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Abstract

Many studies are aimed at identifying dense clusters/subgraphs from protein-

protein interaction (PPI) networks for protein function prediction. However,

the prediction performance based on the dense clusters are actually worse

than a simple guilt-by-association method using neighbour counting ideas.

This indicates that the local topological structures and properties of PPI

networks are still open to new theoretical investigation and empirical explo-

ration. We introduce a novel topological structure called k-partite cliques of

protein interactions—a functionally-coherent but not-necessarily-dense sub-

graph topology in PPI networks—to study PPI networks. A k-partite protein

clique is a maximal k-partite clique comprising two or more nonoverlapping

protein subsets between any two of which full interactions are exhibited.

In the detection of PPI’s maximal k-partite cliques, we propose to trans-

form PPI networks into induced K-partite graphs where edges exist only

between the partites. Then, we present a maximal k-partite clique mining
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(MaCMik) algorithm to enumerate maximal k-partite cliques from K-partite

graphs. Our MaCMik algorithm is then applied to a yeast PPI network.

We observed interesting and unusually high functional coherence in k-partite

protein cliques—the majority of the proteins in k-partite protein cliques,

especially those in the same partites, share the same functions, although k-

partite protein cliques are not restricted to be dense compared with dense

subgraph patterns or (quasi-)cliques. The idea of k-partite protein cliques

provides a novel approach of characterizing PPI networks, and so it will help

function prediction for unknown proteins.
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1. Introduction

As complete genome sequence data of many organisms become widely

available, one of the key challenges in post-genomic biology is to understand

and predict protein functions at a proteomic scale. Different approaches

have been taken to deal with this challenge. The classical way is to use

sequence similarity (King et al., 2001), gene fusion (Anton J. Enright and

Ouzounis, 1999), phylogenetic profile (Pellegrini et al., 1999), patterns of gene

expression (Zhou et al., 2002), or phenotype data (Clare and King, 2002) to

predict protein functions. With the rapid development of high-throughput

techniques for the detection of protein-protein interactions (PPIs), large-scale

protein interactions’ data have been generated recently, and become another

abundant resource to study various problems in biological systems (Hu et al.,
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2012; Li et al., 2012a; Ren et al., 2011; Shen et al., 2010; Zheng et al., 2012;

Hu et al., 2011b), especially including the prediction of unknown functions

of proteins (Hu et al., 2011a).

PPI data are usually represented by graphs (PPI networks) with proteins

standing for vertices and protein interactions for edges. One of the basic ques-

tions to study PPI networks is to find biologically relevant functional groups

of proteins in PPI networks, i.e. those subgraphs with a high functional co-

herence (Pandey et al., 2008). A well-known observation is that a protein’s

direct neighbors may more likely share similar functions with itself than its

distant neighbors (Hishigaki et al., 2001; Schwikowski et al., 2000). How-

ever, a protein’s indirect neighbors can also have substantial function simi-

larity with itself as claimed by Chua et al. (Chua et al., 2006)—22.7% yeast

proteins actually shared the functions of their exclusively indirect/Level-2

neighbors, while only 1.6% yeast proteins had similar functions to their ex-

clusively Level-1 neighbors. These two seemingly conflicting ideas (Hishigaki

et al., 2001; Schwikowski et al., 2000; Chua et al., 2006) actually belong to the

scope of neighbour/link-based approaches to the study of PPI networks (Sha-

ran et al., 2007). In general, neighbour-based methods take the functional

annotations from interacting neighbours of a target protein for function pre-

diction. Some of these methods simply use local topology of direct and/or

indirect neighbours and predict functions of unannotated proteins based on

neighbour counting (Schwikowski et al., 2000; Hishigaki et al., 2001; Chua

et al., 2006). Some consider the global topology of PPI networks and use

graph theoretic methods (Vazquez et al., 2003) such as a flow-based algo-

rithm (Nabieva et al., 2005). Some others design probabilistic approaches
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such as Markov random field (Kui et al., 2002; Letovsky and Kasif, 2003). A

more complicated method is to use multiple networks (Deng et al., 2004; Lee

et al., 2006) or multiple other data sources, such as genetic interactions and

coexpression interactions (Joshi et al., 2004) and sematic similarity between

function classes (Moosavi et al., 2013; Jiang and McQuay, 2012), to enrich

the information of PPI networks for neighbour-based functional prediction.

Another direction in the study of PPI networks includes cluster-based

methods for the prediction of protein functions (Sharan et al., 2007). The

idea is that highly connected protein groups may take part in the same bio-

logical process or protein complexes (Bader and Hogue, 2003; Rives and Gal-

itski, 2003; Spirin and Mirny, 2003). From a PPI network, protein clusters

are first generated, and then the function information of the protein clusters

instead of individual proteins are transferred to those un-annotated proteins.

