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Abstract

Background: Distinction between true protein interactions and crystal packing
contacts is important for structural bioinformatics studies to respond to the need
of accurate classification of the rapidly increasing protein structures. There are
many false interaction annotations in this rapidly expanding volume of data.
Previous tools have been proposed to address this problem. However, challenging
issues still remain, such as low performance when the training and test data
contain mixed interfaces having diverse sizes of contact areas.

Methods and Results: B factor is a measure to quantify the vibrational motion
of an atom, a more relevant feature than interface size to characterize protein
binding. We propose to use three features related to B factor for the classification
between biological interfaces and crystal packing contacts. The first feature is the
sum of the normalized B factors of the interfacial atoms in the contact area, the
second is the average of the interfacial B factor per residue in the chain, and the
third is the average number of interfacial atoms with a negative normalized B
factor per residue in the chain. We investigate the distribution properties of these
basic features and a compound feature on four datasets of biological binding and
crystal packing, and on a protein binding-only dataset with known binding
affinity. We also compare the cross-dataset classification performance of these
features with existing methods and with a widely-used and the most effective
feature interface area. The results demonstrate that our features outperform the
interface area approach and the existing prediction methods remarkably for many
tests on all of these datasets.

Conclusion: The proposed B factor related features are more effective than
interface area to distinguish crystal packing from biological binding interfaces.
Our computational methods have a potential for large-scale and accurate
identification of biological interactions from the experimentally determined
structural data stored at PDB which may have diverse interface sizes.

Keywords: B factor; biological binding; crystal packing; diverse interface sizes;
accurate classification

Background
With the breakthrough of protein structure determination technologies, in partic-

ular X-ray crystallography, rapidly increasing 3D structures of proteins become

available. For example, PDB (protein data bank) has stored 81,448 entries which

are solved by X-ray crystallography as of March 2014. These quaternary structures

can be used to uncover the binding mechanisms of proteins and to annotate pro-
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tein functions. However, crystal packing contacts, which are a kind of false protein

binding, also exist in PDB to blur the analysis of quaternary structures. In fact,

crystal packing is due to the artifact of the crystallographic packing environments

and it is randomly formed during the crystallization process. It does not occur in

solution or in physiological states [1]. The immediate question is how to accurately

determine which of them is contained in a PDB entry, crystal packing or a pro-

tein binding. This problem is difficult especially when a protein complex consists

of a large number of protein chains, a common situation in PDB and also in real

biological systems.

This research problem has attracted intensive interests. Methods have been pro-

posed to understand the difference of interfacial properties between biological bind-

ing and crystal packing. For example, biological interfaces were found to be much

larger [2, 3, 4, 5, 6, 7, 8], or more conserved than crystal packing [2, 3], or more

abundant in aromatic residues [3]. Biological interactions were also found to have

different residue composition from the rest of protein surfaces [4, 9, 10], while crys-

tal packing interfaces possess similar composition to the rest of protein surfaces as

a whole [8].

Complicated computational methods have also been proposed to classify true bio-

logical binding and false binding. An idea is to break an interface down to contacting

atomic or residue pairs, and then uses the enrichment or frequency of these pairs as

features for the classification. Based on the atomic pair representation idea, Weng’s

group [11] and Klebe’s group [12] have both utilized machine-learning algorithms

to construct effective classifiers for distinguishing different types of protein binding,

such as crystal packing, permanent and transient interactions [11, 12]. Liu et al.

have used a new definition of atomic contacts named β contacts in atomic pair rep-

resentation for interfaces, and demonstrated that it is a novel idea to outperform

the existing methods in distinguishing crystal packing from homodimers [13]. Using

residue pairs to describe interfaces, Bernauer et al. have constructed an SVM clas-

sifier DiMoVo for identifying biological protein interactions [14]. Liu and Li have

designed the propensity vector of residue contacts within the O-ring to develop Or-

ingPV for the distinction between crystal packing and biological interactions [15].

