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Abstract 14 

 15 

In the present study, the effect of consecutive chemical cleaning on the fouling control of 16 

pressurized ultrafiltration (UF) as a pre-treatment process for desalination was investigated. 17 

Oxalic acid and sodium hypochlorite were chosen as chemical agents for the cleaning 18 

methods. Initial tests showed that the cleaning in series of oxalic acid-sodium hypochlorite-19 

oxalic acid had the optimal cleaning efficiency. A flux recovery of over 91.0 % via 20 

continuous chemical cleaning experiments for UF process using real seawater as feed was 21 

obtained. However, the decrease in flux recovery was observed with the increase of the 22 

number of cleaning cycles due to continuous fouling formation on the membrane. It was 23 

found that hydrophobic organic foulants were relatively easier to be removed from the 24 

membrane surface by using the chemicals in this study, while hydrophilic inorganic foulants 25 

such as Na+ and Cl- were found to adhere more on the membrane surface after cleaning. The 26 



presence of foulants on the membrane has reduced its tensile strength but it was retrieved 27 

near its initial tensile strength after chemical cleaning. The consecutive chemical cleaning has 28 

recovered about 96.8% in the first cleaning, but more rapid fouling was observed thereafter. 29 

This was attributed to the presence of inorganic scales, which were not fully removed during 30 

the cleaning process, thus it combined with organic foulants over time, resulting to faster 31 

fouling and lesser cleaning efficiency with the increase of cleaning cycles. Thus, it is 32 

important the inorganic foulants should be thoroughly removed so as to minimize the extent 33 

of fouling formation after each chemical cleaning.  34 

 35 
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 37 

1. Introduction 38 

 39 

Nowadays, many regions of the world suffer from the scarcity of fresh water resources for 40 

potable, industrial and agricultural purposes. The main problem is the difficulty to supply 41 

potable water in water shortage areas. Several illnesses are associated with contaminated 42 

drinking water. One of the alternative and sustainable ways to produce fresh water is through 43 

seawater desalination. Desalination processes include multi stage flash (MSF) and multi-44 

effect distillation (MED), and reverse osmosis (RO) [1-3]. The RO process is derived from a 45 

membrane technology that only allows water to pass through a semi-permeable membrane, 46 

and reject the solute (i.e., salt). Seawater is fed to the RO system by applying high pressure to 47 

get drinking water. Compared to the distillation processes, RO has three times lower specific 48 

energy consumption, and has easier construction and system operation [4].  49 

However, seawater cannot be fed directly to RO due to some reasons: first, seawater has 50 

inorganic and organic compounds, which can contribute to membrane fouling; and second, if 51 



seawater recorded a silt density index (SDI) value of over 5, this could strain the RO 52 

membrane. For these reasons, it is necessary to incorporate a pre-treatment method such as 53 

coagulation, flocculation, media filtration, multi-media filtration (MMF) and 54 

microfiltration/ultrafiltration (MF/UF) in desalination process prior to RO process [5].  55 

There are several advantages in using MF/UF as pre-treatment of RO process. (1) SDI values 56 

between 2 to 4 are possible to obtain using this membrane-based pre-treatment, which is 57 

more stable compared to other methods; (2) MF/UF is more compact compared to other 58 

processes, thus requiring less-footprint; (3) MF/UF has a stable flux, and; (4) it can be 59 

automated. However, there are also some drawbacks with the use of MF/UF, which include 60 

the need for high electrical energy consumption, operating cost and higher initial capital cost 61 

[6-9]. Additionally, similar with the RO process, membrane fouling can happen to MF/UF 62 

process in a long-term operation, which deters its performance. To combat fouling, physical 63 

cleaning is needed to be carried out periodically such as backwashing, aeration, air-64 

scrubbing, and chemical enhanced backwashing (CEB). However, physical cleaning and CEB 65 

are limited for long-term operation so as not to disrupt the operation [10]. Usually, operation 66 

for more than 6 months requires chemical cleaning with various chemical agents. It takes 67 

almost one day to perform cleaning in place (CIP) every 6 months operation.  68 

As you can see Table 1, many researchers used various chemical agents for a wide range of 69 

filtration process. The membrane surfaces are exposed to high concentrations of chemical 70 

agents for the cleaning process. Different concentrations of chemicals for CIP have been 71 

suggested such as 0.5% nitric acid [11], 2% nitric acid [12], 2% sodium hypochlorite, and 72 

1 % sodium hydroxide. Kwon et al [13]., used 500 ppm sodium hypochlorite, 250 ppm 73 

sodium hydroxide, 2500 ppm citric acid and 250 ppm sodium hypochlorite. Our previous 74 

work [14] utilized 0.1 %, 0.5 %, 1 %, 2 % and 5 % sodium hydroxide in addition to various 75 

concentrations (1, 2, and 3%) of nitric acid. However, based from our review of literature, no 76 



one has yet investigated the use of chemical cleaning for pressurized hollow fiber 77 

ultrafiltration as pre-treatment of desalination by real seawater.  78 

In the present study, fouling of membrane was generated using seawater as feed. The 79 

recovery rate was measured after chemical cleaning using various chemical agents at 80 

different concentrations, in addition to recovery rates for alkaline and acid. The most efficient 81 

