(Γ,Γ′), which only
involves constraints in either Γpr or Γ′pr. If Γpr and Γ′pr are sparse enough, i.e.,
they contain a small number of (non-redundant) constraints, this will significantly
simplify the comparison of two constraint networks.

In the case of application area c., a prime subnetwork unveils the essential
network structure, or the skeleton, of a network, and the relation between a prime
subnetwork and a constraint network is analogous to the relation between a span-
ning tree/forest [6] and a graph. Moreover, by the results of [5] and [26], we know
it is tractable to determine the consistency of a constraint network with a bounded
tree-width. Therefore, in general, checking the consistency of a prime subnetwork
will be easier than checking the consistency of the network itself.

As for application area d., Wallgrün [53] proposed a method for exploiting
qualitative spatial reasoning for topological adjustment of spatial data. To sim-
plify the complexity of topological adjustment, he suggested replacing the orig-
inal constraint network (say Γ) by an equivalent one (say Γ′) which has fewer
redundant constraints. It is clear that the fewer constraints contained in Γ′ the
better it is. A prime subnetwork is, roughly speaking, an optimal solution and
contains fewest constraints. Therefore, replacing Γ with a prime subnetwork will
significantly simplify the complexity of topological adjustment.

The remainder of this paper is structured as follows. We first recall the RCC5
and RCC8 constraint languages and introduce the notion of distributive subalge-
bras in Section 2, and then define the key notions of redundant constraint and
prime subnetwork in Section 3. In Section 4 we show that consistent RCC5 or
RCC8 networks over distributive subalgebras have unique prime subnetworks. In
Section 5 we compare our results with related works. In Section 6 we present a
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detailed evaluation of a practical implementation of our algorithm, in compari-
son with the approximations proposed by Wallgrün [53]. Section 7 concludes the
paper and outlines future research.

An extended abstract of this paper was presented in KR-2014 as a short paper.

2. RCC5 and RCC8 Constraint Languages

Suppose U is a domain of spatial or temporal entities. Write Rel(U) for the
Boolean algebra of binary relations on U . A qualitative calculusM on U is de-
fined as a finite Boolean subalgebra of Rel(U) which contains the identity relation
on U as an atom and is closed under converse, i.e., R is inM iff its converse

R−1 = {(a, b) ∈ U × U : (b, a) ∈ R}

is inM. A relation α in a qualitative calculusM is basic if it is an atom inM.
Well-known qualitative calculi include, among others, PA [52], IA [1], CRA [33],
RA [24], and RCC5 and RCC8 [41].

Since we are mainly interested in topological constraints, in this section, we
only recall the RCC5 and RCC8 constraint languages and refer the reader to for
example [44, 10, 30] for discussion of the other calculi. For convenience, we
denote by RCC5/8 either RCC5 or RCC8.

2.1. RCC5 and RCC8
The RCC5/8 constraint language is a fragment of the Region Connection Cal-

culus (RCC) [41], which is perhaps the most influential formalism for spatial re-
lations in artificial intelligence. The RCC is a first order theory based on a binary
connectedness relation and has canonical models defined over connected topolog-
ical spaces [49, 31].

Let X be a connected topological space and U the set of nonempty regular
closed sets of X . We call each element in U a region. Note that a region may have
multiple connected components as well as holes. Write P for the binary “part-of”
relation on U , i.e., xPy if x ⊆ y. Define

xPP y ≡ xP y ∧ ¬(yPx)

xOy ≡ (∃z)(zPx ∧ zP y)

xDR y ≡ ¬(xOy)

xPO y ≡ xOy ∧ ¬(xP y) ∧ ¬(yPx)

xEQ y ≡ xP y ∧ yPx
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Write PP−1 for the converse of PP. Then

B5 = {DR,PO,EQ,PP,PP−1}(1)

is a jointly exhaustive and pairwise disjoint (JEPD) set of relations, i.e., for any
two regions a, b ∈ U , a, b is related by exactly one of the above five relations.
We call the Boolean algebra generated by these five relations the RCC5 algebra,
which consists of all relations that are unions of the five basic relations in (1).
For convenience, we denote a non-basic RCC5 relation R as the subset of B5 it
contains. For example, we write {DR,PO,PP} for the relation DR∪PO∪PP,
and write ?5 for the universal relation {DR,PO,PP,PP−1,EQ}.

RCC5 relations are in essence part-whole relations. We next introduce a topo-
logical relation model. For two regions a, b, we say a is connected to b, written
aC b, if a ∩ b 6= ∅. Using C and P, the following topological relations can be
defined [41]:

xDC y ≡ ¬(xCy)

xEC y ≡ xC y ∧ ¬(xOy)

xTPP y ≡ xPP y ∧ (∃z)(zECx ∧ zEC y)

xNTPP y ≡ xPP y ∧ ¬(xTPP y)

Write TPP−1 and NTPP−1 for the converses of TPP and NTPP. Then

B8 = {DC,EC,PO,EQ,TPP,NTPP,TPP−1,NTPP−1}(2)

is a JEPD set of relations. We call the Boolean algebra generated by these eight
relations the RCC8 algebra, which consists of all relations that are unions of the
eight basic relations in (2). For convenience, we write ?8 for the universal relation
consisting of all basic relations in B8.

2.2. Weak Composition Table
While PA, IA, CRA and RA are all closed under composition, the composition

of two basic RCC5/8 relations is not necessarily a relation in RCC5/8 [16, 31]. For
example, the composition of DR and itself is not an RCC5 relation. This is be-
cause, for example, PO intersects with, but is not contained in, DR ◦DR, where
◦ denotes the relational composition operator. In fact, there are three regions a,
b, c such that aPOc and aDR b, bDR c. This shows that PO ∩ DR ◦ DR is
nonempty. Let d, e be two regions such that dPO e and d∪e = R2. Clearly, there
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is no region f such that dDR f and f DR e hold simultaneously. Therefore PO
is not contained in DR ◦DR.

For two RCC5/8 relations R and S, we call the smallest relation in RCC5/8
that contains R ◦ S the weak composition of R and S, written R � S [16, 31].

The weak compositions of RCC5 and RCC8 basic relations are summarised
in, respectively, Table 1 and Table 2 (from [41]). For each pair of RCC5/8 basic
relations (α, β), the table cell corresponding to (α, β) contains all basic relations
that are contained in α � β. In fact, suppose α, β, γ are three basic RCC5/8 rela-
tions. Then we have

γ ∈ α � β ⇔ γ ∩ (α ◦ β) 6= ∅.(3)

The weak composition of two (non-basic) RCC5/8 relations R and S can be com-
puted as follows:

R � S =
⋃
{α � β : α ∈ R, β ∈ S}.

Given (xRy) and (ySz), by definition, we have (xR � Sz), i.e., {(xRy), (ySz)}
entails (xR � Sz).

� DR PO PP PP−1 EQ
DR DR,PO,PP,PP−1,EQ DR,PO,PP DR,PO,PP DR DR
PO DR,PO,PP−1 DR,PO,PP,PP−1,EQ PO,PP DR,PO,PP−1 PO
PP DR DR,PO,PP PP DR,PO,PP,PP−1,EQ PP
PP−1 DR,PO,PP−1 PO,PP−1 PO,PP,PP−1,EQ PP−1 PP−1

EQ DR PO PP PP−1 EQ

Table 1: Composition table for RCC5 relations

From the RCC5 composition table, the following result is clear.

Lemma 1. For any nonempty RCC5 relation R, we have

PO ∈ PO �R, PO ∈ R �PO, and DR ∈ DR �R, DR ∈ R �DR.

The following result will be used later.

Proposition 2 (from [15]). With the weak composition operation �, the converse
operation −1, and the identity relation EQ, RCC5 and RCC8 are relation algebras.
In particular, the weak composition operation � is associative. Moreover, for
RCC5/8 relations R, S, T , we have the following cycle law

(R � S) ∩ T 6= ∅⇔ (R−1 � T ) ∩ S 6= ∅⇔ (T � S−1) ∩R 6= ∅.(4)

Figure 2 gives an illustration of the cycle law. In the following, we assume �
takes precedence over ∩.
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� DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

DC,EC,PO DC,EC DC,EC DC,EC DC,EC
DC TPP,NTPP PO PO PO PO DC DC DC

TPP−1,EQ TPP TPP TPP TPP
NTPP−1 NTPP NTPP NTPP NTPP

DC,EC,PO DC,EC,PO DC,EC,PO EC,PO PO DC
EC TPP−1 EQ,TPP TPP TPP TPP EC DC EC

NTPP−1 TPP−1 NTPP NTPP NTPP
DC,EC,PO DC,EC,PO DC,EC,PO PO PO DC,EC,PO DC,EC,PO

PO TPP−1 TPP−1 TPP,TPP−1,EQ TPP TPP TPP−1 TPP−1 PO
NTPP−1 NTPP−1 NTPP,NTPP−1 NTPP NTPP NTPP−1 NTPP−1

DC DC,EC TPP DC,EC,PO DC,EC,PO
TPP DC EC PO,TPP NTPP NTPP EQ,TPP TPP−1 TPP

NTPP TPP−1 NTPP−1

DC,EC DC,EC DC,EC,PO
NTPP DC DC PO NTPP NTPP PO TPP,TPP−1 NTPP

TPP TPP NTPP,EQ
NTPP NTPP NTPP−1

DC,EC,PO EC,PO PO PO,EQ PO TPP−1

TPP−1 TPP−1 TPP−1 TPP−1 TPP TPP NTPP−1 TPP−1

NTPP−1 NTPP−1 NTPP−1 TPP−1 NTPP NTPP−1

DC,EC,PO PO PO PO PO,TPP,EQ
NTPP−1 TPP−1 TPP−1 TPP−1 TPP−1 NTPP,TPP−1 NTPP−1 NTPP−1 NTPP−1

NTPP−1 NTPP−1 NTPP−1 NTPP−1 NTPP−1

EQ DC EC PO TPP NTPP TPP−1 NTPP−1 EQ

Table 2: Composition table for RCC8 relations

Figure 2: Illustration of the cycle law.

2.3. Qualitative Constraint Network
LetM be a qualitative calculus with domain U . A qualitative constraint over

M has the form (xRy), where x, y are variables taking values from U and R is
a relation (not necessarily basic) in M. Given a set Γ of qualitative constraints
over variables V = {v1, v2, ..., vn} and an assignment σ : V → U , we say σ is a
solution of Γ if (σ(vi), σ(vj)) satisfies the constraints in Γ that relate vi to vj for
any 1 ≤ i, j ≤ n. We say Γ is consistent or satisfiable if it has a solution.

Without loss of generality, we assume

• for each pair of variables vi, vj , there is at most one constraint in Γ that
relates vi to vj;
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• for each pair of variables vi, vj , if there is no constraint in Γ that relates vi
to vj , we say vi is related to vj by ?, the universal relation inM;

• for each pair of variables vi, vj , the constraint in Γ that relates vi to vj is the
converse of the constraint that relates vj to vi;

• for each variable vi, the constraint in Γ that relates vi to itself is the identity
relation (e.g., EQ in RCC5/8).

In this sense, we call Γ a network of constraints, and denote by for example Rij

the constraint that relates vi to vj . Let Γ = {viRijvj: 1 ≤ i, j ≤ n} and Γ′ =
{viR′ijvj : 1 ≤ i, j ≤ n} be two constraint networks overM. We say Γ and Γ′ are
equivalent if they have the same set of solutions; and say Γ refines Γ′ if Rij ⊆ R′ij
for all (i, j). We say a constraint network Γ is a basic network if each constraint is
either a basic relation or the universe relation; and say a basic network is complete
if there are no universal relations. In this paper, we also call every complete basic
network that refines Γ a scenario of Γ.