Many other features have also been used. For example, the PITA method scores

crystal packing using the properties of contact size and chemical complementari-

ty [16]. Zhu et al. [3] have extracted six properties from interfaces, such as interface

size, amino acid composition and gap volume, and then used them as an SVM input

to train their NOXclass classifier to discriminate between crystal packing, obligate

and non-obligate interactions [3]. Recently, Capitani’s group [17] have proposed to

use core size and evolutionary metrics of interfacial residues to classify small bio-

logical interfaces from large crystal contacts. Their method EPPIC can outperform

a widely-used method PISA [18].

Despite the intensive research on the characterization of crystal packing and bio-

logical binding, it still remains an important issue to design a good method which

can be always effective across multiple datasets containing interfaces of diverse sizes,

and especially on those datasets where crystal packing and biological binding have

similar interface sizes [17, 14]. It is even more challenging to detect one single dis-

criminative feature which can clearly characterize crystal packing interfaces having

different sizes across multiple datasets.
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In this work, we propose to use B factor to distinguish biological interfaces from

crystal packing contacts. B factor is a measure to capture the atomic vibrational

motion. We propose to use three features derived from B factor for this classification

problem. One is denoted as ΣB; it is the sum of the normalized B factors of the

interfacial atoms at a binding interface. The second is the ratio of ΣB over the

logarithm of minr + 1 (the smaller one of the average numbers of residues per

chain in the two units of an interaction). This feature is denoted by avgΣB. The

third feature is denoted by avgNo.B which represents the ratio of the number of

interfacial atoms with a negative normalized B factor over the logarithm ofminr+1.

The fourth new feature is a compound feature by integrating avgΣB and avgNo.B

through multiplication to amplify these two features’ collective synergy.

To show the effectiveness and the interpretability of the four features, we visualize

their distribution properties from four datasets of biological binding and crystal

packing, and from a biological protein-protein and protein-peptide binding dataset

newly constructed from PDBbind [19]. For the protein interactions in this new

dataset, their binding affinity is known and the complexes have diverse interface

sizes.

Because interface area is considered as one of the most effective features by the

existing research, we especially compare our features with interface area. To show

the overall classification performance of these features, we also compare the cross-

dataset classification performance of each of the four features with the performances

achieved by the interface area approach and those by existing methods. The results

have demonstrated that each of our four features, in particular avgΣB, avgNo.B

and their multiplication, consistently outperforms the feature interface area and

existing prediction methods across almost all of the datasets. These features based

on B factor thus have a strong capability to distinguish true and false biological

interfaces of diverse sizes for real-world applications.

Data sets
Four datasets in the literature and a new dataset are used to investigate the four

features derived from B factor.

The first dataset (Bahadur) contains 187 crystal packing interfaces and 122 bio-

logical homodimers [4, 5]. DiMoVo was trained on this dataset [14].

The second dataset (Ponstingl) has 92 crystal packing interfaces and 76 homod-

imers [20]. This dataset was used by several existing works [11, 12], including PI-

TA [16] and PISA [18].

The third dataset (BNCPCS) comprises 75 obligate interactions and 106 crystal

packing interfaces [3]. NOXclass was trained on this dataset.

The fourth dataset (DC) is composed of 82 crystal packing interfaces and 82

biological interfaces [17]. The uniqueness of this dataset is that crystal packing

interfaces are larger and biological interfaces are smaller than those in the first

three datasets. EPPIC was trained and optimized on this dataset [17].

A new dataset is constructed from the protein-protein binding and protein-peptide

binding data stored at PDBbind [19]. All the complexes are annotated with a bind-

ing affinity extracted from PDBbind. The binding biological units in PDB structures

are obtained using an automatic process according to the information provided in
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PDBbind. An interface is included in this dataset, if the PDB structure satisfies the

following requirements. (i) The PDB structure is determined by X-ray crystallogra-

phy rather than other techniques, and (ii) the resolution is better than 2.5 Å. (iii) In

the PDB entry, the number of atoms should be 3+ times than the number of residues

in order to remove those PDB entries with a possible error. (iv) In the complex,

both of the binding partners have more than 5 residues. (v) In the interface, the

number of atomic contacts from non-standard residues is less than 20% of all atom-

ic contacts. This newly constructed dataset is composed of 799 protein-protein or

protein-peptide complexes with binding affinity information. This dataset is denot-

ed as PDBbind. It is a bench-marking dataset for testing algorithms on classifying

biological binding interfaces of diverse area sizes.