Cluster-based methods can be characterized into several categories with re-

gard to the techniques to detect clusters (Sharan et al., 2007). The first

category is based solely on network topology properties (Bader and Hogue,

2003; Sharan et al., 2005; Altaf-Ul-Amin et al., 2006). The second category

uses the hierarchical clustering method to locate the protein clusters (Rives

and Galitski, 2003; Samanta and Liang, 2003; Maciag et al., 2006). The other

categories use non-hierarchical graph clustering methods (Brun et al., 2004),

such as Markov clustering algorithm (Enright et al., 2002), highly connected

subgraph algorithm (Przulj et al., 2004) and clique percolation (Adamcsek

et al., 2006; Han et al., 2007) or dense subgraphs mining methods (Spirin and

Mirny, 2003). Other types of biological data can be also combined with PPI

networks for cluster detection (Tanay et al., 2004, 2005), including gene ex-
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pression data (Luscombe et al., 2004), genetic interactions (Kelley and Ideker,

2005), phenotypic profiles (Haugen et al., 2004), semantic similarity of func-

tion classes (Zhu et al., 2010) and sometimes multiple PPI networks (Jaeger

et al., 2010; Li et al., 2012b).

It is interesting to note that the simple neighbour counting method can

outperform the cluster-based methods (Sharan et al., 2007; Song and Singh,

2009). It is also important to note that high-precision function prediction can

be achieved for conserved but not necessarily dense modules (Jaeger et al.,

2010). These suggest that the local topology of PPI networks contains many

new properties to explore for accurate prediction of protein functions.

We propose a novel subgraph topology in this work to conduct a func-

tional coherence analysis on PPI networks. Our idea is to transform a protein

interaction network into a K-partite graph. Then we develop a mining al-

gorithm to derive maximal k-partite clique subgraphs, including maximal

bicliques/tricliques/quadricliques. All these maximal k-partite cliques, spe-

cially termed as k-partite protein cliques, are those subgraphs of theK-partite

graph which have full interactions between pairs of these k partites but do

not have any connections within each partite. Our k-partite protein cliques

cover the topological properties of both protein’s direct and indirect neigh-

borhoods. It is true that when the size of the partites is small and the

number k of partites is large, maximal k-partite cliques actually mimic dense

graphs (Spirin and Mirny, 2003) or clique/quasi-clique patterns (Adamcsek

et al., 2006; Han et al., 2007; Bu et al., 2003), which are mostly employed

functional information from proteins’ direct neighbors. However, our maxi-

mal k-partite cliques are not restricted to dense subgraphs especially when
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the size of partites is large. Thus, our k-partite protein cliques are a novel

type of subgraph topology to study protein interaction networks.

The biclique topology concept of protein interactions share similar ideas

with the bipartite subgraph definition (Thomas et al., 2003) and the lock-

and-key model (Morrison et al., 2006) which are actually originated from

complementary domain interactions. An example of the bicliques is about

those interactions between proteins containing the classical SH3 domain and

the proline-rich peptides (Ren et al., 1993). Bipartite subgraphs have been

also applied to the BPM (between-pathway model) motif problems (Brady

et al., 2009). Protein triclique topological structure has been also studied

before, for example, the tripartite complexes, such as CASK participated

CASK-Velis-Mint 1 complex and CASK-Velis-Caskin 1 complex (Tabuchi

et al., 2002), and gH-gL-gQ complex and gH-gL-gO complex (Mori et al.,

2004). Furthermore, graphical approaches can be used to provide an intu-

itive picture or useful insights for helping analyzing complicated relations

in biological problems (Lin and Lapointe, 2013), as demonstrated by many

previous studies on a series of important biological topics, such as enzyme-

catalyzed reactions (Chou and Forsen, 1980; Zhou and Deng, 1984; Chou,

1989; Andraos, 2008; Lin and Neet, 1990; Chen et al., 2010a), protein path-

way networks (Chen et al., 2010b; Huang et al., 2011), inhibition of HIV-1 re-

verse transcriptase (Althaus et al., 1993a,b), inhibition kinetics of processive

nucleic acid polymerases and nucleases (Chou et al., 1994), drug metabolism

systems (Chou, 2010), and using wenxiang diagram or graph (Chou et al.,

2011) to study protein-protein interactions (Zhou, 2011a; Kurochkina and

Choekyi, 2011; Zhou, 2011b; Zhou and Huang, 2013).
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For a K-partite graph in this work, like bipartites, each partite represents

a set of vertices of the same kind, and the edges between different partites

indicate a certain relationship between those partites. K-partite graphs out-

weigh the traditional homogeneous graphs in many applications due to that

the real-world data usually involves multiple attributes or multiple types of

objects and their relationship, such as different functions in PPI networks.

Thus, K-partite graphs provide a good proximity of the real-world hetero-

geneous data. However, mining maximal k-partite cliques from K-partite

graphs is at least as hard as NP-hard edge biclique problem, i.e. the problem

of finding a maximal weight biclique from an edge weighted graph (Peeters,

2003). Several noteworthy efforts have been taken to obtain useful patterns

from K-partite graphs, including biclique model (Li et al., 2007a), quasi-

biclique (Li et al., 2008), CLICKS (Zaki and Peters, 2005), star-structure

model (Gao et al., 2006), iterative propagation model (Wang et al., 2003)

and hidden structure model (Long et al., 2006). However, unlike the re-

search results on bipartite graphs, those methods did not suggest an efficient

solution because the problem with the k-partite graphs is more complicated

than those of bipartites.