chemical agents based on recovery rate were used for combination chemical cleaning. Flux 82 

recovery rate was measured and the membrane performance was evaluated after chemical 83 

cleaning. In addition, foulant characteristics were evaluated using different analytical 84 

methods such as SDI test, Fourier transform infrared spectroscopy (FT-IR), contact angle, 85 

scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and 86 

tensile strength. To our knowledge, this is the first report of chemical cleaning for pressurized 87 

hollow fiber ultrafiltration as pre-treatment of desalination using real seawater, as well as the 88 

analysis of fouling characteristics on the ultrafiltration membrane. 89 

 90 

[Table 1] 91 

 92 

2. Materials & methods 93 

2.1 Specification of UF membrane 94 

 95 

Polyvinylidene fluoride (PVDF) hollow fiber membrane was used in this study, which is 96 

widely employed in microfiltration and ultrafiltration. The advantages of PVDF membrane 97 

include high mechanical strength, high thermal stability, low cost and high chemical 98 

resistance [36, 37]. The hollow fiber membranes had a pore size of 0.038 µm. Each fiber has 99 

an internal diameter (I.D) of 0.8 mm, an outer diameter (O.D) of 1.2 mm, a length of 15 cm 100 

and a membrane area of 2.26 x 10-3 m2. Specifications of the hollow fiber membrane are 101 

summarized in Table 2. 102 



 103 

[Table 2] 104 

 105 

2.2 Filtration system 106 

 107 

A dead-end filtration set-up was used in the present study as shown schematically in Fig. 1.  108 

The feed flows perpendicularly to the membrane surface. Dead-end filtration experiment was 109 

conducted at constant pressure of 0.5 bars. The virgin membrane recorded an initial flux of 110 

140 LMH. The flux of the fouled membrane was observed to decrease obtaining only 35 111 

LMH [9, 14, 38]. The schematic diagram of the lab-scale MF/UF system is shown in Figure 112 

1. Seawater from the southern sea (location: Kijang-gun, Busan, South Korea), was used as 113 

feed without any initial pre-treatment. The seawater was first passed through the MF/UF 114 

membrane for a specific duration until fouling is observed. After which, Chemical cleaning 115 

was started by pumping chemical cleaning agents through the membrane in a recirculating 116 

mode The applied pressure was set at 0.5 bar measured by a pressure gauge [9, 14] 117 

 118 

[Figure 1] 119 

 120 

2.3 Batch test 121 

 122 

Batch tests were performed in two cleaning modes: (1) by single chemical cleaning and (2) 123 

by chemical cleaning in series. Chemical cleaning in series was conducted based on the 124 

results from the single chemical cleaning. The results here indicated a need for a continuous 125 

chemical cleaning experiment. 126 

 127 



2.3.1 Single chemical cleaning 128 

 129 

Three types of chemical cleaning agents were tested in this study: alkaline (sodium hydroxide 130 

(NaOH) and sodium hypochlorite (NaOCl)), organic acid (citric acid (C6H8O7) and oxalic 131 

acid (C2H2O4)), and inorganic acid (sulfuric acid (H2SO4) and nitric acid (HNO3)).  The 132 

chemical cleaning agents were diluted to obtain different concentrations: 0.1 %, 1 %, 3 % and 133 

5 %. To determine the effectiveness of each chemical agent on the flux recovery during a 134 

single cleaning mode, each chemical was passed on the surface of the MF/UF mini-module 135 

system for 30 minutes followed by 10 minutes rinsing with de-ionized water. Thereafter, flux 136 

recovery was measured using seawater as feed for 10 minutes. The experiment was repeated 137 

at different contact times – 1 hour and 2 hours. The flux (L/m2h or LMH) was calculated 138 

using the equation 139 

Flux (LMH) =  
𝑄
𝐴

 ×  
𝜂𝑇
𝜂25

                                                                                                              (𝐸𝐸. 1) 

where Q is the filtration flow rate (𝐿 ℎ⁄ ), A is the effective surface area of the membrane 140 

(𝑚2), 𝜂𝑇 is the viscosity at actual temperature, and 𝜂25 is the viscosity at 25 ºC. The equation 141 

used to calculate the recovery rate is as follows, 142 

Recovery rate (%) =  
𝐹𝐹𝐹𝐹𝐶 (𝐿𝐿𝐿)
𝐹𝐹𝐹𝐹𝐼 (𝐿𝐿𝐿)  × 100 (%)                                                                  (𝐸𝐸. 2) 

Recovery efficiency (%) =  𝐹𝐹𝐹𝐹𝐶 (𝐿𝐿𝐿)
𝐹𝐹𝐹𝐹𝑃 (𝐿𝐿𝐿)

 × 100 (%)                                                             (𝐸𝐸. 3)  143 

where 𝐹𝐹𝐹𝐹𝐶  is the flux after chemical cleaning, 𝐹𝐹𝐹𝐹𝐼  is the initial pure water flux and 144 