Suppose S is a subclass ofM. We say a constraint network Γ = {viRijvj :
1 ≤ i, j ≤ n} is over S if Rij ∈ S for every pair of variables vi, vj . The con-
sistency problem over S, written as CSP(S), is the decision problem of the con-
sistency of an arbitrary constraint network over S. The consistency problem over
PA (i.e., CSP(PA)) is in P [52, 51] and the consistency problems over IA, CRA,
RA and RCC5/8 are NP-complete [40, 33, 3, 43]. We say S is a tractable subclass
of M if CSP(S) is tractable. It is well-known that these calculi all have large
tractable subclasses, in particular, RCC8 has three maximal tractable subclasses
that contain all basic relations [43, 42] and RCC5 has only one [27].

The consistency of a qualitative constraint network can be approximately de-
termined by a local consistency algorithm. We say a network Γ = {viRijvj :
1 ≤ i, j ≤ n} is path-consistent3 if for every 1 ≤ i, j, k ≤ n, we have4

∅ 6=Rij ⊆ Rik �Rkj.

In general, path-consistency can be enforced by calling the following rule until an

3For PA, IA, CRA and RA, since weak composition is composition, this definition of path-
consistency is equivalent to that for finite constraint satisfaction problems [38]; for RCC5/8, the
two definitions are different mainly in the use of weak composition instead of composition.

4Recall we have assumed that Rji is the converse of Rij for each pair of variables vi, vj .
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empty constraint occurs (then Γ is inconsistent) or the network becomes stable5

Rij ← (Rik �Rkj) ∩Rij,

where 1 ≤ i, j, k ≤ n are arbitrary. A cubic time algorithm, henceforth called the
path-consistency algorithm or PCA, has been devised to enforce path-consistency.
For any qualitative constraint network Γ, the PCA either detects inconsistency of
Γ or returns a path-consistent network, written Γp, which is equivalent to Γ and
also known as the algebraic closure or a-closure of Γ [34]. It is easy to see that in
this case Γp refines Γ, i.e., we have Sij ⊆ Rij for each constraint (viSijvj) in Γp.

For RCC5/8 constraint networks, we have

Proposition 3 (from [42]). Let S be a tractable subclass of RCC5/8 which con-
tains all basic relations. An RCC5/8 network Γ over S is consistent if applying
PCA to Γ does not detect inconsistency.

In particular, we have

Proposition 4 (from [39]). A basic RCC5/8 network Γ is consistent if it is path-
consistent.

Consistency is closely related to the notions of minimal network (cf. [7, 20,
36]) and global consistency.

Definition 5. Let M be a qualitative calculus with domain U . Suppose Γ =
{viTijvj : 1 ≤ i, j ≤ n} is a qualitative constraint network overM and V = {v1,
..., vn}. For a pair of variables vi, vj ∈ V (i 6= j) and a basic relation α in Tij ,
we say α is feasible if there exists a solution (a1, a2, . . . , an) in U of Γ such that
(ai, aj) is an instance of α. We say Γ is minimal if α is feasible for every pair of
variables vi, vj (i 6= j) and every basic relation α in Tij .

We say Γ is weakly globally consistent (globally consistent, respectively) if
any consistent scenario (solution, respectively) of Γ↓V ′ can be extended to a con-
sistent scenario (solution, respectively) of Γ, where V ′ is any nonempty subset of
V and Γ↓V ′ is the restriction of Γ to V ′.

5Under the assumption that initially we have Rji = R−1
ij for every i 6= j, we do not need to

call updating rules like Rji ← R−1
ij , as this can be achieved by calling Rji ← (Rjk � Rki) ∩ Rji

after Rij ← (Rik � Rkj) ∩ Rij is called. This will simplify the discussion in, for example, the
proof of Lemma 20.

12



The notion of weakly global consistency is weaker than the notion of global
consistency. The latter requires that every partial solution can be extended to
obtain a global solution, which is too strong for even complete basic RCC5/8 net-
works. But the two notions are equivalent for PA, IA, CRA and RA as consistent
basic networks over these calculi are all globally consistent.

While every consistent RCC5/8 constraint network has a unique minimal net-
work, it is in general NP-hard to compute it [36]. The following result shows that
every weakly globally consistent network is also minimal.

Proposition 6. Let M be a qualitative calculus with domain U . Suppose Γ =
{viTijvj : 1 ≤ i, j ≤ n} is a qualitative constraint network over M. If Γ is
weakly globally consistent, then it is minimal.

Proof. For every pair of variables vi, vj (i 6= j) and every basic relation α in Tij ,
it is clear that {viαvj} is a consistent scenario of Γ↓{vi,vj}. Because Γ is weakly
globally consistent, we can extend this to a consistent scenario of Γ. In other
words, there exists a solution (a1, a2, . . . , an) of Γ in U such that (ai, aj) is an
instance of α. This shows that Γ is minimal.

In what follows, we write Γm for the minimal network of Γ, and Γp for the
a-closure of Γ.

2.4. Distributive Subalgebra
As mentioned before, RCC5 has a unique maximal tractable subclass which

contains all basic relations [43, 27]. This subclass, writtenH5, contains all RCC5
relations except

{PP,PP−1},{PP,PP−1,EQ}, {DR,PP,PP−1}, {DR,PP,PP−1,EQ}.

Write B̂5 for the closure of B5 under converse, intersection, and weak composition
in RCC5. Then B̂5 contains all basic relations as well as

{PO,PP}, {PO,PP−1}, {PO,PP,PP−1,EQ},
{DR,PO,PP}, {DR,PO,PP−1}, {DR,PO}, ?5,

where ?5 = {DR,PO,PP,PP−1,EQ}. It is interesting to note that in B̂5 the
weak composition operation is distributive over nonempty intersections in the fol-
lowing sense.
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Lemma 7. Let R, S, T be three relations in B̂5. Suppose S ∩T is nonempty. Then
we have

R � (S ∩ T ) = R � S ∩R � T and (S ∩ T ) �R = S �R ∩ T �R.

We note the requirement that S ∩ T is nonempty is necessary, as we have
for example {DR} � {DR} ∩ {DR} � {PO} = {DR,PO,PP} 6= ∅ while
{DR} � ({DR} ∩ {PO}) = {DR} �∅ = ∅.

In what follows, we call such a subclass a distributive subalgebra. Formally,
we have

Definition 8. Let M be a qualitative calculus. A subclass S of M is called a
distributive subalgebra if

• S contains all basic relations; and

• S is closed under converse, weak composition, and intersection; and

• weak composition distributes over nonempty intersections of relations in S.

Write B̂l for the closure of Bl in RCCl (l = 5, 8) under converse, weak com-
position, and intersection. It is straightforward to check that both B̂5 and B̂8 are
distributive subalgebras. This shows that the above definition is well-defined and
every distributive subalgebra of RCCl contains B̂l as a subclass.

We say a distributive subalgebra S is maximal if there is no other distributive
subalgebra that properly contains S. To find all maximal distributive subalgebras
of RCC5 and RCC8, we start with B̂l and then try to add other relations to this
subalgebra to get larger distributive subalgebras. It turns out that both RCC5
and RCC8 have only two maximal distributive subalgebras. In Appendix A we
list all relations contained in these subalgebras, and explain how we find these
subalgebras and why there are no other maximal distributive subalgebras.

The next lemma summarises one useful property of distributive subalgebras.

Lemma 9. Let S be a distributive subalgebra of RCC5/8. Suppose R, S, T are
three relations in S. Then R ∩ S ∩ T = ∅ iff R ∩ S = ∅, or R ∩ T = ∅, or
S ∩ T = ∅.

Proof. We only need to show the “only if” part.
For two RCC5/8 relations P,Q, we first note that P∩Q 6= ∅ iff EQ ∈ Q−1�P .

In fact, from P ∩ Q 6= ∅, we know there exist two regions a, b such that (a,
b) ∈ P ∩ Q. This implies that (b, b) ∈ Q−1 ◦ P as (b, a) ∈ Q−1 and (a, b) ∈ P .
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Hence EQ∩Q−1 ◦P is nonempty and, by the definition of weak composition and
(3), EQ ∈ Q−1 � P . On the other hand, if EQ ∈ Q−1 � P , then EQ ∩ Q−1 ◦ P
is nonempty. This implies that there exist two regions a, b such that (b, a) ∈ Q−1
and (a, b) ∈ P . Thus (a, b) ∈ P ∩Q and, hence, P ∩Q 6= ∅.

Suppose R∩S ∩T is empty but R∩S,R∩T and S ∩T are all nonempty. By
the above property, we have EQ ∈ T−1 �R and EQ ∈ T−1 � S. Because R, S, T
are relations in the distributive subalgebra S and R ∩ S 6= ∅, we know

EQ ∈ (T−1 �R) ∩ (T−1 � S) = T−1 � (R ∩ S).

Thus T−1 � (R ∩ S) 6= ∅ and, hence, R ∩ S ∩ T 6= ∅ . A contradiction.

The above result does not hold in general. For example, consider the RCC5
relations R = {PO,PP}, S = {DR,PP}, T = {DR,PO,PP−1}. R, S,
T are all in H5 but S is not in any distributive subalgebra of RCC5. We have
R∩S ∩ T = ∅ but R∩S = {PP}, R∩ T = {PO}, and S ∩ T = {DR} are all
nonempty.

It is worth noting that each distributive subalgebra of RCC5 is contained inH5,
the maximal tractable subclass of RCC5 identified in [43, 27], and each distribu-
tive subalgebra of RCC8 is contained in Ĥ8, one of the three maximal subclasses
of RCC8 identified in [42]. In particular, by Proposition 3, we have

Corollary 10. Let S be a distributive subalgebra of RCC5/8. Then every path-
consistent network over S is consistent.

3. Redundant Constraint and Prime Subnetwork

In this section we first give definitions of redundant constraints and prime
subnetworks and then discuss how to find a prime subnetwork in general.

Definition 11. Let M be a qualitative calculus with domain U . Suppose Γ is a
qualitative constraint network over variables V = {v1, ..., vn}. We say Γ entails a
constraint (viRvj), written Γ |= (viRvj), if for every solution {a1, ..., an} of Γ in
U we have (ai, aj) ∈ R. A constraint (viRvj) in Γ is redundant if Γ \ {(viRvj)}
entails (viRvj). We say Γ is reducible if it has a redundant constraint, and say Γ is
irreducible or prime if otherwise. We say a subset Γ′ of Γ is a prime subnetwork
of Γ if Γ′ is irreducible and equivalent to Γ.

Note that each universal constraint (vi ? vj) in Γ is, by definition, always a
redundant constraint in Γ. We call this a trivial redundant constraint. In the fol-
lowing, we give an example of non-trivial redundant RCC5 constraints.
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Figure 3: An RCC5 network, where (v1 PP v2) is redundant.

Example 12. Suppose

Γ = {v1PP v2, v1PP v5, v3PP v1, v4PP v2, v5{DR,PP}v2, v3POv4}.

Then (v1PP v2) is redundant. This is because, after enforcing path-consistency
to Γ \ {(v1PP v2)}, we have (v5PP v2) and hence (v1PP v2). This shows that
Γ \ {(v1PP v2)} entails (v1PP v2). Moreover, (v1PP v2) is the only non-trivial
redundant constraint in Γ and Γ\{(v1PP v2)} is the unique prime subnetwork of
Γ.

Given a qualitative constraint network Γ, a very interesting question is, how
to find a prime subnetwork of Γ? This problem is clearly at least as hard as deter-
mining if Γ is reducible. Similar to the case of propositional logic formulae [32],
we have the following result for RCC5/8.

Proposition 13. Let Γ be an RCC5/8 network and suppose (xRy) is a constraint
in Γ. It is co-NP-complete to decide if (xRy) is redundant in Γ.