Methods
In this section, we describe what is B factor and how it is normalized. Then, we

describe how to derive B factor related features to represent an interface. We al-

so show how to detect the optimal distinguishability of each feature on training

datasets and then test it on other datasets.

B factor and its normalization

B factor is also known as temperature factor or Debye-Waller factor. It measures and

quantities the uncertainty/mobility of an atom in dynamic protein 3D structures,

namely, the displacement of the atomic positions from its mean position. B factor

is an indicator of the relative vibrational motion or the disorder of an atom in

protein crystal. It is calculated using Bi = 8π2U2
i , where U2

i is the mean square

displacement of atom i. B factor increases as U2
i increases. A low B factor implies

that the atom is in the well-ordered parts of the structure, while a large B factor

generally suggests a very high flexibility of this atom.

Protein flexibility is closely related to protein functions such as catalysis and al-

lostery [21]. Deeply buried atoms in the core of the protein are usually hardly moving

with a low B factor [22], and interfacial residues in protein binding complexes also

have lower B-factors in comparison to the rest of the tertiary structural surface [23].

For different PDB structures, the distribution of B factors varies greatly. Thus, a

normalized B factor is used in this work and calculated by Equation 1.

Bi
norm =

Bi − B̄

δB
× 1

1.645

B̈i
norm =min[max(Bi

norm,−1), 1] (1)

where Bi is the B factor of atom i, B̄ and δB are the mean and the standard

deviation of the B factor of all atoms within a binding unit of the PDB biological

complexes, and Bi
norm is the normalized B factor of atom i. The number 1.645

is a typical threshold under a standard normal distribution, indicating the 0.05

probability of a value outside [−1.645, 1.645] for each of the two tails. min means

the minimum of two values, while max returns the maximum. The first equation in

Equation 1 is used to normalize and scale the 90% confidence interval of the B factor

to [-1, 1]. The second equation in Equation 1 is used to set any value outside the
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90% confidence interval to either -1 or 1, whichever is closer. The normalization is

performed individually on each contact partner in a complex, no matter the contact

is false or true.

Using B factor related features to characterize an interface

Interfacial atoms

An atom from a biological unit is defined as an interfacial atom if it has at least

one β contacts with the partner biological unit. We note that a biological unit may

contain more than one chain. β contact is a new definition of atomic contact [13].

It requires that there is no other atom interrupting the contact. Formally, given

a quaternary structure of a protein complex p, a β contact between two atoms i

and j in p requires that (i) the spatial distance between i and j is less than a

threshold Td plus the sum of their van der Waals radii defined by [24], (ii) i and

j share a Voronoi facet in p’s Voronoi diagram, and (iii) the contact cannot break

p’s β-skeleton. The β-skeleton [25] of a discrete set p is an undirected graph in

computational geometry. In this graph, two points i and j have an edge if angle

ikj is sharper than a threshold determined by β, ∀k ∈ p, k ̸= i, j. This angle

threshold is denoted as ̸ β, which actually defines a forbidden region fr of the

contact between i and j. The forbidden region fr of a β contact usually does

not cover any other atoms. Otherwise, if there is an atom k in fr, the contact

between i and j is not a β contact. A β contact suggests that its two atoms should

have enough direct contact area to form an important interaction. The number of

atomic β contacts in protein binding interfaces is only a small fraction number of

distance-based contacts or less than half the number of contacts in the Voronoi

diagrams [13]. Interestingly, it has been demonstrated that the use of β contacts

can achieve better prediction performance for distinguishing false binding of crystal

packing from homodimers [13], for predicting binding hot spots and the change of

binding free energy after mutations [26], and for estimating protein-ligand binding

affinity [27].

In this work, an interfacial atom is used for further analysis if and only if the

number of its local contacts across the interface is more than 2. The local contacts

of an atom include the contacts of the atom itself and the contacts of its covalently-

bonded nearby atoms. The covalently-bonded nearby atoms of a given atom i are

those atoms within two covalent-bond steps from i. For example, given a chain of

covalent bonds i − j − k − l −m, where − indicates a covalent bond. From i, the

covalently-bonded step is 0 to i, is 1 to j, is 2 to k, is 3 to l, and is 4 to m. Thus,

i, j and k are the covalently-bonded nearby atoms of atom i, while l and m are

not. The requirement of the number of local contacts is used to detect non-isolated

atomic contacts.