𝐹𝐹𝐹𝐹𝑃 is the flux previous chemical cleaning. 145 

 146 

2.3.2 Chemical cleaning in series 147 

 148 

Chemical cleaning of the membranes was also conducted by subjecting the fouled membrane 149 



with different chemical agents in series. Two sequences were tested: (1) acid – alkaline – 150 

acid, and; (2) alkaline – acid – alkaline. First, the initial flux of the hollow fiber membrane in 151 

a mini-module was measured using seawater. This was followed by chemical cleaning for 30 152 

minutes using either acid or alkaline agent. After which, cleaning was conducted for 1 hour, 153 

then followed by another cleaning for 30 minutes. Immediately after the chemical cleaning, 154 

the flux of the cleaning membrane was measured using de-ionized water, and the percent 155 

recovery rate was calculated. The total duration of the chemical cleaning was 2 hours, with 156 

cleaning sequence of 30 minutes – 1 hour – 30 minutes [39, 40]. 157 

 158 

2.4 Method of the consecutive chemical cleaning on fouling mitigation 159 

 160 

Alkaline and acid agents were chosen for single chemical cleaning, and chemical cleaning in 161 

series experiments. Flux of the fouled membrane was found to decreased by 75% compared 162 

to the initial flux. Chemical cleaning was repeated four times and the cleaning duration was 163 

maintained for 2 hours, with cleaning sequence of 30 minutes – 1 hour – 30 minutes. 164 

 165 

2.5 Analytical methods 166 

 167 

In order to determine the degree of wettability, the hollow fiber membranes were subjected to 168 

a contact angle measurement test using a tension meter (Sigma 701, Biolin Scientific). The 169 

morphology of the hollow fiber membrane and the foulants was examined by scanning 170 

electron microscopy (SEM) (Hitachi S-3500N) and energy dispersive X-ray spectroscopy 171 

(EDS) attached to SEM. Hollow fiber membranes were mounted in a universal testing 172 

machine (LF Plus, Lloyd Instruments, AMETEK) to evaluate their mechanical properties. A 173 

gauge length of 5 cm and a speed of 50 mm/min were maintained for all tests. The outer 174 



diameter of the membranes was determined using a digital micro-caliper. A Varian 2000 175 

Fourier transform infrared spectroscope (FT-IR) was used to obtain the spectra of the 176 

membranes. All spectra were acquired by signal averaging 32 scans at a resolution of 8 cm-1 177 

in ATR mode. The SDI15 and PF factor were analyzed by GE Osmonics auto SDI tester. 178 

Turbidity was measured by HACH 2100N from HACH company. Shimadzu UV 179 

spectrophotometer UV-1800 and TOC-5000 were used to measure UV254 and DOC 180 

concentration, respectively. Total dissolved solids (TDS) and pH were analyzed by Orion 4-181 

star plus pH/conductivity meter from Thermo Scientific. 182 

 183 

3. Results and discussion 184 

3.1 Results of the single chemical cleaning 185 

 186 

[Figure 2] 187 

 188 

Six chemical cleaning agents divided into alkaline and acid agents were used in the present 189 

study: sodium hydroxide, sodium hypochlorite, sulfuric acid, nitric acid, citric acid and oxalic 190 

acid. Each chemical agent was prepared at different concentrations of 0.1 %, 1 %, 3 % and 191 

5 %. The pH of each solution is listed in Table 3. Fig. 3 shows the results of cleaning at 192 

different durations of 30 min, 1 h and 2 h. The results showed consistently better cleaning 193 

effect by the acid agents compared to the alkaline agents regardless of the cleaning time. The 194 

alkaline sodium hypochlorite showed better cleaning compared to sodium hydroxide at 195 

different concentrations. The use of sodium hydroxide showed increasing flux recovery as its 196 

concentration increased from 0.1 to 5%. On the other hand, sodium hypochlorite showed 197 

increasing cleaning effectiveness up to 3% concentration, but declined its efficiency at >3%. 198 

The pH of the alkaline solutions showed very high value of around 12, which is considered a 199 



harsh condition for the membrane [41, 42]. The photographic images in Fig. 2 showed 200 

browning of the mini-module after exposure to pH 12, which is attributed to the partial 201 

dissolution of the epoxy on the potting site making it undesirable to use. Thus, to minimize 202 

the effect of very high pH, a much lower pH was preceded for the cleaning test. For the 203 

alkaline agent, the 1% sodium hypochlorite treatment showed the optimum result as there 204 

was not a big gap in effectiveness between 1 and 3% concentrations. 205 

The acid cleaning showed varying trends for each cleaning agent. The highest flux recovery 206 

was obtained by oxalic acid, followed by citric acid then nitric acid and sulfuric acid. The 207 

increase of acid concentration has also resulted to better cleaning efficiency, however, 208 

decreased recovery was observed for sulfuric acid, nitric acid and citric acid at concentration 209 

>3%. The best result among all cleaning agents was obtained using oxalic acid. Furthermore, 210 

the results also indicated that longer cleaning duration has resulted to increased flux recovery. 211 