In this work, we design a Maximal k-partite Clique Mining (MaCMik) al-

gorithm by using a divide-and-conquer strategy and a consensus technique;

the consensus technique is employed to handle the conflict when partites of

maximal k-partite cliques are produced. We apply the MaCMik algorithm

to a K-partite graph of a yeast PPI network to detect interesting topological

patterns of k-partite protein cliques, such as maximal bicliques, maximal tri-

cliques and maximal quadricliques. These topological patterns of k-partite
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protein cliques, in particular the partites in k-partite protein cliques, possess

high protein functional coherence. We believe that these results can sug-

gest a novel way to understand PPI networks and to help reliable function

prediction of proteins. 1

2. K-partite Graphs and Maximal k-partite Clique Subgraphs

A K-partite graph is denoted by G = ⟨{Vi, Eij | i, j = 1, 2, · · · ,K, i ̸= j}⟩,

where Vi (a partite) is a set of vertices, Eij ⊆ Vi×Vj is a set of edges between

Vi and Vj, and K is the number of the partites in this graph. This definition

is similar to that of (Zaki and Peters, 2005). An example of K-partite graphs

when K = 3 is shown in Figure 1 where the three partites are V1, V2 and V3

(in blue, red and green respectively), and E1,2 are the gradient lines between

the magenta and red nodes, E1,3 are those between magenta and green, while

E2,3 are those between green and red.

A k-partite subgraph G = ⟨{Vi, Eij | i, j = 1, 2, · · · , k, i ̸= j}⟩ is a k-

partite clique if and only if each Eij = Vi × Vj. We also denote it simply as

G = ⟨{Vi | i = 1, 2, · · · , k}⟩ by omitting the edges. When k = 3 or k = 4,

G is specially called a triclique or a quadriclique. In the extreme case of

1This work is a substantially revised and updated version of our BIBM 2009 conference

paper (Liu et al., 2009). The results are updated significantly based on a new version

of a yeast PPI network. The literature review is updated by two thirds. This work is

newly compared with traditional dense subgraph approaches, and highlights the advan-

tages of k-partite protein clique approach such as the detection of functional coherent but

not necessarily dense subgraphs, an important finding consistent with biological observa-

tions (Sharan et al., 2007; Song and Singh, 2009; Jaeger et al., 2010).
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k = 2, k-partite cliques are exactly bicliques. We also say k-partite cliques

to be rank-higher than (k-1)-partite cliques. For example, quadricliques are

rank-higher than tricliques.

Suppose that G ′ = ⟨{V ′
i | i = 1, 2, · · · , k}⟩ is a k-partite clique of G, G ′

is a maximal k-partite clique of G if and only if for any proper k-partite

clique G ′′ = ⟨{V ′′
i | i = 1, 2, · · · , k}⟩ of G, G ′ ⊆ G ′′ is false where V ′

i ⊆

V ′′
i , ∀i = 1, 2, · · · , k. For example, Figure 1 shows a maximal triclique with

V1 = {v1,1, v1,2, v1,3, v1,4}, V2 = {v2,1, v2,2, v2,3} and V3 = {v3,0, v3,1} in dark

blue/red/green. The definition of maximal k-partite cliques implies that, in a

k -partite graph, every k-partite clique is an element or covered by an element

in the set of maximal k-partite cliques of the k -partite graphs.

These k-partite clique definitions show that k-partite cliques have strin-

gent all-versus-all connection between the pairs of partites. The all-versus-all

connection constraint is highly advantageous on a data set with less noises

and errors. On some data sets including PPI networks, there are many false

positives and false negatives: false negatives will result in missing maximal

k-partite cliques (it generally cannot be overcome due to the lack of experi-

mental evidence in PPI networks.), while false positives can make detected

maximal k-partite cliques become k-partite quasi-cliques or even meaningless

sometimes. Actually, the all-versus-all connection constraint can be relaxed

to define k-partite quasi-cliques by a similar way to defining quasi-bicliques

in (Li et al., 2008). k-partite quasi-cliques are able to tolerate some noise

data. However, this work focuses on the problem of how to mine maximal

k-partite cliques from PPI networks.
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3. Mining Maximal k-partite Cliques from a PPI Network

To study the functional topology of proteins and their neighborhood pro-

teins, we detect maximal k-partite cliques from PPI networks. Our method

consists of three steps: (i) constructing the induced K-partite graph from a

PPI network; (ii) designing an algorithm to mine maximal k-partite cliques;

(iii) detecting maximal k-partite cliques from K-partite graphs of real-life

PPI networks.