Proof. First of all, we note that (xRy) is redundant in Γ iff (Γ\{(xRy)})∪{xRcy}
is inconsistent, where Rc is the complement of R. Since it is NP-complete to
decide if an RCC5/8 network is consistent, we know this redundancy problem
(i.e., the problem of determining if a constraint is redundant in a network) is in
co-NP. On the other hand, it is easy to construct a polynomial many-one reduction
from the inconsistency problem of RCC5/8 to the redundancy problem. Fix two
variables x, y. Suppose Γ is an arbitrary RCC5/8 network over V and x, y are two
variables in V . Then Γ is inconsistent iff Γ \ {(xRy)} |= (xRcy) iff (xRcy) is
redundant in (Γ \ {(xRy)}) ∪ {xRcy}. This shows that the redundancy problem
is co-NP complete.
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Similarly, we can show that the redundancy problems for IA, CRA, and RA
are also co-NP-complete and, because the consistency problem of PA is in P, the
redundancy problem for PA is in P.

To determine if a network Γ is reducible, we need in the worst case check for
O(n2) constraints in Γ whether they are redundant in Γ. By the above proposition,
this is a decision problem in ∆P

2 , the class of problems solvable in polynomial
time with an oracle for some NP-complete problem. Finding a prime subnetwork
of Γ is more complicated. A naive method is to remove redundant constraints
iteratively from Γ until we get an irreducible network. Let c1, c2, . . . , ck be the
sequence of all non-trivial constraints in Γ. Write Γ0 = Γ, and define

Γi+1 =

{
Γi \ {ci+1} if ci+1 is redundant in Γi;
Γi if otherwise.(5)

for 0 ≤ i ≤ k − 1. Then it is easy to show that Γk is a prime subnetwork of Γ.
Suppose we have an oracle which can tell if a constraint is redundant in a network.
Then Γk can be constructed in O(n2) time. We note that the construction of the
prime subnetwork Γk depends on the order of the constraints c1, c2, . . . , ck.

Despite that it is in general co-NP-complete to determine if a constraint is
redundant, we have a polynomial time procedure if the constraints are all taken
from a tractable subclass of RCC5/8.

Proposition 14. Let S be a tractable subclass of RCC5/8 that contains all basic
relations. Suppose Γ is a network over S. Then in O(n3) time we can deter-
mine whether a constraint is redundant in Γ and in O(n5) time find all redundant
constraints of Γ. In addition, a prime subnetwork for Γ can be found in O(n5)
time.

Proof. Suppose (xRy) is a constraint in Γ and let Γ′ ≡ Γ\{(xRy)}. To determine
if (xRy) is redundant in Γ, we check for each basic RCC5/8 relation γ that is not
in R, whether Γ′ ∪ {(xγy)} is consistent. If the answer is confirmative for one γ
(note that RCC5 has five and RCC8 has eight basic relations), then (xRy) is not
redundant in Γ. By Proposition 3, the consistency of Γ′ ∪ {(xγy)} can be deter-
mined by enforcing path-consistency and hence can be determined in cubic time.
Since there are O(n2) constraints in Γ, in O(n5) time we can find all redundant
constraints of Γ.

Suppose c1, c2, . . . , ck are all non-trivial constraints of Γ. We define Γ0 = Γ,
and set Γi+1 as in (5). Note that if a constraint is non-redundant in Φ then it is also
non-redundant in any subset of Φ. It is straightforward to show that Γk is a prime
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subnetwork of Γ. Since we can determine in cubic time whether a constraint is
redundant in a network over S , Γk can be computed in k × O(n3) time, which is
bounded by O(n5).

Similar conclusions apply to other calculi. For example, since the consistency
problem of PA can be solved in O(n2) time, the redundancy problem of PA can
be solved in O(n2) time and we can find a prime subnetwork for any consistent
PA network in O(n4) time.

It is often interesting to know when a constraint is contained in some or all
prime subnetworks. The following notion will be helpful in partially answering
questions like this.

Definition 15. Let M be a qualitative calculus and suppose Γ is a qualitative
constraint network overM. Write Γc for the set of non-redundant constraints in
Γ. We call Γc the core of Γ.

It is easy to see that the core of Γ is contained in every prime subnetwork
of Γ. Are prime subnetworks unique? And, is the core itself always a prime
subnetwork? The following example shows that in general this is not the case.

Example 16. Suppose Γ is the RCC5 network specified as below

{v1P v2, v2P v3, v3P v1, v1PO v4, v2PO v4},

where P = {PP,EQ}. Then both PO constraints in Γ are redundant. This is be-
cause, enforcing path-consistency to {v1P v2, v2P v3, v3P v1}we have v1EQ v2,
v1EQ v3, v2EQ v3. Therefore, knowing one PO constraint will infer the other.
Moreover, Γ has no other redundant constraints and {v1P v2, v2P v3, v3P v2} is
the core of Γ but not equivalent to Γ. It is easy to see that Γc ∪ {v1PO v4} and
Γc ∪ {v2PO v4} are two prime subnetworks of Γ.

Note that this occurs since there is a cycle of P constraints in Γ, i.e., Γ is
P-cyclic. In the following we often assume that Γ has the following property:

(∀i, j)[(i 6= j)→ (Γ 6|= (viEQ vj))].(6)

This implies that no two variables are forced to be identical. We call a network
which satisfies (6) an all-different constraint network. Note that an all-different
network is always consistent, as an inconsistent network entails everything.

The following proposition shows that the all-different requirement is not re-
strictive at all for constraint networks over a tractable subalgebra.
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Proposition 17. Let S be a tractable subclass of RCC5/8 that contains all basic
relations. Suppose Γ = {viRijvj : 1 ≤ i, j ≤ n} is a consistent network over S
and Γp its a-closure. Then, for any i 6= j, Γ |= (vi EQ vj) iff (vi EQ vj) is in Γp.

Proof. The sufficiency part is clear. We only need to show the necessity part.
Suppose Γ |= (vi EQ vj). We show (vi EQ vj) is in Γp. Suppose Γp = {viSijvj :
1 ≤ i, j ≤ n}. Because Γ is consistent, Γp is path-consistent and each Sij is
nonempty. By Theorem 21 of [42], Γp has a consistent scenario Γ∗ = {viαijvj :
1 ≤ i, j ≤ n}, where αij = EQ iff Sij = EQ. In other words, if Sij 6= EQ,
i.e., (vi EQ vj) is not in Γp, then αij cannot be EQ and hence Γ does not entail
(vi EQ vj). This is a contradiction and hence (vi EQ vj) is in Γp.

The above proposition shows that whether a constraint network is all-different
can be answered by enforcing path-consistency. When a constraint network is
not all-different, we can amalgamate those identical variables and thus obtain an
equivalent but simplified all-different network.

In the next section we will show that, if Γ is an all-different constraint network
over a distributive subalgebra of RCC5/8, then Γc is the unique prime subnetwork
of Γ. This is quite surprising, as, in general, knowing that (xRy) and (uSv) are
both redundant in Γ does not imply that (uSv) is also redundant in Γ \ {(xRy)}.

4. Networks over a Distributive Subalgebra

In this section, we assume S is a distributive subalgebra of RCC5/8. Let Γ be
an all-different network over S. Because Γ satisfies (6), there is in particular no
EQ constraint in Γ. We show that Γc, the core of Γ, is equivalent to Γ and hence
the unique prime subnetwork of Γ. Using this result, we then further give a cubic
time algorithm for computing the unique prime subnetwork of Γ.

To prove that Γc is equivalent to Γ, we need two important results. The first
result, stated in Theorem 19, shows that the a-closure of Γ is minimal, i.e. Γp is
exactly Γm. The second result, stated in Proposition 28, shows that a particular
constraint (xRy) is redundant in Γ iff its corresponding constraint in Γp is redun-
dant in Γp. Our main result, stated in Theorem 29, then follows directly from these
two results.

In Section 4.1, we prove Theorem 19; in Section 4.2, we characterise relations
in such a minimal network in terms of the weak compositions of paths from x to
y in Γ; and in Section 4.3 we prove Proposition 28. Using these results, we show
in Section 4.3 that Γc is equivalent to Γ and hence the unique prime subnetwork
of Γ and give in Section 4.4 a cubic time algorithm for computing Γc.
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4.1. The A-closure of Γ Is Minimal
To prove that a network is minimal, by Proposition 6, we only need to show

that it is weakly globally consistent in the sense of Definition 5.

Theorem 18. Let S be a distributive subalgebra of RCC5/8. Suppose Γ = {viRijvj :
1 ≤ i, j ≤ n} is a path-consistent network over S. Then Γ is weakly globally con-
sistent.

Proof. Write Vk = {v1, v2, . . . , vk} for 1 ≤ k < n. Without loss of generality, we
only show that every consistent scenario of Γ↓Vk

can be extended to a consistent
scenario of Γ↓Vk+1

. Suppose ∆ = {viδijvj : 1 ≤ i, j ≤ k} is a consistent scenario
of Γ↓Vk

. Then each δij is a basic relation in Rij . For each 1 ≤ i ≤ k, write Ti for
Rk+1,i (see Figure 4 for illustration). Let T̂i =

⋂k
j=1 Tj � δji.

Figure 4: Illustration of Γ↓Vk+1
in the proof of Theorem 18

We assert that each T̂i is nonempty. By Lemma 9, it is easy to show by in-
duction on k that, for any set {W1,W2, . . . ,Wk} of k ≥ 3 nonempty relations in
S,
⋂k

i=1Wi 6= ∅ iff Wi ∩Wj 6= ∅ for any 1 ≤ i 6= j ≤ n. Therefore, to show
T̂i 6= ∅, we only need to show Tj � δji ∩ Tj′ � δj′i 6= ∅ for any 1 ≤ i ≤ n and any
1 ≤ j 6= j′ ≤ n. Applying the cycle law as stated in Proposition 2 twice, we have

Tj � δji ∩ (Tj′ � δj′i) 6= ∅ iff (Tj′ � δj′i) � (δji)
−1 ∩ Tj 6= ∅

iff Tj′ � (δj′i � δij) ∩ Tj 6= ∅
iff T−1j′ � Tj ∩ (δj′i � δij) 6= ∅
iff (Rj′,k+1 �Rk+1,j) ∩ (δj′i � δij) 6= ∅.

Note here (δji)
−1 = δij and T−1j′ = (Rk+1,j′)

−1 = Rj′,k+1. Because δj′j ⊆ Rj′j ,
we know δj′j ∩ Rj′j 6= ∅. Since both ∆ and Γ are path-consistent, we also have
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δj′j ⊆ δj′i�δij andRj′j ⊆ Rj′,k+1�Rk+1,j . Therefore, we have (Rj′,k+1�Rk+1,j)∩
(δj′i � δij) ⊇ Rj′j ∩ δj′j 6= ∅ and hence Tj � δji ∩ Tj′ � δj′i 6= ∅. This shows that
T̂i 6= ∅ for any 1 ≤ i ≤ n.

To show that Γ↓Vk
∪{vk+1T̂ivi : 1 ≤ i ≤ k} is path-consistent, we only need to

show for 1 ≤ i 6= i′ ≤ k that T̂i�δii′ ⊇ T̂i′ . By the distributivity and δji�δii′ ⊇ δji′
we have

T̂i � δii′ = (
k⋂

j=1

Tj � δji) � δii′ =
k⋂

j=1

Tj � (δji � δii′) ⊇
k⋂

j=1

Tj � δji′ = T̂i′ .

This shows that Γ↓Vk
∪ {vk+1T̂ivi : 1 ≤ i ≤ k} is path-consistent and hence, by

Corollary 10, has a consistent scenario ∆′. It is clear that ∆′ extends ∆ from Vk
to Vk+1. Because Γ↓Vk

∪ {vk+1T̂ivi : 1 ≤ i ≤ k} refines Γ↓Vk+1
, we know Γ↓Vk+1

has a consistent scenario which extends ∆.