From among all agents, the oxalic acid at 1% showed the best result considering that there 212 

was not big difference in flux recovery for 1, 3 and 5% oxalic acid cleaning. Thus, for further 213 

cleaning tests, the 1% oxalic acid was chosen.   214 

 215 

[Figure 3] 216 

[Table 3] 217 

 218 

3.2 Results of the chemical cleaning in series 219 

 220 

Based from our initial results, 1% sodium hypochlorite and 1% oxalic acid as cleaning agents 221 

were chosen for chemical cleaning in series experiments. Since the pH of sodium 222 

hypochlorite is around 12, it would be wise to use lower concentration for cleaning, thus 1% 223 

concentration is selected. The chemical cleaning in series tests were carried out by 224 



conducting interval cleaning using both 1% sodium hypochlorite (NaOCl) and 1% oxalic 225 

acid. Two sets of tests were carried out at two different cleaning durations. The first set 226 

(Series 1) was cleaning with oxalic acid, then NaOCl, then oxalic acid for a time of 15-30-15 227 

min, respectively. The other set (Series 2) was NaOCl first, then oxalic, then NaOCl for the 228 

same time duration of 15-30-15 min, respectively. Another two sets (Series 3 and 4) were 229 

carried for the same series of experiments but at longer duration of 30-60-30 min. Fig. 4 230 

shows the results of the different cleaning in series experiments. The cleaning Series 1 (oxalic 231 

acid-NaOCl-oxalic acid) at a shorter time duration showed better flux recovery of 77% 232 

compared to Series 2 at 65%. The same trend was observed when the cleaning duration was 233 

increased to 30-60-30 min, obtaining around 94% recovery for oxalic acid-sodium 234 

hypochlorite-oxalic acid cleaning. In general, acid agents are known to treat inorganic 235 

foulants, while alkaline agents are best at cleaning organic foulants [43]. During filtration, 236 

inorganic foulants such as Na+ and Cl- were observed to have more serious effect than 237 

organic foulants to the membrane in desalination process, because salt ions can interact 238 

strongly with organic foulants [44]. For this reason, an acid chemical should be used first to 239 

remove theinorganic foulants and then a base chemical should follow to enhance the removal 240 

efficiency. 241 

 242 

[Figure 4] 243 

 244 

3.4 Effect of the consecutive chemical cleaning on fouling mitigation 245 

 246 

Continuous fouling and cleaning tests were carried out for more than 2 days (Fig. 5). In the 247 

first 20 h, the flux declined steadily from an initial flux of 142 LMH to 36 LMH, or a decline 248 

of around 25% due to the fouling formation. Using the series cleaning of oxalic acid-NaOCl-249 



oxalic acid for 30-60-30 min interval, the first cleaning was carried out to the fouled 250 

membrane and recovered 96.8% of the initial flux (137.4 LMH). However, as soon as 251 

cleaning was finished, the flux again drastically declined in the next 12 h until a decrease to 252 

75% from the initial flux value. Three more cleaning cycles were carried out at different 253 

intervals, resulting to 92.7, 91.1, and 91.0% of initial flux for each cleaning, respectively. The 254 

third and fourth chemical cleaning showed very similar flux recovery, which indicates a 255 

critical point for cleaning after three cleaning cycles. This means that after second cleaning 256 

time, the flux can be recovered to the previously recovered flux. As shown in the Fig. 5c, the 257 

recovery efficiency of the after first, second, third and fourth cleaning were 96.8, 95.8, 98.3 258 

and 99.9%, respectively. It showed that the flux was almost fully recovered to the previous 259 

recovered value as cleaning times increased. After each cleaning, the fouling tendency tends 260 

to be higher. This could be due to the pore blocking of some foulants especially inorganic 261 

salts that could not be successfully removed by chemical cleaning. Additionally, the cleaning 262 

process could have roughened the surfaces of the membrane, which could provide additional 263 

sites for fouling to occur and develop. The fouling rate was found to increase with the 264 

increase in the number of cleaning cycles (Table 4), which could be attributed to the 265 

incomplete cleaning of the inorganic foulants in the previous cleanings, which eventually 266 

served as attachment sites for other foulants to adhere and form rapidly.  267 

 268 

[Figure 5] 269 

[Table 4] 270 

 271 

3.5 Tensile strength 272 

 273 

Tensile strength is a relatively new parameter investigated in autopsy studies. It presents the 274 

mechanical strength of the membrane fiber, and hence is directly related to the material 275 



properties of the membrane [45, 46]. The tensile strengths of the virgin, fouled and cleaning 276 

membranes were evaluated using a universal testing machine, and was calculated using the 277 

following equation: 278 

σβ =  lβ ×  AT                                                                                                                                   (Eq. 4)  279 

where σβ is the tensile strength (gf/mm2), lβ  is the maximum load (gf), and AT  is the 280 

membrane area (mm2) [47, 48]. 281 

 282 

[Figure 6] 283 

 284 

Tensile strength is commonly used in the structural material for stress and strain relationship. 285 

The tensile strength was measured by extending the hollow fiber strings until rupture at a rate 286 

of 5 mm/min. Triplicate tests were performed and the values were averaged. As shown in Fig. 287 

6, the virgin membrane obtained a tensile strength of 256.76 gf/mm2. However, in the fouled 288 

membrane, the tensile strength was found to decrease by 14% at a value of 220.05 gf/mm2. 289 