Four interfacial features related to B factor

B factor score (denoted by ΣB) The first feature to describe an interface is the

sum of the normalized B factors of all of the interfacial atoms. That is, ΣB =∑N
j=1 B̈

ij
norm, where N is the number of interfacial atoms and ij is an interfacial

atom, 1 ≤ j ≤ N .
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Average ΣB (denoted by avgΣB) A recent published work has suggested that the

area size of protein interfaces is related to the size of proteins [28]. Thus, we calculate

the ratio of ΣB over the logarithm of minr + 1, and name this ratio average ΣB,

denoted by avgΣB. Formally, avgΣB=ΣB/log(minr +1). Here, minr is the smaller

number of the average numbers of residues per chain for the two biological units

in a complex. The logarithm is used to decrease the effect of minr on avgΣB when

minr is extremely large.

The number of interfacial atoms with a negative normalized B factor (denoted by

No.B) We also calculate the number of interfacial atoms having a normalized B

factor less than 0. It is denoted by No.B. Similarly, we produce the ratio of No.B

over log(minr+1) based on the same reason for avgΣB. This ratio feature is denoted

by avgNo.B.

A combined feature—avgΣB*avgNo.B We also multiply avgNo.B and avgΣB as a

feature to describe an interface. This feature is denoted by avgΣB*avgNo.B. The

intuition behind this new feature is to amplify the collective synergy of avgΣB and

avgNo.B through multiplication.

Interface area (∆ASA)

An effective feature widely used by the existing works to distinguish biological

binding and crystal packing is interface area (∆ASA). Interface area measures half

of the change of a surface area upon protein complex formation. The classification

performance of this feature is considered as a baseline performance here. ∆ASA of

a protein complex is calculated through Equation 2.

∆ASA =(ASA1 +ASA2 −ASAC)/2 (2)

where ASA1 and ASA2 are the surface areas of the two biological units of the

protein complex and ASAC is the surface area of the protein complex.

Similarly, the ratio of ∆ASA over the logarithm of minr + 1 is denoted by

avg∆ASA. Both ∆ASA and avg∆ASA are compared with the B factor based fea-

tures for the problem of identifying biological binding interfaces from PDB structure

data.

Optimization of the scoring threshold for each feature

For each of the features introduced above, we use the following process to find the

best threshold point on a learning dataset for the classification of test data. We

explore all possible split points for a feature, and assess the MCC performance with

regard to every split point. Then, we collect all those split points which produce

the top 10% performance, and take the average of these split points as the optimal

split threshold for the feature in the learning process. This threshold is used to

predict interaction types (biological binding or crystal packing) for the structure

data from the other datasets. Using the average of the top 10% best split points

instead of the best split point is for the purpose of increasing performance stability

and generalizability of the feature. When the PDBbind dataset is used for learning,



Liu et al. Page 7 of 16

the value at the first 25% quantile, which is close to 0, is used as the threshold

and tested on the other datasets. This is because PDBbind is constructed using

an automatic process without manual checking, and it is possible that some true

complexes are wrongly collected. The threshold value 25% is not optimal. There is

no gold standard to select an optimal threshold on PDBbind, because only positive

samples are given.

Assessment Measures
Prediction performance is measured by precision(pre.), recall(rec.), specificity(spec.)
accuracy(acc.) and MCC whose definitions are given in Equation 3.

precision(pre.) = TP
TP+FP

(3)

recall(rec.) = TP
TP+FN

specificity(spec.) = TN
TN+FP

accuracy(acc.) = TP+TN
TP+TN+FP+FN

MCC = TP∗TN−FP∗FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

where binding complexes are considered as the true cases, while crystal packing

as the false cases; TP, FP, TN and FN are the number of true positives, false

positives, true negatives and false negatives, respectively. Hence, precision is the

number of correct binding complex predictions divided by the number of positive

predictions, recall is the fraction of correct binding complex predictions over all true

binding complexes, while accuracy is the number of correct predictions divided by

the number of all true or false complexes.