3.1. Constructing the K-partite Graphs from PPI Networks

Given a PPI network g, let its maximal size of the maximal cliques be

p, then many induced K-partite graphs G can be constructed with not least

than p partites. In this work, we only consider the K-partite graphs with

a minimum size of partites. It is clear that the minimum size of partites

in G is p. Even so, the time complexity to obtain such graphs is O(Np)

where N is the number of vertices in g. Fortunately, the best induced K-

partite graphs should be most condense with least partites. That is, the

topological patterns should be involved in as less partites as possible. Thus,

our heuristic to construct these graphs is that proteins with more partners

and the partites with more proteins are considered first. Specifically, we

transform a PPI network g into a K-partite graph by using the following

process:

i. get the degree number (the number of interacting partners in g) for

each protein PP , and rank proteins based on their degree;

ii. produce p empty partites;

10



iii. add a protein PP with the highest degree into the corresponding par-

tite i if and only if (a) PP has no interaction with any proteins of partite

i and (b) partite i has the most proteins among those partites satisfy-

ing (a); i > p indicates a newly added partite if no existing partites

satisfy (a).

iv. remove PP ;

v. repeat (iii) and (iv) until every protein is in a partite. Finally, K is the

number of partites in the K-partite graph produced.

We would like to note that p is the maximal size of the maximal cliques in

an original acyclic PPI network, while K is the number of the partites in a

K-partite graph (K ≥ p), and k is the number of the partites in a k -partite

clique.

3.2. Maximal k-partite Clique Mining (MaCMik) Algorithm

To design the algorithm for mining maximal k-partite cliques from the

induced K-partite graph of PPI networks, we first examine a relationship of

maximal k-partite cliques G(k) with its (k-1)-partite cliques G ′(k − 1). By

definition, any (k-1)-partite subgraph G(k − 1) of G(k) is a k-partite clique

G ′(k − 1). That is, G ′(k-1) ⊆ G(k) where each Vi in G ′(k-1) ⊆ Vi in G(k).

Thus, if G ′(k − 1) does not exist, G(k) does not exist either; there is no

need to produce rank-higher maximal k-partite cliques than G ′(k − 1). This

observation can be used to prune useless candidate searching when producing

rank-high maximal k-partite cliques.

In addition, according to the implication of maximal k-partite cliques in

Section 2, every k-partite cliques G ′(k−1) ⊆ G(k−1), where G(k−1) are the
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corresponding maximal (k-1)-partite cliques. Therefore, the straightforward

method to detect maximal k-partite cliques is to assemble maximal (k-1)-

partite cliques with the kth-partite, and maximal (k-1)-partite cliques can

be obtained in the similar way. That is, we can employ a divide-and-conquer

strategy to produce maximal k-partite cliques as follows:

(i) obtain maximal (k-1)-partite cliques from (k-1)-partite graphs of the

first (k-1) partites.

(ii) detect maximal bicliques from bipartite graphs consisting of the kth-

partite and each partite of other (k-1)-partites

(iii) merge those maximal bicliques and maximal (k-1)-partite cliques to-

gether to obtain maximal k-partite cliques.

The way to obtain maximal (k-1)-partite cliques is similar to the above pro-

cess for maximal k-partite cliques. This is a recursive process until (k-ki)-

partite graphs, where ki is the recursive times, are bipartite graphs. Maxi-

mal bicliques from bipartite graphs can be detected by the LCM-MBC algo-

rithm (Li et al., 2007a). Thus, there are two vital components in the above

process: detecting maximal bicliques and merging maximal bicliques with

maximal (k-1)-partite cliques.

3.2.1. Detecting Maximal Bicliques

Given a bipartite graphG = ⟨V1, V2, E12⟩, the LCM-MBC algorithm needs

two parameters, q1 and q2, to control the minimum number of vertices in each

partite of maximal bicliques. This constraint is to avoid producing small

and meaningless bicliques. When detecting maximal k-partite cliques, the
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constraint of the minimum size is much more complicated. More importantly,

in k -partite cliques with k ≥ 3, even if each partite has one vertex, this k-

partite clique is still interesting due to that it is a clique in a general graph.

Thus, both q1 and q2 are set to one here for LCM-MBC. That is, all maximal

bicliques are produced by LCM-MBC.

3.2.2. Merging Maximal Bicliques with Maximal (k-1)-partite Cliques

When merging maximal bicliques with maximal (k-1)-partite cliques,

there may be a conflict between different partitions of the partites which are

both in maximal bicliques and in maximal (k-1)-partite cliques. For exam-

ple, given a tripartite graph G = ⟨V1, V2, V3, E12, E13, E23⟩, a set of maximal

bicliques between V1 and V2 or between V1 and V3 can be obtained from

E12 or E13. But the partitions on V1 by E12 and by E13 may be partially

different, and this is a conflict. In this work, a consensus strategy is used

to handle the conflict. That is, only the common vertices in the conflicting

partites between maximal (k-1)-partite cliques and maximal bicliques will be

considered in rank-higher maximal k-partite cliques.