After the first chemical cleaning, the membrane tensile strength recovered its tensile strength 290 

similar to the virgin membrane, which could indicate that most of the foulants were removed 291 

from the surface. However, after consecutive cleanings, the membrane showed decreasing 292 

tensile strengths as more cleanings progressed. This could be attributed to the possible 293 

presence of foulants inside and/or surface the membrane pores even after cleaning. This is in 294 

congruent to the results of the continuous cleaning and fouling tests in Fig. 6. Additionally, 295 

the exposure of the membrane surface to cleaning chemicals could have degraded a little bit 296 

of the membrane material, resulting to a slight decrease of tensile strength. However, even 297 

from several cleaning cycles, the cleaning membrane still showed higher tensile strength than 298 

the fouled membrane. This indicates the positive effect of cleaning in maintaining the 299 

mechanical properties of the membrane.  300 



 301 

3.6 FT-IR 302 

 303 

[Figure 7] 304 

[Table 5] 305 

 306 

To analyse the composition of foulants and the membrane surface, FTIR spectra were taken. 307 

Fig. 7 and Table 5 show the spectra and corresponding band vibrations of the virgin, fouled 308 

and cleaning membranes. All membranes showed the same wavelengths of the basic 309 

characteristic of a PVDF material at 841 cm-1, 880 cm-1 and 1072 cm-1, 1173 cm-1, 1273 cm-1, 310 

and 1404 cm-1, which correspond to CH2 rocking, m C-C asymmetric stretching, CF2 311 

symmetric stretching, CF out of plane deformation, and CH2 wagging, respectively [49].  312 

This signifies that the membranes did not change in their characteristics. However, 313 

transmittance intensity was observed to decrease after the chemical cleaning process. This 314 

could be due to the clogging of some pores of the membranes due to foulants that could have 315 

lessened the penetration of light, thus resulting to lower transmittance intensity. However, it 316 

can be deduced from the results that if chemical cleaning duration is increased, it could 317 

produce better cleaning efficiency thus more foulants will be removed, resulting to more 318 

pronounced transmittance intensity as with the virgin membrane [16, 19]. 319 

 320 

3.7 SEM & EDX 321 

 322 

[Figure 8] 323 

 324 

The morphological characteristics of the membrane surface and the inner pores were 325 

characterized by SEM (Fig. 8) and EDX (Table 6). Fig. 8a showed smooth and clean surface 326 



of the virgin membrane, i.e., before the fouling process. However, after 20 h of test, the 327 

membrane surface was covered with a big mass of foulant (Fig. 8b). After the first cleaning 328 

(Fig. 8c), the membrane showed scattered small-sized particles, which seems to be inorganic 329 

particles [50]. The particles were confirmed to be inorganic salts after EDX analysis (Table 330 

6). Similar observation was seen after 2-3 successive cleaning cycles (Figs. 8d-e). However, 331 

after 4th cleaning cycle (Fig. 8f), the membrane showed an agglomeration of particles, which 332 

could be a mixture of organic and inorganic fouling. This illustrates that after several cleaning 333 

cycles, the efficiency of cleaning has decreased, which could be due to more pore blocking by 334 

foulants, as well as roughening of the surface due to many cleanings, which enhances the area 335 

for fouling to occur. Additional analysis by EDX (Table 6) showed mainly C and F elements 336 

in the virgin membrane, however new peaks (i.e., elements) were observed for the fouled and 337 

cleaning membrane. For the fouled membrane, numerous elements were observed on the 338 

membrane surface, which are usually present in seawater properties with high concentrations 339 

of Na+ and Cl-, indicating the presence of inorganic scales. The cleaning of the membranes 340 

resulted to decreased Na+ content, but showed increasing Cl- content with the increasing 341 

number of cleaning cycles. Mg element was also observed after the first cleaning. Increasing 342 

Na/F and Cl/F ratios (Table 7) were observed with the increase of cleaning cycles, which 343 

signifies that NaCl were adhered to the surface, and were not easy to remove most probably 344 

because of short chemical cleaning duration. The deposition of NaCl on the membrane has 345 

made the hydrophobic surface into hydrophilic because of the effect of hydrophilic properties 346 

of the inorganic NaCl. It was supposed that if membrane chemical cleaning duration is 347 

increased, higher cleaning efficiency is expected and could remove most of the inorganic 348 

scale deposits. 349 

 350 

[Table 6] 351 



 352 

[Table 7] 353 

 354 

3.8 Water quality 355 

 356 

[Table 8] 357 

 358 

The effect of chemical cleaning can be determined by evaluating the water quality of the feed 359 

and permeate streams. Generally, total dissolved solids (TDS) cannot be removed by MF/UF 360 

process. However, as shown in Table 8, the TDS of the permeate water was much lower than 361 

that of the feed water, even after several cycles of cleaning. This indicate that some fouling 362 

matters especially inorganic NaCl, which consists the bulk of TDS, were still present in/on 363 

the membrane that resulted to constriction of the membrane pores (Fig. 8), thus more TDS 364 

were retained on the membrane resulting to the decreased TDS values. The silt density index 365 

or SDI15 is one of the commonly used parameters to predict membrane fouling. Normally, the 366 

SDI15 should be within 3 to 5 for efficient desalination process. If the SDI15 is more than 5 367 

going through the RO process, the RO membrane will experience a lot of burden and will 368 

consume a lot of energy due to the deposition of big foulant particles. The SDI15 is a simple 369 

correlation of the decrease in filtration time of a known volume of the feed after a certain 370 

period of filtration time (usually 15 min). The SDI15 is calculated from the equation: 371 