Results
We report cross-dataset classification performances achieved by each of the B-factor

based features in comparison with the performance by the feature interface size

(∆ASA). It is observed that avgΣB, avgNo.B and avgΣB*avgNo.B have much better

performance than ∆ASA. We then present a detailed distribution analysis for these

features’ scores of the protein structures from the five datasets. We also compare

avgΣB with two recently published methods EPPIC [17] and PISA [18] to highlight

our better classification performance.

Cross-dataset classification performance by single features

Comparison between ΣB and ∆ASA: ∆ASA is a geometrical feature widely used by

existing methods, and it is considered as an effective approach to the classification

between crystal packing and true biological binding. It has been suggested to use

856 Å2 [20] as a threshold to distinguish crystal packing contacts from homodimers,

achieving an accuracy of 85% on the Ponstingl data set. In [3], it is shown that

a cutoff of ∆ASA at 650Å2 has approximately 7% error rates on the BNCPCS

dataset including 62 non-obligate interactions. However, these methods have limits

to achieve good performance when the biological binding interfaces and crystal

packing contact areas have diverse interface sizes.

Table 1 shows the classification performance for ΣB and ∆ASA on the five dataset-

s. It can be seen that ΣB has much better classification performances than ∆ASA

under almost all of these tests. In particular, when tested on DC, ∆ASA has three
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Table 1 Cross-dataset classification performances

Training Tested datasets
dataset Feature BNCPCS DC Bahadur Ponstingl

BNCPCS ΣB 0.93(0.97) 0.32(0.65) 0.65(0.82) 0.82(0.91)
∆ASA 0.92(0.96) -0.18(0.47) 0.59(0.78) 0.73(0.86)
avgΣB 0.92(0.96) 0.37(0.68) 0.64(0.82) 0.80(0.90)
avgNo.B 0.95(0.98) 0.25(0.60) 0.70(0.84) 0.84(0.92)

avgΣB*avgNo.B 0.94(0.97) 0.33(0.66) 0.70(0.85) 0.82(0.91)
avg∆ASA 0.91(0.96) -0.16(0.48) 0.64(0.81) 0.72(0.86)

DC ΣB 0.85(0.92) 0.38(0.69) 0.68(0.85) 0.81(0.90)
∆ASA 0.73(0.86) 0.15(0.57) 0.66(0.84) 0.62(0.80)
avgΣB 0.88(0.94) 0.45(0.73) 0.73(0.87) 0.80(0.90)
avgNo.B 0.80(0.90) 0.46(0.72) 0.74(0.87) 0.70(0.84)

avgΣB*avgNo.B 0.86(0.93) 0.45(0.73) 0.75(0.88) 0.81(0.90)
avg∆ASA 0.76(0.88) 0.27(0.63) 0.68(0.85) 0.66(0.82)

Bahadur ΣB 0.84(0.92) 0.38(0.69) 0.71(0.86) 0.79(0.89)
∆ASA 0.73(0.86) 0.15(0.57) 0.66(0.84) 0.62(0.80)
avgΣB 0.84(0.92) 0.41(0.70) 0.75(0.88) 0.81(0.90)
avgNo.B 0.86(0.93) 0.33(0.66) 0.75(0.88) 0.77(0.88)

avgΣB*avgNo.B 0.88(0.94) 0.45(0.73) 0.77(0.89) 0.83(0.91)
avg∆ASA 0.81(0.90) 0.21(0.60) 0.69(0.85) 0.69(0.84)

Ponstingl ΣB 0.88(0.94) 0.39(0.70) 0.69(0.85) 0.81(0.90)
∆ASA 0.91(0.96) -0.18(0.47) 0.59(0.79) 0.72(0.86)
avgΣB 0.90(0.95) 0.43(0.71) 0.73(0.87) 0.82(0.91)
avgNo.B 0.95(0.98) 0.25(0.60) 0.70(0.84) 0.84(0.92)

avgΣB*avgNo.B 0.90(0.95) 0.40(0.70) 0.75(0.88) 0.83(0.92)
avg∆ASA 0.92(0.96) -0.19(0.46) 0.65(0.82) 0.78(0.89)

