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 Abstract 

Equiatomic (Au, Cu) solid solution orders below 658 K to form tetragonal AuCu (I) phase with 

significant changes in physical properties and crystal structure. The effect of ordering on the 

dielectric function of the material is controversial however, with inconsistent results reported in 

the literature.  Since the nature of any localized surface plasmon resonance (LSPR) in 

nanostructures is very sensitive to dielectric function, this uncertainty hinders the use of AuCu 

in plasmonic devices or structures. Therefore, we re-examine the question using a combination 

of measurements and computations. We find that no significant change in the dielectric function 

occurs when this material becomes ordered, at least over the range of photon energies relevant 

to LSPRs. The likely properties of LSPRs in plasmonic devices made of AuCu are analyzed. 

Use of the alloy offers some advantages over pure Cu, however pure Au would still be the 

superior option in most situations.  

 

PACS numbers: 78.66. Bz, 78.20.Ci, 73.20.Mf, 81.15.Ef, 68.37.Lp, 68.37.Hk, 

71.15.Mb 
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1. Introduction 

Au and Cu form a continuous, face-centered cubic (fcc) solid solution, 

designated (Au,Cu), between 683 K and the melting point of ~1180 K. However, 

depending on stoichiometry, this solid solution will transform at lower temperatures to 

one of the ordered superlattices Au3Cu, AuCu(I), AuCu(II) or AuCu3 [3] (the Roman 

numerals I and II are used to differentiate two different crystal structures). These 

intermetallic compounds have different crystal structures and physical properties to 

those of the parent fcc (Au,Cu).  For example, their electrical resistivity is significantly 

reduced but their hardness, especially that of AuCu(I), is increased [4-6]. The 

transformation of equiatomic (Au,Cu) to tetragonal AuCu(I) has been extensively 

studied in the past [8] and proceeds in a first-order fashion via an orthorhombic 

intermediary known as AuCu(II). However, direct transformation of (Au,Cu) to 

AuCu(I) at lower temperatures can also occur [10]. 

The dielectric functions, ()=1()+i.2(), of (Au,X) solid solutions have 

sometimes been reported to be an approximately linear interpolation of those of the 

elemental endpoints [11-13] and, indeed,  the plasmon resonance characteristics of 

(Au,Cu) alloy nanoparticles of various compositions may be varied smoothly between 

those of the elements [14-17]. However, the dependency of dielectric function on 

composition will be non-linear in the general case.  For example, calculations predict 

that 12.5 at.% substitutional  additions of  Al, Mg, Cd or Zn to Au may result in a slight 

strengthening of the localized surface plasmon resonance  (LSPR), but further additions 

that are large enough to form intermetallic compounds will reverse this advantage and 

significantly attenuate the LSPR [18].  In addition, it is also widely accepted that crystal 

structure should, in general, have an effect on (), so that, for example, the dielectric 
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function of the AuxCu intermetallic compounds should be different to those of a 

disordered parent solid solution of the same composition [11, 19-21]. For example, 

ordering of (Au,Cu) in the range of 20 to 50 at.% Cu has been reported to cause an 

increase in the energy of the absorption threshold, going, for example, from 2.26 eV to 

2.31 eV at 35 at.% Cu [11]. From inspection of the binary phase diagram for Au-Cu it 

appears that such a change is associated with the formation of Au3Cu or AuCu(I). The 

associated shift in the absorption threshold would strengthen any LSPR located in this 

range.  

The situation for equiatomic AuCu has been investigated by Scott and Muldawer 

[19],  Koster and Stahl [7] (as cited in Henkel et al.[1]) and Rivory [9]. In this case, the 

ordering transition causes a significant change in the crystal structure of the material 

from cubic (Fm-3m structure with a=0.389 nm) to tetragonal (P4/mmm with a=0.289 

nm, c= 0.367 nm if indexed on a two-atom bct unit cell, or a=0.397, c=0.367 if indexed 

on a four-atom fct unit cell derived directly from the parent fcc).  The effect of this 

phase transformation on the dielectric function is unclear, however, especially at the 

lower energies (<1.8 eV, or   > 700 nm). Scott and Muldawer reported that ordering  

decreased 2 from 1.5 to 1.1 at 1.8 eV (700 nm), with a further decrease to less than 0.5 

units between about 1 and 1.5 eV (1240 to 830 nm). On the face of these values, this 

would be the optimum range in which to design for a strong LSPR in a suitably shaped  

AuCu(I) nanostructure since a low value of 2 is considered beneficial in this context.  