SDI15 =  
1 − (ti tf⁄ )

Tf
 × 100                                                                                                          (Eq. 5) 

where ti is initial filtration time (to filter a fixed volume), tf the final filtration time (to filter 372 

the same fixed volume), and Tf is the elapsed time [51, 52] according ASTM D4189-95 [53, 373 

54]. Unlike turbidity, which pertains to the amount of solids in a given sample, SDI15 374 

determines the contaminants that could probably plug the membrane pores [55]. Thus, 375 



plugging factor was also determined, which is considered as one of the frequently used terms 376 

in measuring the amount of suspended solids present in a water sample. PF can be calculated 377 

from the following equation: 378 

PF (%) =  1 − (ti tf⁄ ) × 100 ≈  
SDI15

Tf
                                                                                    (Eq. 6) 

where ti is initial filtration time (to filter a fixed volume), tf the final filtration time (to filter 379 

the same fixed volume), and Tf the elapsed time [51, 55, 56]. 380 

The initial SDI15 of the feed was 6.43, which was very high, but was reduced drastically to 381 

0.39 ~ 1.01 after passing through the UF process even after many times of cleaning cycles. 382 

This has big implication to lessening the burden for the RO process, thus making the UF a 383 

good pre-treatment fit. Similarly, the turbidity and PF of the feed has steeply decreased after 384 

the UF process, though increasing trend could be seen with the increase of the number of 385 

cleaning cycles. This increase could be explained by the tendency of some foulants 386 

(especially the small molecular weight hydrophobic foulants) to deposit at the inner core of 387 

the membrane wherein through continuous consecutive cleaning, the adhered foulants are 388 

detached and are carried way with the permeate, thus increasing the SDI15, PF and turbidity 389 

of the permeate.  390 

All other parameters including UV254 and DOC also showed decreased values after passing 391 

through UF. DOC is often used in most membrane studies to evaluate NOM removal 392 

efficiency [57]. However, the SUVA values showed increasing trend with the increase of 393 

cleaning cycle. SUVA is the ratio of UV254 and DOC as shown in the following equation: 394 

SUVA254 (m−1of absorbance per mg l⁄  of DOC =  L mg ∙ m⁄ ) =  UV254
DOC

                         (Eq. 7) 395 

This increasing trend of SUVA could be attributed to the increased presence of organic 396 

foulants (humic acid and fulvic acid) on/in the surface as determined by the increasing C/F 397 

ratio in Table 7. Fulvic acid particles are generally smaller than the UF membrane pore so 398 



that it could pass through it easily. On the contrary, humic acid is a larger size particle that 399 

could not easily pass through the UF membrane, thus it accumulates on the surface and attach 400 

as foulants.  401 

 402 

3.9 Contact angle 403 

 404 

[Figure 9] 405 

 406 

Fig. 9 shows the contact angle (CA) measurements of the membranes. The virgin membrane 407 

showed an initial CA of 83.8o, indicating a slightly hydrophilic membrane. However, when 408 

foulants were formed, the CA of the membrane surface increased to 131.8o, which is 409 

hydrophobic. This could be attributed to the presence of some suspended and total solids 410 

present on the surface, which are known to be hydrophobic [13, 24, 58, 59]. After chemical 411 

cleaning, the surface became more and more hydrophilic with the increase in cleaning cycles. 412 

This signifies that many hydrophobic organic foulants were removed during the cleaning 413 

process, thereby decreasing the hydrophobicity of the surface. Additionally, some hydrophilic 414 

inorganic particles are still attached on/in the membrane surface even after several cleanings, 415 

thus, they contributed to the decrease in CA.  416 

 417 

4. Conclusion 418 

In the present study, pressurized ultrafiltration (UF) was used as pre-treatment for 419 

desalination, and the effect of different chemicals and cleaning modes on the removal of 420 

fouling formation on UF membrane was investigated. Acid and alkali-based chemicals were 421 

used as cleaning agents. Our initial tests showed that oxalic acid and sodium hypochlorite had 422 

high efficiency in removing different types of foulants, thus they were applied for the 423 



consecutive cleaning tests. Chemical in series cleaning consisting of either oxalic acid-424 

sodium hypochlorite-oxalic acid series or sodium hypochlorite-oxalic acid- sodium 425 

hypochlorite were conducted at different cleaning times of 15-30-15 min or 30-60-30 min. 426 

The following are the summary and conclusions drawn from this study:  427 

• Flux recovery by chemical cleaning was greatly affected by the kinds of chemicals 428 

and the sequence of dosage as well as contact time. The better efficiency was obtained 429 

by the sequence of acid-base-acid in series under the cleaning condition of same kinds 430 

of chemicals and contact time.  431 

• The results of consecutive chemical cleaning showed that the flux was almost fully 432 

recovered to the previous recovered value as cleaning times increased; recovery 433 

efficiency of 96.8%, 95.8%, 98.3% and 99.9% after first, second, third and fourth 434 

time of cleaning, respectively. This implies that a stable flux could be maintained after 435 

several times of cleaning frequency; around 91% of initial flux was maintained after 436 

third chemical cleaning. 437 

• However, the cleaning interval or filtration running time has been shortened due to the 438 

changes in the membrane surface structure by contact with chemical cleaning agents 439 

during every cleaning time. As seen from the analyses of contact angle and FTIR 440 

spectra, the surface of membrane has been gradually changed to hydrophilic nature 441 

due to the presence of hydrophilic inorganic foulants being not fully removed by 442 

chemical cleaning, which indicates that membrane fouling is progressed although 443 

apparent recovery efficiency seems to be high and stable.  444 

• In terms of long-term operation and maintenance of membrane pre-treatment using 445 