PDBbind ΣB 0.93(0.97) 0.38(0.68) 0.62(0.79) 0.72(0.86)
∆ASA 0.88(0.94) -0.16(0.48) 0.49(0.68) 0.62(0.79)
avgΣB 0.88(0.94) 0.41(0.71) 0.71(0.86) 0.83(0.92)
avgNo.B 0.92(0.96) 0.38(0.68) 0.74(0.88) 0.80(0.90)

avgΣB*avgNo.B 0.90(0.95) 0.38(0.69) 0.76(0.88) 0.86(0.93)
avg∆ASA 0.88(0.94) 0.02(0.51) 0.66(0.84) 0.70(0.85)

X.XX(Y.YY) represent the classification performances where X.XX is the MCC score and Y.YY is the
accuracy score. The italic numbers are the learning performances, and thus they are not used in the
comparison. The bold-font numbers are the better performances when comparing ΣB and
avgΣB*avgNo.B with ∆ASA, and ΣB with ∆ASA.

negative MCC performance and another two low MCC values less than 0.3. But,

ΣB always has positive MCC values larger than 0.3. This performance difference

is mainly attributed to the hard case that similar sizes of the interface areas exist

between the crystal packing contacts and the real biological binding interfaces in

DC. Under this situation, the classification capability of ∆ASA is lost.

When tested on the Bahadur and Ponstingl datasets, ΣB outperforms ∆ASA

for all cases, achieving at least 0.1 MCC improvement in 5 of the 8 cross-dataset

comparisons, and achieving 0.05 - 0.1 MCC improvement in another 2 comparisons.

When tested on BNCPCS, ΣB has also achieved higher MCC performance than

∆ASA when both ΣB and ∆ASA are optimized on DC and Bahadur. ∆ASA has

only achieved a higher MCC performance than ΣB on BNCPCS, when optimized

on the Ponstingl dataset. We note that crystal packing contacts from BNCPCS are

easy to be distinguished—both ΣB and ∆ASA have achieved an accuracy higher

than 0.94. When PDBbind is used in learning process and the other datasets are

used for testing, ΣB always outperforms ∆ASA remarkably.

Comparison between avgΣB and avg∆ASA: When the two average-smoothed fea-

tures, i.e., avgΣB and avg∆ASA, are used in the classification, their performance

is better than the non-smoothed features ΣB and ∆ASA, respectively. This affirms

that taking average is a good way to deal with the issue of relative size of an inter-

face compared to its chains. This idea is especially meaningful when protein-peptide

binding interfaces are considered for classification where peptides are usually of s-
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mall sizes and the corresponding binding interfaces are always much smaller than

protein-protein binding interfaces. Table 1 also shows the superior performance of

avgΣB in comparison with avg∆ASA for almost all of the cross-dataset tests.

The performance of avgNo.B and of avgΣB*avgNo.B: The feature avgNo.B is also

useful to classify crystal packing from biological binding. But its performance is a

bit unstable in comparison with ΣB or avgΣB. Nevertheless, it still has a stabler

than ∆ASA. The cross-dataset classification performance by avgΣB*avgNo.B (the

multiplication of avgΣB and avgNo.B) is presented in the middle row of Table 1

for each of the datasets. This performance is competitive to the best performance

achieved by avgΣB or avgNo.B. This feature also outperforms ∆ASA and avg∆ASA

for almost all of the across-dataset tests.

The value distributions of our B factor based features and the value distribution of the

feature interface size

Table 2 p-values of different features for the two types of interfaces in the four
datasets

Datasets
Feature BNCPCS DC Bahadur Ponstingl
ΣB 9.89e-20 4.47e-09 5.68e-28 1.68e-19

∆ASA 5.58e-17 0.184 1.21e-21 4.02e-14
avgΣB 1.72e-21 4.61e-10 2.70e-31 3.02e-22
avgNo.B 2.41e-19 1.71e-09 2.15e-27 6.01e-19

avgΣB*avgNo.B 6.91e-19 6.51e-09 3.40e-28 3.07e-18
avg∆ASA 4.62e-18 0.00141 2.30e-24 1.12e-16

The value distributions of the features on the five datasets are drawn in Fig-

ures 1, 2 and 3. The p-values of these distributions for the two types of interfaces

are reported in Table 2. It is clear from Figure 1(a) and Figure 2(a) that B factor

related features such as ΣB are more powerful than interface size to distinguish

between biological binding interfaces and crystal packing interfaces.