In a k -partite graph G, suppose that G(k−1) = ⟨{V ′
i | i = 1, 2, · · · , k−1}⟩

is its corresponding maximal (k-1)-partite cliques without the kth partite.

To get maximal k-partite clique G, the kth partite is merged into G(k− 1) in

the following way. Firstly, for partite i in k -partite graphs, i = 1, 2, · · · ,k-1,

maximal bicliques G(ik)b can be obtained from the bipartite graph consisting

of partite i and partite k, and Vi and Vki are vertex sets of G(ik)b for partite i

and partite k. To handle the difference of Vkis, i = 1, 2, · · · ,k-1, the consensus

strategy is used first time. That is, the common vertex set of different Vkis,

V c
k =

∩k−1
i=1 Vki , will be used as the kth partite of G. Secondly, for partite i
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Algorithm 1 Function consensus Partites: A consensus strategy to produce

partites in maximal k-partite cliques

Require: 1) G(ik)b: maximal bicliques from bipartite graphs consisting of

the kth-partite and the ith-partite of Gk, i = 1, 2, · · · ,k-1

2) G(k − 1): maximal (k-1)-partite cliques of the (k-1)-partite graph

1: find the common vertex set of the kth-partite of Gk, V
c
k =

∩k−1
i=1 Vki where

Vki are the vertices of the kth-partite involved in G(ik)b
2: if V c

k is empty then

3: there is no k-partite clique in Gk

4: else

5: for all partite i in G(k − 1) do

6: V ′
i = vertex sets of partite i involved in maximal (k-1)-partite cliques

G(k − 1)

7: Vi = vertex sets of partite i involved in maximal bicliques G(ik)b
8: V c

i = V ′
i ∩ Vi

9: if V c
i is empty then

10: there is no k-partite clique in Gk

11: else

12: replace partite i in G(k − 1) with V c
i

13: end if

14: end for

15: maximal k-partite cliques G(k) = G(k − 1) ∪V c
k

16: remove redundant G(k)

17: end if
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in G(k − 1), the vertex partition in V ′
i and Vi may not equal to each other

completely. To handle such difference, the consensus strategy is used again.

That is, the common vertex set in partite i of G(ik)b and of G(k − 1), V c
i =

V ′
i ∩ Vi, i = 1, 2, · · · ,k-1, will replace the vertex set of partite i in G(k − 1).

Finally, G can be produced by the assembly of corresponding V c
i s and V c

k . If

any of Vj in G is empty, j = 1, 2, · · · , k, G does not exist; that is, there is no

maximal k-partite cliques for k -partite graphs G. There are some redundant

maximal k-partite cliques to be removed. However, this method guarantees

to produce the complete set of maximal k-partite cliques. The pseudo code

of this method is shown in Algorithm 1.

Algorithm 2 gives the entire pseudo code of our MaCMik algorithm to

mine the maximal k-partite cliques.

3.3. Detecting Maximal k-partite Cliques from PPI Networks

We apply the MaCMik algorithm to the induced K-partite graphs of PPI

networks to detect maximal k-partite cliques. As the time complexity and

space complexity are too high to obtain rank-higher k-partite cliques, we con-

sider only maximal bicliques, maximal tricliques and maximal quadricliques

of PPI networks in this work.

4. Functional Coherence in k-partite Protein Cliques of a Yeast

PPI Network

The dataset under our test and evaluation is the DIP (Database of In-

teracting Proteins) yeast PPI network (the January 31, 2013 release). This

PPI network contains 4,892 proteins with identical OLN (Ordered Locus
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Algorithm 2 Maximal k-partite Cliques Mining (MaCMik) Algorithm

Require: PPI network g

1: convert g into an induced K-partite graph G with as less partites as

possible.

2: use LCM-MBC to mine maximal bicliques G(ij)b for any pair of partites

i and j in G, i, j = 1, 2, · · · , k, i < j

3: for all k from 3 to K do

4: set maximal k-partite cliques G(k)={}

5: for all k-partite graph Gk in G do

6: assume that G(k-1)=⟨{V ′
i |i = 1, 2, · · · ,k-1}⟩ are maximal (k-1)-

partite cliques of the (k-1)-partite graph with the first (k-1) partites

of Gk

7: assume that G(ik)b are maximal bicliques from bipartite graphs con-

sisting of the kth-partite and the ith-partite of Gk, i = 1, 2, · · · ,k-1

8: get maximal k-partite cliques through Function consen-

sus Partites(G(k-1), G(ik)b) in Algorithm 1, and add them

into G(k).

9: end for

10: output maximal k-partite cliques G(k)

11: end for

Names) mapping in UniProt and 21,851 non self-interactions. This net-

work was transformed into a 12-partite graph G. Our MaCMik algorithm

was then applied and detected 76,409 maximal tricliques and 53,462 quadri-

cliques together with 15,740 maximal bicliques from G. We further studied

the functional coherence of proteins in these biclique, triclique and quadri-
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clique patterns. (Bicliques with less than three proteins were excluded from

our analysis due to that they were more likely noise patterns.)