MF/UF in desalination processes, it will be necessary that an enhanced chemical 446 

cleaning strategy on treating hydrophilic inorganic foulants as well as hydrophobic 447 

organic ones for the efficient management of desalination plants. 448 



 449 
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Figure 1. Schematic diagram of the pressurized hollow fiber UF system 637 
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Figure 2. Hollow fiber membrane before and after chemical cleaning (pH≥12) 662 
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Figure 3. Recovery rate for single chemical cleaning using various cleaning agents at different 689 

cleaning durations: (a) 30 minutes, (b) 1 hour and (c) 2 hours 690 
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Figure 4. Recovery rates for chemical cleaning in series: (a, c) oxalic acid-sodium hypochlorite-oxalic 714 
acid, and (b, d) sodium hypochlorite-oxalic acid-sodium hypochlorite for (a, b) 15min-30min-15min, 715 
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Figure 5. (A) Flux and (B) recovery rate and efficiency using chemical cleaning process 737 
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Figure 6. Tensile strength of the hollow fiber membranes: (a) virgin membrane, (b) fouled membrane 755 
and membranes after (c) 1st cleaning, (d) 2nd cleaning, (e) 3rd cleaning, and (f) 4th cleaning 756 
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Figure 7 FT-IR spectra of the different membrane conditions 767 
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Figure 8. Surface SEM images of the (a) virgin membrane, (b) fouled membrane, and membranes 777 

after (c) 1st cleaning, (d) 2nd cleaning, (e) 3rd cleaning and (f) 4th cleaning. Insets: SEM corresponding 778 
SEM images of the inner pores 779 
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Figure 9. Contact angle measurement of different hollow fiber membranes: (a) virgin membrane, (b) 796 
fouled membrane and membranes after (c) 1st cleaning, (d) 2nd cleaning, (e) 3rd cleaning and (f) 4th 797 

cleaning 798 
 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 
  808 



Table list: 809 

 Table 1. Published reports in literature using different cleaning agents for various 810 

processes 811 

 Table 2. Specification of the hollow fiber UF membrane 812 

 Table 3. pH of cleaning solutions at different percent concentrations 813 

 Table 4. Time elapsed for membrane fouling at different stages 814 

 Table 5. Different bands of the FT-IR analysis 815 

 Table 6. EDX of hollow fiber membrane surface 816 

 Table 7. Ratio of the element divided by fluorine 817 

 Table 8. Water quality of feed and permeate before and after chemical cleaning 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

Table 1. Published reports in literature using different cleaning agents for various processes 844 



Filtration process Feed solution Chemical agents Reference Number 

Pressurized MF Synthetic water (humic 
acid, Fe, Mn and Ca2+) HNO3, NaOH [14] 

Ceramic MF 3.5 wt % whey protein NaOH [11] 

Ceramic MF 0.1 g/L of yeast in 10 g/L 
sugar solution HNO3, NaOCl, NaOH [12] 

Submerged MF 
Stream water and 
secondary water from 
plant 

C6H8O7, NaOCl, NaOH [13] 

Spiral-wound UF 
Skimmed milk (11 g/L 
proteins, 16 g/L lactose 
and 3 g/L salts) 

NaOH, Tween 20, Ultrasil 10 [15] 

Submerged UF Algal-rich water EDTA, HCl, NaOCl, NaOH [16] 

Submerged MF and 
UF Potable water C6H8O7, NaOCl, NaOH [17] 

RO and NF Licorice aqueous 
solutions EDTA, NaOH, HNO3, H2SO4, CH3(CH2)10CH2OSO3Na [18] 

Flat-sheet MF 
3.5 g/L of sodium 
alginate and 2 g/L of 
BSA 

NaOCl [19] 

UF Algae C6H8O7, NaOCl, NaOH [20] 

UF Proteins NaOCl, NH4OH, Machine powder [21] 

UF Surface water and 
ground water C6H8O7, NaCl, NaOH, CH3(CH2)10CH2OSO3Na [22] 

UF proteins NaOCl, NaOH, Tween 20 [23] 

Submerged UF Surface water C6H8O7, Ethanol, NaOH [24] 

UF Whey protein isolate HCl, NaOH [25] 

UF Surface water C6H8O7, H2O2, HCl, Kleen MTC 411, P3 Ultrasil 115, P3 
Ultrasil 70, P3 Aquadean Sal, 4AquacleanFer 12 [26] 

Capillary UF and 
MF Reservoir water C6H8O7, H2O2, HCl, NaOCl, NaOH [27] 

Submerged MF Micro-polluted raw 
water HCl, NaOCl [28] 