Together with Proposition 6, the above result immediately implies that the
a-closure of a consistent network Γ over a distributive subalgebra is minimal.

Theorem 19. Let S be a distributive subalgebra of RCC5/8. Suppose Γ is a
consistent network over S and Γp its a-closure. Then Γp is identical to the minimal
network of Γ.

The above results can also be extended to distributive subalgebras of PA, IA
and CRA, but do not hold in general. Consider the network Γ over H5 shown in
Figure 5, which is inspired by a network over PA in [51]. The network is path-
consistent but not minimal. In fact, the relation EQ in the constraint (v1{PP,
EQ}v2) is not feasible, i.e., there exists no solution of Γ in which (v1EQv2) is
satisfied. By Proposition 6, we know Γ is not weakly globally consistent.

In the next subsection, we characterise relations in such a minimal network in
terms of the weak compositions of paths from x to y in Γ.

4.2. Weak Compositions of Paths
Let M be a qualitative calculus. A qualitative constraint network Γ is in

essence a labelled directed graph consisting of the variables in Γ as vertices and
qualitative relations inM between the variables as labels. A path π from a vari-
able x to another variable y is a sequence of constraints c1, c2, ..., cs such that
ci = (ui−1Riui) and u0 = x, us = y. The weak composition of path π is the
qualitative relation inM defined as

CT(π) ≡ R1 �R2 � ... �Rs.
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Figure 5: A counter-example of Theorem 19: a path-consistent constraint network Γ overH5.

Since the weak composition operation is associative, the relation CT(π) defined
above is unambiguous. We say a path π is non-trivial if CT(π) is not the universal
relation. Note that (xCT(π)y) is entailed by those constraints in π.

Suppose Γ is a constraint network over a distributive subalgebra of RCC5/8,
(xRy) and (xSy) are respectively the constraints in Γ and Γp that relate x to y.
We next show that S is the intersection of the weak compositions of all paths from
x to y in Γ. Note that such a path may contain (xRy) as an (or the unique) edge.

Lemma 20. Let S be a distributive subalgebra of RCC5/8. Suppose Γ is a con-
sistent network over S and Γp its a-closure. Assume furthermore that (xSy) is a
constraint in Γp. Then S is the intersection of the weak compositions of all paths
from x to y in Γ.

Proof. Suppose the network becomes stable in k steps when enforcing PCA. For
l ≤ k, we write Rl

ij for the constraint between vi and vj in the l-th step. We prove
by using induction on l that every Rl

ij is the intersection of the weak compositions
of several paths from vi to vj in Γ.

When l = 0, this is clearly true. Suppose this is true for l ≤ s. We show it
also holds for l = s+ 1. Suppose in this step the following updating rule is called

Rl+1
ij = (Rl

ik �Rl
kj) ∩Rl

ij.

By induction hypothesis, we know Rl
ij is the intersection of the weak composi-

tions of several paths from vi to vj in Γ. Similar for Rl
ik and Rl

kj . Note that when
joining a path from vi to vk and a path from vk to vj , we obtain a path from vi
to vj . Because every constraint in Γ is taken from S, in which weak composition
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distributes over nonempty intersections, it follows that Rl
ik �Rl

kj is identical to the
intersection of the weak compositions of all these paths from vi to vj via vk. It is
now clear that Rl+1

ij also satisfies the property.
So far, we have shown for every constraint (xSy) in Γp that S is the intersec-

tion of the weak compositions of several paths from x to y in Γ. Because Γp is
path-consistent, the weak composition of every path from x to y in Γp contains S.
Therefore, S is also contained in the intersection of the weak compositions of all
paths from x to y in Γ. This shows that S is exactly the intersection of the weak
compositions of all paths from x to y in Γ.

The distributive property is necessary in the above lemma. Consider the con-
sistent RCC5 network Γ overH5 shown in Figure 6. The intersection of the weak
compositions of all paths from v1 to v2 in Γ is {DR,PP}, while the relation that
relates v1 to v2 in Γp is {DR}, which is strictly contained in {DR,PP}.

(a) (b)

Figure 6: A counter-example of Lemma 20: (a) a constraint network Γ over H5; and (b) its a-
closure Γp.

The following lemma shows that the weak composition of a cycle contains EQ
and PO. This result holds for arbitrary RCC5/8 networks which are all-different.

Lemma 21. Suppose Γ is an all-different RCC5/8 network and π = (c1, c2, ..., cs)
(s ≥ 2) a path from x to itself in Γ such that ci = (ui−1Riui), u0 = us = x.
Then CT(π) contains O5 ≡ {PO,PP,PP−1,EQ} if Γ is an RCC5 network,
and contains O8 ≡ {PO,TPP,TPP−1,EQ} if Γ is an RCC8 network.

Proof. Write y for u1. Let R = R1 and T = CT(π>1) = R2 � R3 � . . . � Rs.
Note that y 6= x and π>1 is a path from y to x. Suppose S is the relation from x
to y in the a-closure of Γ. Because Γ is consistent, we know S is nonempty and
S ⊆ R, S ⊆ T−1. Furthermore, since Γ is all-different and hence satisfies (6), we
know S 6= {EQ}. As a consequence, we know there is a basic RCC5/8 relation
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α 6= EQ which is contained inR∩T−1. Therefore, CT(π) = R�T ⊇ α�α−1. By
checking the composition tables of RCC5 and RCC8, we have that α�α−1 (hence
CT(π)) contains O5 (O8, respectively) for any RCC5 (RCC8, respectively) basic
relation α 6= EQ.

The following lemma provides a finer characterisation of the constraint (xSy)
in Γp in terms of paths in Γ that do not contain the constraint (xRy).

Lemma 22. Let S be a distributive subalgebra of RCC5/8. Suppose Γ is an all-
different network over S and Γp its a-closure. Assume that (xRy) and (xSy) are
the constraints from x to y in Γ and Γp respectively. Then S = R∩W , whereW is
the intersection of the weak compositions of all paths from x to y in Γ \ {(xRy)}.

Proof. Because (xRy) is the only path with length 1 from x to y in Γ, Lemma 20
in fact asserts that S is the intersection of R and the weak compositions of all
paths in Γ with length ≥ 2. Note that each path from x to y in Γ \ {(xRy)} has
length ≥ 2. We know S ⊆ R ∩W .

To show S ⊇ R ∩W , we only need to show CT(π) ⊇ R ∩W for every path
from x to y in Γ with length ≥ 2. Suppose π = (c1, c2, ..., cs) (s ≥ 2) is such a
path and ci = (ui−1Riui), u0 = x, us = y.

Figure 7: Illustration of the three types of paths: (a) Case 1, (b) Case 2, (c) Case 3, where solid
lines represent constraints or paths contained in π and the dashed line represents the constraint
(xRy) in Γ.

There are three types of paths (see Figure 7 for illustration).
Case 1. π contains neither (xRy) nor (yR−1x). Clearly π is a path from x to

y in Γ \ {(xRy)}. By definition we have CT(π) ⊇ W .
Case 2. If ci = (xRy) for some 1 ≤ i ≤ s, then CT(π) = CT(π<i) �

R � CT(π>i). Note that either π<i or π>i is a nonempty cycle. By Lemma 21
we know the weak composition of each cycle contains EQ. Therefore, we know
CT(π) ⊇ R.
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Case 3. If ci = (yR−1x) for some 1 ≤ i ≤ s, then CT(π) = CT(π<i) �
CT(π≥i). Without loss of generality, we assume ci is the first constraint in π such
that ci = (yR−1x). It is clear that π<i is a path of Case 1 and henceW ⊆ CT(π<i).
Note that π≥i is a path from y to itself. By Lemma 21 we know EQ ∈ CT(π≥i)
hence CT(π) = CT(π<i) � CT(π≥i) ⊇ W � EQ = W .

This shows that R ∩ W is contained in the weak composition of every path
from x to y in Γ with length ≥ 2. Since S is the intersection of R and all paths
from x to y in Γ with length ≥ 2, this shows that S ⊇ R ∩W . Therefore we have
S = R ∩W .

As Lemma 20, the above result does not hold in general. Consider the network
shown in Figure 6 and the constraint from v1 to v2. We have R = {DR,PP},
S = {DR}, but R ∩W = {DR,PP} 6= S.

4.3. Correspondence Between Redundant Constraints in Γ and Γp

Suppose Γ is an RCC5/8 network over a distributive subalgebra S and Γp

its a-closure. Let (xRy) and (xSy) be the constraints from x to y in Γ and Γp

respectively. We prove that (xRy) is redundant in Γ iff (xSy) is redundant in Γp.
To this end, we need several lemmas.

The following two lemmas show that a constraint (xRy) in Γ is redundant iff
R contains the intersection of the weak compositions of all paths from x to y in
Γ \ {(xRy)}.

Lemma 23. Suppose Γ is a consistent RCC5/8 network and (xRy) a constraint
in Γ. Assume that W is the intersection of the weak compositions of all paths from
x to y in Γ \ {(xRy)}. Then (xRy) is redundant in Γ if R ⊇ W .

Proof. Write Γ′ ≡ Γ \ {(xRy)}. For every path π from x to y in Γ′, we know Γ′

entails (xCT(π)y). By the definition of W , this implies that Γ′ entails (xWy).
Suppose R ⊇ W . It is clear that every solution of Γ′ also satisfies (xRy), and
therefore, (xRy) is redundant in Γ.

Lemma 24. Let S be a distributive subalgebra of RCC5/8. Suppose Γ is an all-
different network over S and (xRy) is a constraint in Γ. Assume that W is the
intersection of the weak compositions of all paths from x to y in Γ \ {(xRy)}.
Then (xRy) is redundant in Γ only if R ⊇ W .

Proof. Suppose (xRy) is redundant in Γ. Then each solution of Γ′ = Γ \ {(xRy)
also satisfies (xRy). Write (xTy) for the constraint between x and y in Γ′p, the
a-closure of Γ′. By Lemma 22 we know T = W . Furthermore, by Theorem 19,
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we know each basic relation in T is feasible in Γ′. This implies that T = W is
contained in R.

This result does not hold in general. Consider the constraint network Γ over
H5 shown in Figure 8 and the constraint from v1 to v2. It is easy to show that Γ
is path-consistent, i.e., Γ = Γp, and (v1{PP}v2) is redundant in Γ. Furthermore,
we have W = {PP,EQ}, which is not contained in R = {PP}.

Figure 8: A counter-example of Lemma 24: a path-consistent constraint network Γ = Γp overH5.

The above characterisation of redundant constraints can be strengthened if Γ
is itself path-consistent.

Lemma 25. Let S be a distributive subalgebra of RCC5/8. Suppose Γ is an all-
different and path-consistent network over S. Then a constraint (viRijvj) is re-
dundant in Γ iff Rij =

⋂
{Rik � Rkj : k 6= i, j}, i.e., Rij is the intersection of the

weak compositions of all paths from vi to vj which have length 2.