In the examination of protein functional coherence, we made use of a func-

tional annotation scheme, the FunCat 2.1 functional classification scheme (Ruepp

et al., 2004), which was downloaded from the Comprehensive Yeast Genome

Database of the Munich Information Center for Protein Sequences (MIPS).

The FunCat scheme is organized like a tree structure with up to six levels of

increasing specificity. In this work, the root of FunCat is referred to as Level

0; its children are referred to as Level 1, etc. That is, Level L’s children are

referred to as Level L+1, where L = 0, 1, · · · , 5. Level 6 has no child. Our

functional coherence evaluation is based on Level 1 and Level 2 only. Level 1

functions cover 18 categories (including the category of unknown functions)

in the coarse-grained level, and Level 2 functions spread on 80 categories.

In Level 1, there are 956 proteins with unknown functions on the yeast PPI

network, and among them, 38 proteins cannot be assigned into any k-partite

protein cliques (mainly maximal bicliques).

4.1. Functional Coherence in k-partite Protein Cliques and in Their Partites

The functional coherence was examined not only on entire maximal k-

partite cliques, also on their separate partites at the two levels of functional

specificity. In our evaluation of the functional coherence on the partites, those

partites with only one protein were not considered, as their functional coher-

ence deems to be 100%. Figure 2 displays the distribution of the functional

coherence, where the horizontal axis represents the size of maximal k-partite

cliques, and the vertical axis represents the average percentage distribution

of the functions shared in the maximal k-partite cliques (in Figure 2a and
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Figure 2b) or in their partites (in Figure 2c and Figure 2d) with the same

k-partite clique size. In Figure 2, the lines with ‘plus’ signs represent the per-

centage of the main functions which are shared by the majority proteins in

the maximal k-partite cliques or in their partites, and the lines with ‘crosses’

represent the percentage of the discordant functions distributed among the

remaining proteins with known functions, and the lines with ‘circles’ repre-

sent the percentage of proteins with unknown functions. The red, green and

blue colors are for the maximal bicliques, maximal tricliques, and maximal

quadricliques, respectively.

Figure 2a and Figure 2b show a clear picture that most of the proteins

in the same maximal k-partite cliques share the same functions. They also

show that the functional coherence in the quadricliques is generally higher

than that of tricliques which in turn is generally higher than that of bicliques.

Meanwhile, it can be seen that the k-partite cliques with smaller size, such as

protein size from 3 to 6, more likely share the same functions than those with

a bigger size. Another interesting point is that the k-partite cliques of small

size are actually quasi-cliques in general graphs. This is in agreement to the

research results by (Bu et al., 2003) which claimed that many quasi-cliques

in PPI networks share the same functions.

Again in (Bu et al., 2003), the quasi-partites were detected by using

negative eigenvalues in spectral analysis. Because of difficulties in spectral

analysis, the functional coherence of quasi-partites, especially of their par-

tites, was not comprehensively studied in (Bu et al., 2003). In this work,

it is easy to examine whether the proteins in the same partites of maximal

k-partite cliques share the same functions or not. As shown in Figure 2c
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and Figure 2d, most proteins in the same partites of the maximal k-partite

cliques share the same functions.

Through our investigation and analysis on the data presented in Figure

2, the following interesting points can be summarized:

(i) maximal k-partite cliques with a smaller size are more likely to share the

same functions than k-partite cliques with a bigger size. The maximal

k-partite cliques of protein sizes from 3 to 6, which actually correspond

to quasi-cliques of (Bu et al., 2003) in general PPI graphs, may be

biologically relevant functional groups.

(ii) rank-higher maximal k-partite cliques contain more functional coher-

ence information than rank-lower (k-1)-partite cliques.

(iii) the separate partites in k-partite cliques have higher function coherence

than those of the entire k-partite cliques, and those partites in maximal

k-partite cliques may also be biologically relevant functional groups.

This observation is consistent with an earlier work (Chua et al., 2006)

which claimed that the fraction of indirect neighbor partners sharing

the same functions was much higher than the fraction of interacting

proteins.

4.2. Examples of Maximal k-partite Cliques with High Functional Coherence

We highlight six examples (Table 1 and Table 2) to detail the high func-

tional coherence in maximal k-partite cliques and in their partites under the

level 2 functions. In Table 1, 75% of proteins in the biclique example have

the same functions 20.01—transported compounds (substrates). The func-

tion 12.01 (ribosome biogenesis) and 42.16 (mitochondrion) are 100% shared
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by the proteins in the triclique whose topology is shown in Figure 3. The

function 14.13 (protein degradation) is also 100% shared in the quadriclique

proteins. In the example of the biclique as shown in Figure 4, the two pro-

teins YHR140W and YHL042W are not annotated with any function, while

the protein YEL002C has three different functions rather than the function

12.01. However, one of its functions in Level 2 is ‘01.05: C-compound and

carbohydrate metabolism’, while the main function 20.01 in the biclique in-

cludes a more specific function ‘C-compound and carbohydrate transport’.