NF NOM with ionic 
compounds NaOH, CH3(CH2)10CH2OSO3Na [29] 

RO Alginic acid with 32 g/L 
of synthetic seawater De-Ionized water, EDTA, NaCl [30] 

Hollow fiber UF 
20, 10 and 10 mg/L of 
humic acid, sodium 
alginate and BSA 

Milli-Q, NaOCl [31] 

Submerged hollow 
fiber UF Seawater NaOCl [32] 

NF and RO Oil sands process-
affected water HCl, NaOH [33] 

Flat-sheet MF 1 % of milk solution EDTA [34] 

Flat-sheet UF and 
MF 

Whey protein 
concentrate NaOH [35] 
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Table 2. Specification of the hollow fiber UF membrane 851 



Shape Hollow fiber pressurized module 

Pore size, µm 0.038 

Material PVDF (Polyvinylidene fluoride) 

Filtration flux, L/m2h 130 ± 15 

Membrane area, m2 2.26 × 10-3 

Dimension ( π × D ×  l × units) π × 150 mm × 1.2 mm × 4 units 

Operating pressure, bar 0.5 
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Table 3. pH of cleaning solutions at different percent concentrations 884 



Chemical 0.1 % 1 % 3 % 5 % 

Sodium hypochlorite 11.10 11.76 12.10 12.23 

Sodium hydroxide 12.82 13.13 13.44 13.89 

Sulfuric acid 1.72 0.78 0.56 0.34 

Nitric acid 1.59 0.75 0.34 0.12 

Citric acid 2.41 2.24 2.12 1.90 

Oxalic acid 2.29 1.48 1.22 1.08 
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Table 4. Time elapsed for membrane fouling at different stages 905 
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Table 5. Different bands of the FT-IR analysis 936 

 1st fouling 2nd fouling 3rd fouling 4th fouling 

Total fouled time (min) 1260 540 540 360 

�𝐶𝐹
𝐶𝐼
�  × 100 %  100.0 42.9 42.9 28.6 



IR band (cm-1) Range given in the literature (cm-1) Type of vibration 

841 839 ~ 845 

CH2 rocking 

CF2 stretching 

CC stretching 

880 880 C-C (asymmetric stretch) 

1072 1074 C-C (asymmetric stretch) 

1173 1184 CF2 (symmetric stretch) 

1273 1279 CF (out of plane deformation) 

1404 1401-1406 CH2 wagging 
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Table 6. EDX of hollow fiber membrane surface 954 

Element Initial Fouled After 1st After 2nd After 3rd After 4th 



membrane cleaning 

membrane 

cleaning 

membrane 

cleaning 

membrane 

cleaning 

membrane 

Weight (%) Weight (%) Weight (%) Weight (%) Weight (%) Weight (%) 

C 40.95 42.11 37.99 39.09 39.12 39.14 

F 59.05 47.70 57.66 52.68 52.68 52.58 

O - 2.79 1.97 3.30 2.90 2.56 

Cl - 3.98 1.35 3.00 3.10 3.29 

Na - 2.66 1.02 1.62 1.93 2.15 

Mg - 0.49 - 0.31 0.27 0.28 

Al - 0.10 - - - - 

K - 0.10 - - - - 

Ca - 0.08 - - - - 

Totals 100.00 100.00 100.00 100.00 100.00 100.00 
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 964 

 965 

 966 

 967 

Table 7. Ratio of the element divided by fluorine 968 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹⁄  Initial Fouled After 1st After 2nd After 3rd After 4th 



membrane cleaning 

membrane 

cleaning 

membrane 

cleaning 

membrane 

cleaning 

membrane 

𝐶 𝐹⁄  0.693 0.883 0.659 0.742 0.743 0.744 

𝐹 𝐹⁄  1.000 1.000 1.000 1.000 1.000 1.000 

𝑂 𝐹⁄   0.058 0.034 0.063 0.055 0.049 

𝐶𝐶 𝐹⁄   0.083 0.023 0.057 0.059 0.063 

𝑁𝑁 𝐹⁄   0.056 0.018 0.031 0.037 0.041 

𝑀𝑀 𝐹⁄   0.010  0.006 0.005 0.005 

𝐴𝐴 𝐹⁄   0.002     

𝐾 𝐹⁄   0.002     

𝐶𝐶 𝐹⁄   0.002     
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Table 8. Water quality of feed and permeate before and after chemical cleaning 984 



 Feed Initial 
After 1st 
cleaning 

After 2nd 
cleaning 

After 3rd 
cleaning 

After 4th 
cleaning 

TDS (ppm) 35557 26693 26942 27540 27650 27956 

SDI15 6.43 0.39 0.54 0.71 0.89 1.01 

PF (%) 76.0 5.0 7.0 11.0 14.0 17.0 

Turbidity (NTU) 49.6 0.079 0.171 0.269 0.344 0.356 

DOC (ppm) 14.07 7.894 7.658 6.982 6.498 6.355 

UV254 (cm-1) 0.104 0.051 0.057 0.058 0.061 0.064 

SUVA254 
(𝐿 𝑚𝑚 ∙ 𝑚⁄ ) 0.739 0.646 0.744 0.831 0.939 1.007 
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