Proof. Let Wij be the intersection of the weak compositions of all paths from vi
to vj in Γ \ {(viRijvj)}. It is clear Wij ⊆

⋂
{Rik � Rkj : k 6= i, j}. Suppose

Rij =
⋂
{Rik � Rkj : k 6= i, j}. We have Rij ⊇ Wij . By Lemma 23, this

immediately implies that (viRijvj) is redundant in Γ. On the other hand, suppose
(viRijvj) is redundant in Γ. We show Rij =

⋂
{Rik � Rkj : k 6= i, j}. By

Lemma 24 we know Rij ⊇ Wij . Let π = (c1, c2, ..., cs) (s ≥ 2) be an arbitrary
path from vi to vj in Γ\{(viRijvj)} such that ck = (uk−1Rkuk), u0 = vi, us = vj .
Then CT(π) = R1 � CT(π>1). Suppose u1 = vi′ . Then R1 = Rii′ and π>1 is
a path from vi′ to vj . Because Γ is path-consistent, we know by Lemma 20 that
Ri′j is contained in CT(π>1). This implies that CT(π) contains Rii′ � Ri′j and,
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therefore,
⋂
{Rik �Rkj : k 6= i, j}. Due to the arbitrariness of π, Wij also contains⋂

{Rik � Rkj : k 6= i, j}. Since Rij ⊇ Wij , we have Rij ⊇
⋂
{Rik � Rkj : k 6= i,

j}. By the path-consistency of Γ, we have Rij ⊆ Rik � Rkj for every k 6= i, j.
This shows Rij =

⋂
{Rik �Rkj : k 6= i, j}.

This result does not hold in general. Again, consider the path-consistent RCC5
network Γ over H5 shown in Figure 8. Although (v1PP v2) is redundant in Γ,
R13 �R32 ∩R14 �R42 = {PP,EQ} strictly contains {PP}.

We next show that (xRy) is redundant in Γ iff (xSy) is redundant in Γp.

Lemma 26. Suppose Γ is an all-different RCC5/8 network. Assume that (xRy)
and (xSy) are the constraints from x to y in Γ and Γp respectively. Then (xRy)
is redundant in Γ only if (xSy) is redundant in Γp.

Proof. Write Γ′ and Γ′′ for Γ \ {(xRy)} and Γp \ {(xSy)} respectively.
Suppose (xRy) is redundant in Γ. Then Γ′ entails (xRy). Note that Γ′′ refines

Γ′. We know every solution of Γ′′ is a solution of Γ′, hence also satisfies (xRy).
In other words, each solution of Γ′′ is a solution of Γ. Since Γ is equivalent to its
a-closure, we know each solution of Γ′′ is also a solution of Γp, hence also satisfies
(xSy). Therefore, (xSy) is redundant in Γp.

Proposition 27. Let S be a distributive subalgebra of RCC5/8. Suppose Γ is an
all-different network over S. Assume that (xRy) and (xSy) are the constraints
from x to y in Γ and Γp respectively. Then (xRy) is redundant in Γ iff (xSy) is
redundant in Γp.

Proof. The necessity part has been proved in Lemma 26. We only need to show
the sufficiency part. Write Γ′ and Γ′′ for Γ \ {(xRy)} and Γp \ {(xSy)} respec-
tively. Suppose (xSy) is redundant in Γp. Let W be the intersection of the weak
compositions of all paths from x to y in Γ \ {(xRy)}. To show that (xRy) is
redundant in Γ, by Lemma 23, we only need to show R ⊇ W .

Recall S = R ∩W by Lemma 22. To show R ⊆ W , we first show

R ∩W ⊇ W ∩Ol �R ∩R �Ol,(7)

where Ol is either O5 or O8 (cf. Lemma 21 for definition), according to whether
Γ is over RCC5 or RCC8.

Because (xSy) is redundant in Γp, by Lemma 25, we know S is the inter-
section of the weak compositions of all paths with length 2 from x to y in Γp.
For each constraint (uiSijuj) in any such a path, Lemma 20 shows that Sij is the
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intersection of the weak compositions of all paths from ui to uj in Γ. Replace
each (uiSijuj) with several paths such that Sij is the intersection of their weak
compositions. We get several paths from x to y in Γ with length ≥ 2 such that S
is the intersection of the weak compositions of these paths. By Lemma 20 again
we know S is contained in the weak composition of every path from x to y in Γ.
This shows that S is exactly the intersection of the weak compositions of all paths
from x to y in Γ with length ≥ 2.6

As we have seen in the proof of Lemma 22, there are three types of paths. For
every path π of Case 1 or 3 (defined in Lemma 22), we know CT(π) contains
W . Suppose π is a path of Case 2 and ci = (xRy) for some 1 ≤ i ≤ s. Then
CT(π) = CT(π<i)�R�CT(π>i). Note that if π<i (π>i, respectively) is nonempty,
then CT(π<i) (CT(π>i), respectively) contains Ol by Lemma 21. Either π<i or
π>i is a cycle. Therefore, CT(π) contains Ol � R ∩ R � Ol ∩ Ol � R � Ol. In
summary, for each path π from x to y in Γ with length ≥ 2, we have CT(π) ⊇
W ∩Ol �R∩R �Ol ∩Ol �R �Ol. Because Ol �R �Ol is always the universal
relation (as PO � R � PO = PO � PO = ?l by Lemma 1), we know S, as the
intersection of the weak compositions of all paths from x to y in Γ with length
≥ 2, contains W ∩Ol �R∩R �Ol. Since S = R∩W , we have (7) immediately.

We next show R ⊇ W . Because Γ is consistent and satisfies (6), we know
S = R ∩W is neither empty nor {EQ}, i.e.,

∅ 6= R ∩W 6= {EQ}.

If PO ∈ R, then Ol �R ∩R �Ol ⊇ PO �PO is the universal relation. That
R ⊇ W follows directly from R ∩W ⊇ W ∩ ?l = W .

If PO 6∈ R, then PO 6∈ W because PO ∈ Ol �R∩R �Ol and (7) holds. We
show R ⊇ W . We only consider RCC8 relations. The case for RCC5 relations
is similar. Suppose R is a relation in a distributive subalgebra of RCC8 such
that PO 6∈ R and R 6= EQ. Checking the lists of relations in the two maximal
distributive subalgebras given in Appendix A, R is either a basic relation other

6While we can further show that S is the intersection of the weak compositions of all paths
from x to y in Γ that have no cycles and are with length ≥ 2, it is not guaranteed that such a path
is in Γ \ {(xRy)}. That is, we cannot directly show S = W .
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than PO and EQ, or one of the following relations

{TPP,NTPP}, {TPP−1,NTPP−1},(8)

{DC,EC}, {TPP,EQ}, {TPP−1,EQ},
{TPP,NTPP,EQ}, {TPP−1,NTPP−1,EQ}.

There are several subcases. Suppose R is a basic relation α other than PO and
EQ. We write αd for the other basic relation such that {α, αd} is a relation in (8).
For example, DCd = EC, TPPd = NTPP, and TPP−1

d
= NTPP−1. From

the RCC8 composition table we can see

{α, αd,PO} ⊆ PO � α ∩ α �PO ⊆ O8 � α ∩ α �O8

holds for every basic relation α other than PO and EQ. We assert that αd 6∈ W
if R = {α}. This is because, otherwise, we have αd ∈ W ∩O8 �R ∩R �O8 and
hence by (7) αd ∈ R ∩W ⊆ R. A contradiction. In particular, if α is DC, EC,
NTPP, or NTPP−1, then W = R. If α is either TPP or TPP−1, then we can
further show that EQ ∈ O8 � α ∩ α �O8 and hence EQ 6∈ W . This implies that
W = R.

Suppose R is {DC,EC}, {TPP,NTPP,EQ}, or {TPP−1,NTPP−1,
EQ}. Note that PO 6∈ W , and ∅ 6= R ∩ W 6= {EQ}. This shows that W
is contained in R.

Suppose R is {TPP,NTPP} or {TPP−1,NTPP−1}. By (7) and EQ ∈
O8 � R ∩ R �O8 we know that W does not contain EQ. Hence W is contained
in R.

Suppose R is {TPP,EQ}. By (7) and NTPP ∈ O8 � R ∩ R � O8, W
cannot contain NTPP. This implies that W is contained in R. The case for
R = {TPP−1,EQ} is similar.

In summary, we haveR ⊇ W in all cases. In other words,R can be obtained as
the intersection of all paths from x to y in Γ\{(xRy)}. Hence (xRy) is redundant
in Γ by Lemma 23.

The result does not hold in general. Consider the constraint network Γ overH5

shown in Figure 9 and the constraint from v3 to v2. It is clear that the constraint
(v3PPv2) is redundant in Γp. However, (v3PPv2) is not redundant in Γ. This
is because (v3DR v2) is consistent with Γ \ {(v3PPv2)} (shown in Figure 9(c)).
Actually, it is easy to construct a solution {a1, a2, a3, a4} of Γ \ {(v3PPv2)} in
which (a3PP a1), (a1PP a4) and (a2DR aj) for j = 1, 3, 4.

Recall that Theorem 19 asserts that Γp is minimal. Proposition 27 can be
rephrased as follows:
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(a) (b) (c)

Figure 9: A counter-example of Proposition 27: (a) a constraint network Γ over H5; (b) its a-
closure Γp; (c) Γ \ {(v3PPv2)}.

Proposition 28. Let S be a distributive subalgebra of RCC5/8. Suppose Γ is an
all-different network over S and Γm the minimal network of Γ. Assume that (xRy)
and (xSy) are the constraints from x to y in Γ and Γm respectively. Then (xRy)
is redundant in Γ iff (xSy) is redundant in Γm.

As a consequence, we have our main result.

Theorem 29. Let S be a distributive subalgebra of RCC5/8. Suppose Γ is an
all-different network over S and Γc the core of Γ. Then Γc is equivalent to Γ and
hence the unique prime subnetwork of Γ.

Proof. Suppose c1, c2, . . . , ck are the redundant constraints of Γ. Let Γ0 = Γ and
Γi+1 = Γi \ {ci+1} for 0 ≤ i ≤ k. Note that Γk is precisely Γc, the core of Γ.
Suppose 0 ≤ i < k is the largest integer such that Γi is equivalent to Γ.

Suppose ci+1 = (xRy) and (xSy) is the corresponding constraint in Γm, the
minimal network of Γ. Note that ci+1 is also in Γi. By Proposition 28 we know
(xSy) is redundant in Γm since (xRy) is redundant in Γ. Because Γm is also
the minimal network of Γi, by Proposition 28 again we know (xRy) is redundant
in Γi. This means that Γi+1 is equivalent to Γi, hence Γ. This contradicts our as-
sumption that i < k is the largest integer such that Γi is equivalent to Γ. Therefore,
i = k and Γc is equivalent to Γ.

The above result does not hold in general. For example, consider the RCC5
network Γ over H5 shown in Figure 10(a). The core Γc (shown in Figure 10(b))
is not equivalent to and hence not a prime subnetwork of Γ. This is because
(v3DR v2) is feasible in Γc but not in Γ.
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(a) (b)

Figure 10: A counter-example of Theorem 29: (a) a constraint network Γ overH5; (b) the core Γc

of Γ.

Similar to Proposition 14, we can show that the core of an RCC5/8 network
over a tractable subclass can be found in O(n5) time. In the next subsection we
show this can be improved if the network is over a distributive subalgebra.

4.4. A Cubic Time Algorithm for Computing the Core of Γ

Suppose Γ is an all-different network over a distributive subalgebra of RCC5/8.
Proposition 27 and Lemma 25 suggest a simple way for computing Γc, the unique
prime subnetwork of Γ. By Proposition 27, a constraint (viRijvj) in Γ is redun-
dant iff the corresponding constraint (viSijvj) in Γp is redundant. Furthermore,
Lemma 25 shows that (viSijvj) is redundant in Γp iff Sij is the intersection of all
Sik � Skj (k 6= i, j). We hereby have the following cubic time algorithm (Algo-
rithm 1) for finding all redundant constraints in Γ. For each constraint (viSijvj),
to verify if Sij =

⋂
{Sik � Skj : k 6= i, j}, we introduce a temporary relation Qij ,

which is initially assigned as the universal relation. It is possible that, after just a
few intersections of Sik � Skj with Qij , the resulting Qij is already equal to Sij ,
which implies (viSijvj) is redundant in Γp and hence (viRijvj) is redundant in Γ.