Thus, the discordant function 01.05 is, although not the same as, closely

related to the main function 20.01 in the example biclique. Thus, the two

unclassified proteins YHR140W and YHL042W are more likely to share the

functions which are closely related to the main function 20.01. Meanwhile,

the cellular component of YHL042W should include ‘(mitochondrial outer)

membrane’ according to Saccharomyces Genome Database (SGD), while the

cellular components of all other proteins include ”Membrane”, ”Integral To

Membrane” or ”Nuclear Membrane/Envelope” according to BioGRID. All

the proteins in the biclique could be in a same cellular component. The

cellular component information is a good indicator, although not a direct

functional evidence, of protein functions for YHR140W and YHL042W.

Table 2 indicates that separate partites can have a higher percentage of

proteins sharing the same functions than the entire k-partite clique. The

mainly shared functions within partites may also differ from the one mainly

shared by proteins in the corresponding k-partite clique. In the example bi-

clique of Table 2, the main functions in the biclique is 32.01 (stress response)

shared by 70% of the proteins(7 out of 10); however, the functions 32.01 and
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14.01 (protein folding and stabilization) are both shared by all five (100%)

proteins in the partite 1. The similar conclusion can be drawn from the ex-

ample triclique and quadriclique of Table 2. In the quadriclique, YBR159W,

YCR034W and YLR372W from partite 1, YPL076W from partite 2, and

YGR060W from partite 3 form a quasi-clique to share the function 01.06

(lipid, fatty acid and isoprenoid metabolism), which is different from the

main function 20.09 (transport routes) shared by the majority of proteins in

the quadriclique.

Based on these analysis, we note that, on one hand, our method can de-

tect, as done by previous works (Adamcsek et al., 2006; Han et al., 2007),

interesting cliques or dense subgraphs that share the similar functions when

the k-partite cliques have small size of proteins; on the other hand, our

method is able to detect those k-partite cliques with large size partites which

are not necessary to be dense. What is more interesting is that k-partite

cliques with both small size and large size partites and especially their par-

tites have a high functional coherence. This provides a possible explanation

why cluster-based methods for functional prediction are not able to outper-

form simple guilt-by-association predictions: cluster-based methods generally

detect dense subgraphs in PPI networks and cannot capture non-dense but

functionally similar subgraphs such as k-partite cliques with large size par-

tites. Thus, the novel approach of k-partite cliques provides new insights

into the topological structure of biologically relevant functional groups in

PPI networks.
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5. Conclusion and Future Works

In this work, we have proposed to use k-partite clique subgraphs to char-

acterize biologically relevant functional groups of proteins in a PPI network.

We have proposed to transform protein interaction networks into K-partite

graphs for mining maximal k-partite cliques by our MaCMik algorithm. Our

investigation and analysis on k-partite clique subgraphs show that proteins

in a k-partite clique often have a high functional coherence and the separate

partites in a k-partite clique are also highly to be in biologically relevant

functional groups.

As a future work, we will improve the idea of k-partite protein cliques

from several aspects. Firstly, statistical evaluation is an option to pinpoint

out the biologically most relevant functional groups from k-partite clique

subgraphs. Secondly, as PPI networks contain both false negative and false

positive interactions, k-partite quasi-cliques, which relax the strict all-versus-

all interaction constraint imposed by k-partite cliques, may overcome the

problem of false negative interactions. Thirdly, a score method (Li et al.,

2007b) based on the reliability of different experiments and detection times

of the interactions is also helpful to eliminate the effect of false positive

interactions. Fourthly, a framework will be designed to predict functions of

proteins using k-partite cliques. Finally, we will make efforts to provide a

web-server for the method presented in this work, since user-friendly and

publicly accessible web-servers represent the future direction for developing

practically more useful models, simulated methods or predictors (Chou and

Shen, 2009).
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Figure 1: An example of a tripartite graph G and its maximal tricliques (best viewed

in color). The three partites, V1, V2, and V3, are in (dark) blue, (dark) red, and green

respectively. All vertices in each rectangle belong to the same partite, while gradient-colors

lines represent interactions between vertices. The vertices in dark red/green/blue form a

maximal triclique in G.
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Figure 2: Comparison of Functional Coherence in Maximal Bi-

cliques/Tricliques/Quadricliques (best viewed in color). MF, DF and UF represent

Main Functions, Discordant Functions and Unknown Functions respectively in maximal

k -partite cliques.
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Figure 3: An example of the triclique in Table 1 where proteins in red ellipse, green

diamond and dark blue rectangles represent three partites.
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Figure 4: An example of the biclique in Table 1 where proteins in dark blue rectangles

have full connections with proteins in red ellipses, and the regions in green, yellow and

dark gray show the functional information.
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Table 1: Three Examples of Protein Function Coherence in Maximal Bicliques/Tricliques/Quadricliques.