In particular on the DC dataset, crystal packing contacts have very similar area

sizes with those of the biological binding interfaces. Features ΣB and avgΣB can

classify these two types of interfaces very well. This classification is quantified as

in Table 2 where B factor related features always have much smaller and more

significant p-values than those of ∆ASA. However, ∆ASA even has insignificant p-

value 0.184 on the DC dataset. Features avgNo.B and avgΣB*avgNo.B (Figure 3)

can also separate the two types of interfaces with a clearer boundary than ∆ASA

doee (Figure 1(b) and Figure 2(b)).

The scatter plots of avgΣB and ∆ASA on the five datasets are presented in

Figure 4. Figure 4(a) indicates that ∆ASA wrongly classifies many of those protein

binding interfaces of PDBbind below the horizontal line as crystal packing contacts,

while avgΣB misclassifies much less number of protein binding interfaces on the

right-hand side of the vertical line (142 vs 322). Further, Figure 4(b) suggests that

a cross-dataset ∆ASA threshold is useless on DC. Figure 4(c) on the Bahadur

dataset and Figure 4(d) on the Ponstingl dataset both demonstrate that many of

the crystal packing contacts with a large interfaces can have a small avgΣB values

and thus they can be correctly classified by avgΣB. In Figure 4(e) on BNCPCS,

both ∆ASA and avgΣB are powerful to distinguish between crystal packing and

biological binding.
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(a) ΣB

(b) Interfacial ∆ASA

Figure 1 The score distributions of ΣB and ∆ASA in boxplot for the five datasets.
The p-values are shown in Table 2. The horizontal lines represent the best split points for each of
the four datasets and the 25% quantile point for PDBbind.

In conclusion, avgΣB and avgΣB*avgNo.B have a consistent classification perfor-

mance across the datasets with diverse interface sizes, including those large inter-

faces of crystal packing and small interfaces of biological binding.

Classification performance comparison with PISA and EPPIC

The performances by avgΣB and avgΣB*avg are compared with a widely-used

method PISA and a newly published method EPPIC (Table 3). Although much

less number of features are used by our approach, our single feature avgΣB can

outperform both EPPIC and PISA. Our method has much higher specificity and

higher precision, indicating that the predicted biological binding interfaces are more

likely to be true binding. It is thus quite useful to automatically compile protein-
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(a) AvgΣB

(b) Interfacial avg∆ASA

Figure 2 The score distributions of AvgΣB and avg∆ASA in boxplot for the five
datasets. The p-values are shown in Table 2. The horizontal lines represent the best split points
for each of the four datasets and the 25% quantile point on PDBbind.

binding datasets from PDB for large-scale structural analysis where crystal packing

contacts should be correctly labeled and then excluded to enhance the analysis

results.

Feature avgΣB can be used to correct errors in biological binding annotation: An

example

The B factor feature avgΣB is able to correct annotation errors. We demonstrate

such corrections in Figure 5 by examining two derived protein complexes from PDB

entry 1UBY.

Figure 5(a) shows a one-side binding site of the interface for a derived complex

with regard to the biomolecule 2 of the REMARK 350 of 1UBY. This interface
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(a) avgNo.B

(b) avgΣB*avgNo.B

Figure 3 The score distributions of Average No.B (avg) and avgΣB*avg in boxplot
for the five datasets. The p-values are shown in Table 2. The horizontal lines represent the
best split points for each of the four datasets and the 25% quantile point on PDBbind.

has a ∆ASA=1766.75 Å2 and it is predicted to be dimeric by a computational

tool []. However, there are no biological evidences so far to claim it as a true dimer.

Figure 5(b) displays a one-side binding site of another derived dimeric interface

(according to the biomolecule 1 of the REMARK 350 in 1UBY). This binding

interface is actually recommended by the authors of 1UBY [29].