5. Related Works

Redundancy checking is an important task in AI research, in particular in
knowledge representation and reasoning. For example, Ginsberg [21] and Schmolze
and Snyder [45] designed algorithms for checking redundancy of knowledge bases;
Gottlob and Fermüller [22] and Liberatore [32] analysed the computational prop-
erties of removing redundancy from a clause and a CNF formula, respectively;
and Grimm and Wissmann [23] considered checking redundancy of ontologies.
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Algorithm 1: Algorithm for finding all redundant constraints in a constraint
network over a distributive subalgebra S of RCC5/8, where ?l is the univer-
sal relation in RCCl.

Input: A consistent RCC5/8 network Γ = {viRijvj : 1 ≤ i, j ≤ n} over S
and V = {vi : 1 ≤ i ≤ n}.

Output: Redun: the set of redundant constraints of Γ.

1 Redun← ∅;
2 Γp ← the a-closure of Γ;
3 for each constraint (viSijvj) ∈ Γp do
4 Qij ← ?l;
5 for each variable vk ∈ V \ {vi, vj} do
6 Qij ← Qij ∩ Sik � Skj;
7 if Qij = Sij then
8 Redun← Redun ∪ {(viRijvj)};
9 break the inner loop;

10 end
11 end
12 end
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In research on constraint satisfaction problems (CSPs), there are also many
studies of constraint redundancy. While most of this research concerns redundant
modelling (e.g., [9]), Chmeiss et al. [8] studied redundancy modulo a given local
consistency. Their paper is close in spirit to ours. Let Γ be a CSP and φ a local
consistency. Chmeiss et al. call a constraint c in Γ φ-redundant iff (Γ\{c})∪{¬c}
is φ-inconsistent. Because path-consistency implies consistency for RCC5/8 con-
straint networks over their maximal tractable subclasses, our notion of redundancy
(when restricted to networks over these tractable subclasses) is equivalent to re-
dundancy modulo path-consistency in the sense of [8].

In qualitative spatial reasoning, there are also two works that are close to our
research. Egenhofer and Sharma noticed in [18] that “For any scene descrip-
tion, the set of n2 binary topological relations between the n objects is redundant
since some of these topological relations are always implied by others.” They did
not provide an efficient algorithm for deriving such a minimal set even for ba-
sic topological constraints. Recently, Wallgrün [53] proposed two algorithms to
approximately find the prime subnetwork. The essence of these algorithms is to
replace Rij with the universal constraint if there exists k such that Rik � Rkj is
contained in Rij . As was noted in [53], neither of these two algorithms is guar-
anteed to provide the optimal simplification. But it is worth noting that these two
approximate algorithms are applicable to general constraint networks which are
not necessarily over a distributive subalgebra. In Section 6, we will empirically
compare our method with the methods of Wallgrün.

The property of distributivity was first used by van Beek [51] for IA, but the
notion of distributive subalgebra is new. It is not difficult to show that PA, IA,
RCC5 and RCC8 all have two maximal distributive subalgebras (see Appendix
A for maximal distributive subalgebras of RCC5/8). Very interestingly, the two
maximal distributive subalgebras of IA are exactly the subalgebras CIA and SIA
discussed in [2], where Amaneddine and Condotta proved that CIA and SIA are the
only maximal subalgebras of IA over which path-consistent networks are globally
consistent. For RCC8, the maximal distributive subalgebraD8

41 we identify in Ap-
pendix A turns out to be the class of convex RCC8 relations found in [7], where
Chandra and Pujari proved that path-consistent networks over D8

41 are minimal.
In Appendix A we find another maximal distributive subalgebra for RCC8, which
contains 64 relations. Furthermore, we also show that every path-consistent con-
straint network Γ over a distributive subalgebra is weakly globally consistent and
minimal. This has not been studied for RCC5/8 before.

33



6. Empirical Evaluation

In this section, we empirically evaluate our method in comparison with the
methods of Wallgrün [53]. In [53], Wallgrün proposes two greedy algorithms for
removing redundant constraints in the constraint network: the basic and extended
simplification algorithms (hereafter Simple and SimpleExt). The Simple algo-
rithm loops through all triples of regions i, j, and k and identifies as redundant
any constraints Rik such that Rij � Rjk ⊆ Rik. A drawback of the Simple algo-
rithm is that redundant relations removed may affect subsequent iterations of the
algorithm. Hence, the order in which triples are visited by the Simple algorithm
can alter the resulting subnetwork. The SimpleExt solves this issue by first mark-
ing potentially redundant relations for removal, subject to a consistency check,
before removing all marked relations in a final loop. The Simple and SimpleExt
algorithms are not guaranteed to provide an optimal solution. Thus, the prime
subnetwork is necessarily a (possibly improper) subnetwork of that generated by
the SimpleExt algorithm, which is in turn a (possibly improper) subnetwork of
that generated by the Simple algorithm.
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Figure 11: Example constraint network illustrating the differences between the prime subnetwork,
and the subnetworks generated by the Simple and SimpleExt algorithms [53]. Redundant con-
straints found in the prime subnetwork only are shown with wide dashes; constraints found in both
the prime and SimpleExt subnetworks are shown with narrow dashes; and constraints found in the
prime, SimpleExt, and Simple subnetworks are shown with dotted lines.

Figure 11 shows an example with just five regions, highlighting the constraints
identified as redundant in the prime subnetwork and by the Simple and SimpleExt
algorithms. Assuming the Simple algorithm visits regions in numerical order,
the relations between regions 2 and 5 and between 3 and 4 will be identified as
redundant. Additionally, the SimpleExt algorithm is able to identify the relation
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between 4 and 5 as redundant. However, only in the prime subnetwork is the
redundant relation between 1 and 3 identified.

6.1. Data Sets
In the following evaluation, two real data sets were used: the UK geographic

“footprint” dataset introduced in Section 1.1 (total 3443 regions) and the statis-
tical areas levels 1–4 dataset for Tasmania (in total 1559 regions), provided by
the Australian Bureau of Statistics. Derived from social media, the footprint data
set contains a variety of regions of differing sizes and shapes, but relatively un-
structured sharing almost no adjacent boundaries. In stark contrast the Tasmanian
statistical areas are highly structured, made up of four levels of spatially contigu-
ous and nested but non-overlapping regions. To aid in our analysis, five subsets
of each of the two datasets were generated in addition to the full datasets. The
subsets were generated from selecting those regions that intersect an arbitrarily
selected spatial region of increasing size. In this way, subsets of data of varying
sizes were generated, with 108, 217, 433, 862 and 1725 regions in subsets of the
footprint data set, and 49, 98, 193, 374 and 658 regions from the statistical areas
set.

Subsets of spatially related regions were explicitly used, as opposed to entirely
random selection of regions, to ensure that the range of RCC8 base relations in
each subset were representative of the RCC8 relations in close spatial proximity.
The resulting distribution of RCC8 base relations in the full constraint network for
these 10 region subsets along with their complete dataset is shown in Table 3. By
design, the relations exhibit systematic variations in the distribution of relations,
for example with the statistical areas data set exhibiting consistently higher levels
of DC and lower levels of PO relations (due to the non-overlapping nature of
statistical areas); and smaller subsets exhibiting lower levels of DC relations (as a
result of the smaller spatial area in which regions must fit for the smaller subsets
of data).

6.2. Redundant Constraints
In [53], the two conjectures are made that: a. the Simple and SimpleExt are

good approximations for removing all redundant relations; and b. that the Simple
algorithm is in practice almost as good as the SimpleExt algorithm at removing
redundant relations. In this section, we compare the three types of subnetwork
(prime, SimpleExt, and Simple) in practice and in the context of these conjectures.
Figure 12 shows the growth in size of the three types of subnetwork across the six
subsets of each of the two data sets. Several features are worth noting in Figure 12:

35



Size DC EC PO NTPP(I) TPP(I)
5778 1.1% 0.0% 85.6% 13.3% <0.1%

23436 66.9% 0.0% 22.8% 10.3% <0.1%
93528 26.1% 0.0% 56.7% 17.1% <0.1%

371091 62.6% 0.0% 30.5% 6.9% <0.1%
1486950 78.1% 0.0% 15.2% 6.7% <0.1%Fo

ot
pr

in
t

5925403 92.5% 0.0% 4.8% 2.7% <0.1%
1176 69.6% 20.0% 0.0% 2.0% 8.4%
4753 87.5% 7.0% 0.0% 1.9% 3.6%

18528 92.9% 4.3% 0.0% 0.4% 2.4%
69751 96.7% 1.8% 0.0% 0.7% 0.8%

216153 98.0% 1.1% 0.0% 0.4% 0.4%

St
at

is
tic

al
ar

ea
s

1214461 99.2% 0.5% 0.0% 0.2% 0.2%

Table 3: Table showing the proportion of RCC8 constraints for the two data sets and across the six
region subsets.

• All three subnetworks grow in size approximately linearly with the number
of regions (coefficient of determination R2 > 0.97 in all cases, indicat-
ing a high level of fit between the data and the linear regression). Linear
O(n) growth is a lower bound on the space complexity of these subnet-
works, since they must remain connected (and so must have at least n − 1
edges). Thus, this result indicates all three algorithms are approaching op-
timal scalability in terms of space complexity. The only exception occurs
with the Simple subnetwork and in the case of the statistical areas data set,
which grows in size quadratically with the number of regions.

• The prime subnetwork is consistently smaller than the subnetwork gener-
ated by the Simple algorithm at all network sizes and is significantly smaller
for larger networks.

• The SimpleExt subnetwork is significantly larger than the prime subnetwork
and of similar size to the Simple subnetwork in the case of the footprint
data set, while it is of similar size to the prime subnetwork and significantly
smaller than the Simple subnetwork in the case of the statistical areas data
set.

In summary, neither the Simple nor SimpleExt algorithm can be relied upon
to identify as many redundant constraints as the prime subnetwork, although the
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SimpleExt algorithm may in some cases identify many more redundant constraints
than the Simple algorithm (such as the statistical areas data set).
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Figure 12: Size of subnetworks (prime, SimpleExt, and Simple) across subsets of a. footprint and
b. statistical areas data set.

Further examination reveals that one feature that explains many of the ob-
served differences in results is the differing proportions of PO relations in the
data sets (see Table 3). Larger proportions of PO relations are strongly related to
fewer redundant relations being identified across all types of subnetwork, since
PO relations typically provide limited reasoning power. Figure 13 demonstrates
this relationship empirically for the footprint data set. However, the prime subnet-
work is consistently better at identifying many more redundant relations than the
Simple or SimpleExt algorithms when the full constraint network contains many
PO relations.

6.3. Scalability
As already discussed, Algorithm 1 can compute the prime subnetwork in

O(n3) time for any consistent network over a tractable subclass of RCC5/8, where
the constraints are taken from a distributive subalgebra. Similarly, the Simple and
SimpleExt algorithms must in the worst case visit all triples of regions, leading to
overall O(n3) scalability.

On average, however, all the algorithms exhibited an average scalability in
proportion to n2 (where n is the number of regions). Figure 14 shows the number
of constraints checked by each algorithm, the key determining factor in compu-
tation time. All the algorithms increased linearly with the number of constraints
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Figure 13: Scatterplot of the proportion of partially overlapping relations in the full footprint con-
straint network, against the proportion of redundant relations identified by the prime, SimpleExt,
and Simple algorithms.

(i.e., in proportion to n2), again with the exception of the Simple algorithm oper-
ating on the statistical areas data set. Indeed, Algorithm 1 was on average slightly
more scalable than the other two algorithms. These differences arise because on
average those algorithms that are better at identifying redundant constraints are
more quickly able to discard those constraints and move on to checking other
constraints.