The boldface numbers are the main functions shared by the majority proteins in the corresponding k-

partite cliques. 99 indicates ‘UNCLASSIFIED PROTEINS’.
k-partite

Partites Proteins Functions
cliques

Biclique

1

YBR106W 01.04.04/20.01.01.07.07

YDL212W
14.04/14.07/16.01/20.01.07/
20.09.07.03/30.01/32.01.07

2

YKR039W 20.01.07/20.09.18
YHR140W 99
YGR260W 20.01.23/20.01.25
YHL042W 99

YBR290W
14.04/20.01.01.01/
20.09.13/34.01.01.01

YEL002C 01.05.03.02.04/10.03/14.07.02.02
YCL025C 20.01.07
YPL274W 20.01.03/20.01.07
YDL054C 20.01.03/20.03
YOL020W 20.01.07/20.09.18

Triclique

1 YBR251W 12.01.01/42.16

2

YBR146W 12.01.01/42.16
YDR041W 12.01.01/42.16
YDR347W 12.01.01/42.16
YGL129C 12.01.01/42.16
YGR084C 12.01.01/42.16
YIL093C 12.01.01/42.16
YKL155C 12.01.01/42.16
YNL137C 12.01.01/42.16
YNL306W 12.01.01/42.16
YPL118W 12.01.01/42.16/12.04.01

3 YHL004W 12.01.01/42.16/16.03.03

Quadriclique

1
YER012W

14.07.11/14.13.01.01/
32.01/43.01.03.09

YGL004C 14.07.11/14.13
2 YFR004W 14.07.11/14.13.01.01
3 YDL097C 14.13.01.01/16.07

4

YDL007W
01.04/14.07.11/
14.13.01.01/16.19.03

YER021W 14.13.01.01

YGL048C
01.04/10.03.01/14.07.11/
14.13.01.01/16.19.03

YOR261C 14.13.01.01
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Table 2: Three Examples of Protein Function Coherence in Partites of Maximal Bi-

cliques/Tricliques/Quadricliques. The boldface numbers are the main functions shared by the majority

proteins in partites of the corresponding k-partite cliques, and the boldface partites are our concerned

ones whose percentage of proteins sharing main functions in the current partites is higher than the per-

centage of proteins sharing main functions in the partites’ corresponding k-partite cliques. The italic

numbers are the main functions shared by the majority proteins in the k-partite cliques. 99 indicates

‘UNCLASSIFIED PROTEINS’.
k-partite

Partites Proteins Functions
cliques

Biclique

1

YDR212W 14.01/16.01/32.01 .07/42.04
YJL111W 14.01/16.01/32.01 .07/42.04
YJL008C 14.01/16.01/32.01 .07/42.04
YDL143W 14.01/16.01/32.01 .07/42.04

YLR259C
14.01/14.04/16.03.01/
20.01.10/20.09.04/32.01

2

YDR030C 10.01.05.01
YNL317W 11.04.03.01/11.04.03.05/16.03.03

YGL190C

01.04/10.03.01.03/10.03.03/12
/14.07.03/32.01/40.01/42.04.03/
42.29/43.01.03.05

YBR198C

10.01.09.05/10.03.01.01.01/
11.02.03.01.01/11.02.03.04/
14.07.04/42.10.03

YER173W

10.01.05.01/10.01.05.03.01/
10.03.01.02/10.03.01.03/16.03.01/
18.02.01/32.01.09

Triclique

1

YBR127C
20.01.01.01/20.01.15/20.03.22/
20.09.13/34.01.01.03

YDL126C

01.04/10.03.01/14.13.01.01/
16.19.03/20.01.10/20.09.07.27/
40.10.02

YFL039C

10.03.01/10.03.03/10.03.05.01/
10.03.05.03/11.02.03.04/14.04/
14.07.04/16/20.01.10/20.09.07/
20.09.14.02/20.09.16.09.03/
20.09.18.09.01/32.01.03/40.01/
42.01/42.04/42.10.03/42.29/
43.01.03.05/43.01.03.09

YML085C
10.03.01.01.11/10.03.04.05/
10.03.04.09/41.01.01/42.04/42.10

YNL064C
10.03.01/14.01/14.04/18.02.01.01/
20.09.04/20.09.07/32.01

2

YDL017W
01.04/10.01.03.03/10.01.11/
10.03.01/10.03.02/14.07.03

YDL059C
10.01.05.01/10.01.05.03.03/
16.01/32.01.09/42.10.03

YDL200C 10.01.05.01/32.01.09/32.05.01.03

YOL133W

10.03.01.01.03/10.03.01.01.09/
11.02.03.04/14.07.05/14.10/
14.13.01.01/16.01/16.19.03

3 YGL137W 20.09.07.03

Quadriclique

1

YAL007C 14.04/20.09.07.03
YBR159W 01.05/01.06

YCR034W
01.05/01.06/20.09.13/34.11.03.07/
40.01/43.01.03.05/43.01.03.09

YLR372W 01.06.05/20.09.07.06/43.01.03.05
YOR016C 14.04/20.09.16

2 YPL076W 01.06.02.01/14.07.01
3 YGR060W 01.06.06.11

4
YCL025C 20.01.07
YHR140W 99
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