The interface in Figure 5(a) is manually mistaken as a biological binding interface

in the Bahadur dataset. But, it is the interface in Figure 5(b), instead of that in

Figure 5(a), that should be in this dataset. Feature avgΣB can correct this mistake

with two reasonable evidences as follows. Firstly, the interface in Figure 5(a) has

an avgΣB value of 14.96, which is in the top-right region of Figure 4(c) with ‘+’.

This avgΣB value is extremely different from the avgΣB values of other biological
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Table 3 Comparison with existing methods PISA and EPPIC

Tested on Methods Prec Sens Spec Acc MCC
BNCPCS EPPIC-core 0.98 0.76 0.99 0.90 0.79

AvgΣB 1.00 0.85 1.00 0.94 0.88
avgΣB*avg 1.00 0.83 1.00 0.93 0.86

Ponstingl EPPIC-core 0.90 0.75 0.93 0.85 0.70
AvgΣB 0.94 0.83 0.96 0.90 0.80

avgΣB*avg 0.98 0.79 0.99 0.90 0.81
EPPIC 0.92 0.90 0.87 0.89 0.76
PISA 0.87 0.89 0.77 0.84 0.66

Bahadur EPPIC-core 0.92 0.80 0.95 0.89 0.77
AvgΣB 0.85 0.81 0.91 0.87 0.73

avgΣB*avg 0.89 0.80 0.94 0.88 0.75
EPPIC 0.78 0.89 0.84 0.86 0.72
PISA 0.65 0.89 0.69 0.77 0.57

All of these methods are optimized on the DC dataset. EPPIC-core is the classifier using the number
of core residues in interfaces according to the definition in EPPIC. The performance of EPPIC or
PISA is borrowed from [17].

binding interfaces as shown in Figure 4. Secondly, the interface in Figure 5(a) has

atoms with larger B factor in red, while the interface in Figure 5(b) has atoms

with much smaller B factor in blue. Thus, avgΣB can make a reasonable prediction

that the interface in Figure 5(b) is dimeric and the interface in Figure 5(a) should

not be. This is also consistent with the biological evidence in the REMARK 350 of

1UBY [29]. Thus, the interface in Figure 5(a) needs more biological evidences to be

claimed as a true dimer. This example illustrates that the B factor feature avgΣB

can be used to correct wrong annotations of biological binding interfaces.

Conclusion
In this work, we have proposed to use B factor as a new characteristic to distinguish

between crystal packing contacts and biological binding interfaces. Assessed on five

datasets, all of the B factor related features have exhibited their excellent capability

for classifying various biological binding interfaces with diverse interface sizes. Our

B factor features have also achieved better classification performances than the

widely-used feature interface size and two recently published methods PISA and

EPPIC. In particular, the average sum of normalized B factor of interfacial atoms

is a clear indictor for biological binding. As a future work, the B factor related

features and our method will be employed for a large scale annotation of potential

biological binding interfaces for PDB.
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(a) on PDBbind

(b) on DC (c) on the Bahadur dataset

(d) on the Ponstingl dataset (e) on BNCPCS

Figure 4 The relationship of ∆ASA and avgΣB. Sign + represents a true binding
interface, while ◦ represents a crystal packing interface. Those complexes with ∆ASA larger than
2200 Å or avgΣB smaller than -16 are all true binding and thus are not drawn. The horizontal
lines have ∆ASA=800 Å, while the vertical lines have avgΣB=-5. Both the values are not
optimized but used only for a better visualization of the different distribution across datasets.
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(a)

(b)

Figure 5 Two interfaces derived from the PDB entry 1UBY. (a) The used dimer
structure in the Bahadur dataset which is derived by a computational tool with regard to the
biomolecule 2 of REMARK 350 in 1UBY; (b) the dimer structure determined by the authors of
1UBY. The original B factors in 1UBY are ranged between 13.22 and 83.45 according to
Equation 1. The colors from blue to white and to red indicate B factors from small to large. The
structures are shown in the surface view. The regions without any surface view are the binding
sites on chain A. The binding sites on chain B are not shown due to the symmetry of the
interfaces.