6.4. Removing Disconnected Constraints
Overall, the prime subnetwork substantially reduced the number of constraints

that would need to be stored to be linear in the number of regions (cf. Section 1.1).
Table 4 shows the proportion of constraints identified as redundant achieved by the
different algorithms in the case of the full data sets, up to 98.44% in the case of
the prime subnetwork on the highly structured statistical areas data set.7

However, in some cases it might potentially be possible to achieve similarly
high levels of storage efficiency more simply by, say, omitting the most numerous
relations (typically DC) from the constraint network. Figure 15 shows a scatter-
plot of the number of constraints in the constraint network omitting DC relations,
against the number of constraints in the prime network, both expressed as a per-
centage of the total number of constraints in the full constraint networks (for each

7From Table 4, it can be computed that the size of the Simple subnetwork is 4.737 (1.740,
resp.) times of the size of the prime subnetwork in the full statistical areas data set (the full
footprint data set, resp.).
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Figure 14: Scalability of prime, SimpleExt, and Simple algorithms, in terms of number of con-
straints checked across subsets of a. footprint and b. statistical areas data set.

Footprint Statistical areas
Prime 94.58% 98.44%

SimpleExt 90.72% 98.25%
Simple 90.57% 92.61%

Table 4: Proportion of constraints identified as redundant by the prime, Simple, and SimpleExt
algorithms for the full footprint and statistical areas data sets.

of the 12 data subsets).
The figure shows that in some cases simply storing the constraint network

without DC relations can lead to slightly more constraints omitted (those above
the diagonal in Figure 15). In particular, in the statistical areas data set, where
the vast majority of relations are DC, the number of DC relations can exceed the
number of redundant relations identified by the prime subnetwork. However, in
most cases for the less structured footprint data set, the prime subnetwork contains
substantially fewer constraints than could be achieved by simply omitting DC
relations (those below the diagonal in Figure 15). Besides, while simply dropping
the DC relation is competitive space-saver in some cases, it is undesirable when
for example the information is incomplete and/or we cannot tell if the relation
between two objects is (i) DC and dropped or (ii) missing or (iii) removed due to
redundancy.
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Figure 15: Scatterplot of proportion of constraints in the prime network versus proportion of
constraints omitting DC relations with respect to the full constraint network.

6.5. Reconstituting the Full Network
As already highlighted in Section 1.1, there are many potential uses for the

purely qualitative prime network, without involving geometry, including facilitat-
ing the comparison and uncovering the essential structure of different constraint
networks. However, one final question we address empirically is the efficiency of
reconstructing the full constraint network from the prime subnetwork, when com-
pared with doing so geometrically if the geometric information is complete and
available.

The full constraint network can be reconstructed from the prime subnetwork
in O(n3) time by computing the a-closure of the prime subnetwork. Comput-
ing the constraint network directly from the geometry requires in the worst case
O(n2) iterations of an O(m2) algorithm for computing the intersection between
two polygons (where m is the number of vertices in the polygon). In cases where
m ≈ n this can lead to a worst case complexity of the geometric algorithm of
O(n4). We note that, in our statistical areas data set, the largest polygon contains
more than 248,000 vertices, and so m is indeed comparable to n.

However, in practice, by making use of the spatial structure of the data through
algorithms (e.g., by checking for non-overlapping minimum bounding boxes for
polygons before computing the polygon intersection) and spatial indexes, the geo-
metric algorithm is expected to be on average significantly more efficient. Figure
16 compares the scalability of the two approaches, a-closure and efficient geo-
metric computation in an indexed spatial database. At least for the smaller data
sets tested, computing the a-closure is significantly more efficient. For example,
in the case of the smallest statistical areas data subset, computing the a-closure
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requires less than 1000th of the time of the geometric computation. However, the
figure shows that using the spatial database is significantly more scalable (average-
case O(n) time complexity) when compared with the a-closure (average case ap-
proaching O(n3) complexity).
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Figure 16: Scalability of reconstituting full constraint network using a-closure, efficient geometric
computation in a spatial database, and our hybrid algorithm for the footprint and statistical areas
data sets.

Figure 16 also shows the results of a hybrid reconstitution algorithm, that uses
both the geometry and the a-closure. The hybrid algorithm first adds any DC
relations to the prime network that can be inferred simply through comparison
of the minimum bounding box of the polygon geometry (since non-intersecting
minimum bounding boxes for two polygons imply a DC relations). Then the
a-closure is computed with this partially reconstituted subnetwork. The results
show a significant improvement in scalability using this approach, reducing the
average case time complexity to below O(n2) in the case of the footprint dataset.
Ongoing work is currently investigating further mechanisms for combining both
these geometric and the qualitative aspects of regions in efficient database storage
and queries.

6.6. Summary
In summary, our analysis of the performance of the three subnetworks on prac-

tical geographic data sets containing thousands of regions demonstrates:

1. The prime subnetwork consistently outperforms the Simple and SimpleExt
algorithms in terms of the number of redundant relations identified, in par-
ticular in cases where the proportion of PO relations in the full constraint
network is higher.
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2. The average case scalability for computing the prime subnetwork required
n2 operations, where n is the number of regions. Because the prime sub-
network identified more redundant relations, it performs on average fewer
constraint checks than the Simple and SimpleExt algorithms, and was in our
tests always more scalable.

3. For less structured datasets, the prime subnetwork can substantially improve
on the number of relations identified as redundant, when compared with the
naive solution of omitting DC relations from the full constraint network.

7. Conclusion

In this paper, we have systematically investigated the computational complex-
ity of redundancy checking for RCC5/8 constraints. Although it is in general
intractable, we have shown that a prime subnetwork can be found in O(n5) time
for any consistent network over a tractable subclass of RCC5/8. If the constraints
are taken from a distributive subalgebra, we proved that the constraint network has
a unique prime subnetwork, which can be found in cubic time. As a byproduct,
we also proved that any path-consistent network over a distributive subalgebra is
weakly globally consistent and minimal.

Our empirical analysis showed that for real geographic data sets the prime
subnetwork can lead to significant increases in the number of redundant relations
identified when compared with the approximations proposed by [53]. In practice,
the algorithm was efficient, exhibiting average case O(n2) scalability. The redun-
dant relations identified by the prime subnetwork can also significantly outnumber
DC relations, especially in less structured geographic data sets that may contain a
significant minority of PO relations.

It is worth noting that a large part of our results can be applied to several other
qualitative calculi (like PA, IA, CRA, and RA) immediately, but Propositions 27
and 28 and Theorem 29 do use the particular algebraic properties of RCC5/8 (see
Table 5 for a summary). For example, we have an all-different and path-consistent
basic IA network which is not equivalent to its core. Future work will consider
how to extend our results to IA, RA and other calculi.

We are also developing further the practical applications of prime subnet-
works. In addition to pursuing a more systematic exploration of the applications
to saving storage than the one given in Section 1.1, current work is investigating
other aspects of prime subnetworks, in particular the structure and comparison of
different prime subnetworks of sets of footprints.
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PA IA CRA RA
Proposition 2 + + + +
Proposition 6 + + + +

Lemma 7 + + + +
Lemma 9 + + + +

Proposition 13 +s + + +
Proposition 14 + + + +p
Proposition 17 + + + +p

Theorem 18 + + + +p
Theorem 19 + + + +p
Lemma 20 + + + +
Lemma 22 + + + +p
Lemma 23 + + + +
Lemma 24 + + + +p
Lemma 25 + + + +p
Lemma 26 + + + +

Proposition 27 + - + -
Proposition 28 + - + -

Theorem 29 + - + -

Table 5: Applicability of the results in this paper to other calculi, where + (-) indicates the cor-
responding result holds (does not hold) for that calculus, +s indicates that for PA it is tractable to
decide if a constraint is redundant, and +p indicates that the result holds for any tractable subclass
of RA over which path-consistency implies consistency.
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Appendix A. Maximal Distributive Subalgebras of RCC5/8

A distributive subalgebra S is maximal if there is no other distributive subal-
gebra that properly contains S. To compute the maximal distributive subalgebras,
we first compute B̂l, the closure of Bl in RCCl under converse, weak composition,
and intersection, and then check by a program if B̂l ∪ Z satisfies distributivity for
some subset Z of RCCl.
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Write Dl for the set of RCCl relations α such that B̂l ∪ {α} satisfies distribu-
tivity. We then check for every pair of relations α, β in Dl if B̂l ∪ {α, β} satisfies
distributivity. If this is the case, then we say α has d-relation to β. Fortunately, the
result shows that there are precisely two disjoint subsets Xl and Yl (which form a
partition of Dl) such that each relation α in Xl (Yl, respectively) has d-relation to
every other relation inXl (Yl, respectively), but has no d-relation to any relation in
Yl (Xl, respectively). Moreover, B̂l ∪Xl and B̂l ∪ Yl are both distributive subalge-
bras of RCCl. It is clear that these are the only maximal distributive subalgebras
of RCCl.

For RCC5, the closure of basic relations B̂5 contains 12 nonempty relations.
These are the five basic relations, and the following 7 relations (cf. Section 2.4.)

{PO,PP}, {PO,PP−1}, {PO,PP,PP−1,EQ},
{DR,PO,PP}, {DR,PO,PP−1}, {DR,PO}, ?5.

The first maximal distributive subalgebra, denoted by D5
14, contains (except

relations in B̂5)
{PP,EQ}, {PP−1,EQ}.

The second maximal distributive subalgebra, denoted byD5
20, contains in addition

the following eight relations

{PO,EQ}, {PO,PP,EQ}, {PO,PP,PP−1}, {PO,PP−1,EQ},
{DR,PO,PP,PP−1}, {DR,PO,PP−1,EQ},
{DR,PO,EQ}, {DR,PO,PP,EQ}.

It is easy to see that both D5
14 and D5

20 are contained in H5, the maximal tractable
subclass of RCC5 identified in [43, 27].

For RCC8, the closure of basic relations contains 37 nonempty relations.
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These are the eight basic relations and the following 29 relations

{PO,TPP}, {PO,TPP−1}, {PO,TPP,NTPP},
{PO,TPP−1,NTPP−1}, {PO,TPP,TPP−1,EQ},
{PO,TPP,NTPP,TPP−1,EQ},
{PO,TPP,TPP−1,NTPP−1,EQ},
{PO,TPP,NTPP,TPP−1,NTPP−1,EQ},
{TPP,NTPP}, {TPP−1,NTPP−1},
{EC,PO}, {EC,PO,TPP}, {EC,PO,TPP−1},
{EC,PO,TPP,NTPP},
{EC,PO,TPP−1,NTPP−1},
{EC,PO,TPP,TPP−1,EQ},
{EC,PO,TPP,NTPP,TPP−1,EQ},
{EC,PO,TPP,TPP−1,NTPP−1,EQ},
{EC,PO,TPP,NTPP,TPP−1,NTPP−1,EQ},
{DC,EC}, {DC,EC,PO}, {DC,EC,PO,TPP},
{DC,EC,PO,TPP−1},
{DC,EC,PO,TPP,NTPP},
{DC,EC,PO,TPP−1,NTPP−1},
{DC,EC,PO,TPP,TPP−1,EQ},
{DC,EC,PO,TPP,NTPP,TPP−1,EQ},
{DC,EC,PO,TPP,TPP−1,NTPP−1,EQ}, ?8,

where ?8 is the universal relation consisting of all RCC8 basic relations.
The first maximal distributive subalgebra, denoted byD8

41, contains in addition
the following four relations

{TPP,EQ}, {TPP,NTPP,EQ},
{TPP−1,EQ}, {TPP−1,NTPP−1,EQ}.

This distributive subalgebra turns out to be exactly the class of convex RCC8
relations identified in [7]. The second maximal distributive subalgebra, denoted

45



by D8
64, contains in addition the following 27 relations

{PO,EQ}, {PO,TPP,EQ},
{PO,TPP−1,EQ}, {PO,TPP,TPP−1},
{PO,TPP,NTPP,EQ},
{PO,TPP−1,NTPP−1,EQ},
{PO,TPP,TPP−1,NTPP−1},
{PO,TPP,NTPP,TPP−1},
{PO,TPP,NTPP,TPP−1,NTPP−1},
{EC,PO,EQ}, {EC,PO,TPP,EQ},
{EC,PO,TPP−1,EQ},
{EC,PO,TPP−1,NTPP−1,EQ},
{EC,PO,TPP,NTPP,EQ},
{EC,PO,TPP,TPP−1},
{EC,PO,TPP,TPP−1,NTPP−1},
{EC,PO,TPP,NTPP,TPP−1},
{EC,PO,TPP,NTPP,TPP−1,NTPP−1},
{DC,EC,PO,EQ}, {DC,EC,PO,TPP,EQ},
{DC,EC,PO,TPP−1,EQ},
{DC,EC,PO,TPP,TPP−1},
{DC,EC,PO,TPP−1,NTPP−1,EQ},
{DC,EC,PO,TPP,NTPP,EQ},
{DC,EC,PO,TPP,NTPP,TPP−1},
{DC,EC,PO,TPP,TPP−1,NTPP−1},
{DC,EC,PO,TPP,NTPP,TPP−1,NTPP−1}.

It is easy to check that both D8
41 and D8

64 are contained in Ĥ8, one of the three
maximal subclasses of RCC8 identified in [42].

References

[1] James F. Allen. Maintaining knowledge about temporal intervals. Commu-
nications of the ACM, 26(11):832–843, 1983.

46



[2] Nouhad Amaneddine and Jean-François Condotta. From path-consistency
to global consistency in temporal qualitative constraint networks. In AIMSA,
pages 152–161, 2012.

[3] P. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. A new tractable sub-
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[6] Béla Bollobás. Modern Graph Theory (Graduate Texts in Mathematics 184).
Springer, 1998.

[7] Priti Chandra and Arun K. Pujari. Minimality and convexity properties in
spatial CSPs. In ICTAI, pages 589–593. IEEE Computer Society, 2005.

[8] Assef Chmeiss, Vincent Krawczyk, and Lakhdar Sais. Redundancy in CSPs.
In ECAI, pages 907–908, 2008.

[9] Chiu Wo Choi, Jimmy Ho-Man Lee, and Peter J. Stuckey. Removing prop-
agation redundant constraints in redundant modeling. ACM Transactions on
Computational Logic, 8(4), 2007.

[10] Anthony G. Cohn and Jochen Renz. Qualitative spatial reasoning. In F. van
Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of Knowledge Rep-
resentation. Elsevier, 2008.

[11] Anthony G. Cohn, Jochen Renz, and Muralikrishna Sridhar. Thinking inside
the box: A comprehensive spatial representation for video analysis. In KR,
pages 588–592, 2012.

[12] Jean-François Condotta, Souhila Kaci, and Nicolas Schwind. A framework
for merging qualitative constraints networks. In David Wilson and H. Chad
Lane, editors, FLAIRS Conference, pages 586–591. AAAI Press, 2008.

[13] Ernest Davis. Qualitative spatial reasoning in interpreting text and narrative.
Spatial Cognition and Computation, 13(4):264–294, 2013.

47



[14] Ernest Davis, Nicholas Mark Gotts, and Anthony G. Cohn. Constraint net-
works of topological relations and convexity. Constraints, 4(3):241–280,
1999.

[15] Ivo Düntsch. Relation algebras and their application in temporal and spatial
reasoning. Artificial Intelligence Review, 23(4):315–357, 2005.

[16] Ivo Düntsch, Hui Wang, and Stephen McCloskey. A relation-algebraic
approach to the region connection calculus. Theoretic Computer Science,
255(1-2):63–83, 2001.

[17] Max J. Egenhofer and David M. Mark. Naive geography. In A.U. Frank and
W. Kuhn, editors, COSIT-95, pages 1–15. Springer, 1995.

[18] Max J. Egenhofer and Jayant Sharma. Assessing the consistency of complete
and incomplete topological information. Geographical Systems, 1(1):47–68,
1993.

[19] Zoe Falomir. Qualitative distances and qualitative description of images for
indoor scene description and recognition in robotics. AI Communications,
25(4):387–389, 2012.

[20] Alfonso Gerevini and Alessandro Saetti. Computing the minimal relations in
point-based qualitative temporal reasoning through metagraph closure. Ar-
tificial Intelligence, 175(2):556–585, 2011.

[21] Allen Ginsberg. Knowledge-base reduction: A new approach to checking
knowledge bases for inconsistency and redundancy. In AAAI, pages 585–
589, 1988.

[22] Georg Gottlob and Christian G. Fermüller. Removing redundancy from a
clause. Artificial Intelligence, 61(2):263 – 289, 1993.

[23] Stephan Grimm and Jens Wissmann. Elimination of redundancy in ontolo-
gies. In ESWC (1), pages 260–274, 2011.

[24] H.W. Guesgen. Spatial reasoning based on Allen’s temporal logic. Technical
report, International Computer Science Institute, 1989.

[25] Livia Hollenstein and Ross Purves. Exploring place through user-generated
content: Using Flickr to describe city cores. Journal of Spatial Information
Science, 1(1):21–48, 2010.

48



[26] Jinbo Huang, Jason Jingshi Li, and Jochen Renz. Decomposition and
tractability in qualitative spatial and temporal reasoning. Artificial Intelli-
gence, 195:140–164, 2013.

[27] Peter Jonsson and Thomas Drakengren. A complete classification of
tractability in RCC-5. Journal of Artificial Intelligence Research, 6, 1997.

[28] Roman Kontchakov, Yavor Nenov, Ian Pratt-Hartmann, and Michael Za-
kharyaschev. On the decidability of connectedness constraints in 2D and
3D Euclidean spaces. In IJCAI, pages 957–962, 2011.

[29] Jason Jingshi Li and Sanjiang Li. On finding approximate solutions of qual-
itative constraint networks. In ICTAI, pages 30–37. IEEE, 2013.

[30] Sanjiang Li, Weiming Liu, and Shengsheng Wang. Qualitative constraint
satisfaction problems: An extended framework with landmarks. Artificial
Intelligence, 201:32–58, 2013.

[31] Sanjiang Li and Mingsheng Ying. Region Connection Calculus: Its models
and composition table. Artificial Intelligence, 145(1-2):121–146, 2003.

[32] Paolo Liberatore. Redundancy in logic I: CNF propositional formulae. Arti-
ficial Intelligence, 163(2):203–232, 2005.

[33] Gérard Ligozat. Reasoning about cardinal directions. Journal of Visual
Languages and Computing, 9(1):23–44, 1998.

[34] Gérard Ligozat and Jochen Renz. What is a qualitative calculus? A general
framework. In C. Zhang, H. Guesgen, and W.-K. Yeap, editors, PRICAI-04,
pages 53–64. Springer, 2004.

[35] Weiming Liu and Sanjiang Li. Reasoning about cardinal directions be-
tween extended objects: The NP-hardness result. Artificial Intelligence,
175(18):2155–2169, 2011.

[36] Weiming Liu and Sanjiang Li. Solving minimal constraint networks in qual-
itative spatial and temporal reasoning. In CP, pages 464–479, 2012.

[37] Weiming Liu, Xiaotong Zhang, Sanjiang Li, and Mingsheng Ying. Reason-
ing about cardinal directions between extended objects. Artificial Intelli-
gence, 174(12-13):951–983, 2010.

49



[38] Ugo Montanari. Networks of constraints: fundamental properties and appli-
cations to picture processing. Information Science, 7:95–132, 1974.

[39] Bernhard Nebel. Computational properties of qualitative spatial reasoning:
First results. In KI-95, pages 233–244, Berlin, Germany, 1995. Springer-
Verlag.

[40] Bernhard Nebel and H.-J. Bürckert. Reasoning about temporal relations: A
maximal tractable subclass of Allen’s interval algebra. Journal of the ACM,
42(1):43–66, 1995.

[41] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based
on regions and connection. In KR-92, pages 165–176, 1992.

[42] Jochen Renz. Maximal tractable fragments of the region connection calcu-
lus: A complete analysis. In D. Dean, editor, IJCAI, pages 448–455. Morgan
Kaufmann, 1999.

[43] Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial
reasoning: A maximal tractable fragment of the region connection calculus.
In IJCAI (1), pages 522–527. Morgan Kaufmann, 1997.

[44] Jochen Renz and Bernhard Nebel. Qualitative spatial reasoning using con-
straint calculi. In Marco Aiello, Ian Pratt-Hartmann, and Johan van Ben-
them, editors, Handbook of Spatial Logics, pages 161–215. Springer, 2007.

[45] James G. Schmolze and Wayne Snyder. Detecting redundancy among pro-
duction rules using term rewrite semantics. Knowledge-Based Systems,
12(1-2):3–11, 1999.

[46] Steven Schockaert and Sanjiang Li. Convex solutions of RCC8 networks. In
ECAI, pages 726–731, 2012.

[47] Hui Shi, Cui Jian, and Bernd Krieg-Brückner. Qualitative spatial modelling
of human route instructions to mobile robots. In ACHI, pages 1–6, 2010.

[48] Muralikrishna Sridhar, Anthony G. Cohn, and David C. Hogg. From video to
RCC8: Exploiting a distance based semantics to stabilise the interpretation
of mereotopological relations. In COSIT, pages 110–125, 2011.

[49] John G. Stell. Boolean connection algebras: a new approach to the Region-
Connection Calculus. Artificial Intelligence, 122(1):111–136, 2000.

50



[50] Florian A. Twaroch, Christopher B. Jones, and Alia I. Abdelmoty. Acquisi-
tion of vernacular place names from web sources. In Ricardo Baeza-Yates
Irwin King, editor, Weaving Services and People on the World Wide Web,
pages 195–214, Berlin, 1999. Springer.

[51] Peter van Beek. Approximation algorithms for temporal reasoning. In IJCAI,
pages 1291–1296, 1989.

[52] Marc B. Vilain and Henry A. Kautz. Constraint propagation algorithms for
temporal reasoning. In AAAI, pages 377–382, 1986.

[53] Jan Oliver Wallgrün. Exploiting qualitative spatial reasoning for topological
adjustment of spatial data. In SIGSPATIAL/GIS, pages 229–238, 2012.

[54] Jan Oliver Wallgrün and Frank Dylla. Spatial data integration with qualita-
tive integrity constraints. In Ross Purves and Robert Weibel, editors, Online
Proceedings of the 6th International Conference on Geographic Information
Science (GIScience 2010), 2010.

[55] Diedrich Wolter, Frank Dylla, Stefan Wölfl, Jan Oliver Wallgrün, Lutz
Frommberger, Bernhard Nebel, and Christian Freksa. Sailaway: Spatial cog-
nition in sea navigation. KI, 22(1):28–30, 2008.

[56] Frank Wolter and Michael Zakharyaschev. Spatial reasoning in RCC-8 with
boolean region terms. In ECAI, pages 244–250, 2000.

51


	Introduction
	Motivation

	RCC5 and RCC8 Constraint Languages
	RCC5 and RCC8
	Weak Composition Table
	Qualitative Constraint Network
	Distributive Subalgebra

	Redundant Constraint and Prime Subnetwork
	Networks over a Distributive Subalgebra
	The A-closure of  Is Minimal
	Weak Compositions of Paths
	Correspondence Between Redundant Constraints in  and p
	A Cubic Time Algorithm for Computing the Core of 

	Related Works
	Empirical Evaluation
	Data Sets
	Redundant Constraints
	Scalability
	Removing Disconnected Constraints
	Reconstituting the Full Network
	Summary

	Conclusion
	Maximal Distributive Subalgebras of RCC5/8