In contrast, Koster and Stahl  reported an increase of 2 to 3.4 to 4.4 at ~1.8 eV. Rivory 

found little change in 2 on ordering, except for a small increase centered on about 3.5 

eV, which is well above the absorption threshold and therefore not a suitable energy to 

excite a LSPR anyway.   
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One implication of a decreased 2 on ordering in the lower energy part of the 

visible spectrum is that the longitudinal plasmon resonance of AuCu(I) nanorods should 

be sharper and stronger than that of (Au,Cu) nanorods of the same shape and 

composition [1] since, as we will discuss later, the magnitude of 2 is one of the factors 

controlling the quality of a localized plasmon resonance in a nanostructure. Similar 

considerations would apply to Au50Cu50 nanoshells and nanotriangles as these would 

also have LSPRs in this part of the spectrum. 

Since there has been some recent interest in the synthesis of hybrid Au/Cu 

nanoparticles and their optical properties [1, 17], it would be helpful to resolve the 

discrepancies in the literature. Here we address the specific case of AuCu(I) and its 

parent solid solution (Au,Cu). We carried out experimental measurements and 

performed density functional theory (DFT) calculations to determine whether ordering 

of Au50Cu50  from (Au,Cu) to AuCu(I)) changes the optical properties and, hence, the 

strength of any potential LSPRs.  

 

2. Experimental Procedure 

2.1 Fabrication and characterization of samples 

Bulk alloy samples were made by melting the pure elements in an Al2O3 

crucible, located within a low-oxygen environment formed by carbon and aluminum 

heat-treating foil. Samples were heat-treated in a muffle furnace. The disordered sample 

was produced by heat-treating at 500 ºC for 1 h and quenching into iced brine while the 

ordered sample was produced by heat-treating at 375 ºC for 1 h followed by furnace 

cooling.  
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Thin film samples were made by co-deposition of the elements onto a glass slide 

using magnetron sputtering. Samples were heat-treated within a chamber which had a 

heated substrate and a flow-through of low pressure H2. The 'quenched' sample was 

produced by annealing for 20 minutes at 450 °C, followed by a rapid cool that was 

engineered by switching off the heater and increasing gas flow. The sample took ~60 

seconds to cool from 450ºC to 250ºC under these conditions. Formation of the ordered 

phase was achieved by annealing first for 20 minutes at 450 °C then allowing the 

temperature to fall to 375 °C, dwelling there for 20 minutes, and finally cooling to room 

temperature.  

X-ray diffraction (XRD) was carried out on samples of the alloy using a 

Siemens D5000 X-ray diffractometer and CuK radiation (1.5406 Å) (the bulk samples 

were polished prior to conducting XRD). The lattice parameters of the bulk material 

were estimated from the position of the {111} and {002} peaks, and that of the thin 

films from the {022} peaks, in both cases as indexed on the face-centred tetragonal unit 

cell. Energy dispersive spectra of samples of the alloy were obtained using a Zeiss Evo 

LS15 SEM with a Bruker EDS Quantax 400. Samples for transmission electron 

microscopy (TEM) were prepared from the bulk alloys by mechanical polishing, dimple 

grinding and ion milling. Electron diffraction and bright field imaging were performed 

in a JEOL 2100 LaB6 TEM and lattice imaging in a JEOL2100F TEM . 

Optical characterization was carried out using a V-VASE Ellipsometer by J.A. 

Woollam Co. and a Perkin Elmer Lambda 950 UV-Vis-IR spectrometer with universal 

reflectance accessory. The resultant data was analyzed using WVASE ellipsometric 

software. In the case of the thin films back-side reflectance measurements were carried 

out (taking into account the optical properties of the glass substrate) in order to extract 
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the dielectric constants. This circumvented the influence of surface effects such as 

roughening, thermal etching or oxidation which may have occurred during annealing,    

 

2.2 Calculations 

DFT calculations of the density of states (DOS) and dielectric functions were 

carried out using the WIEN2K code [22].  The generalized gradient approximation 

(GGA) of Perdew, Burke, and Ernzerhof (PBE) was used for the exchange-correlation 

potential [23] and the number of k-points was tested for convergence.  The optical 

properties were obtained according to the method of Ambrosch-Draxl and Sofo [24] 

using the OPTIC module. This approach relies on the random phase approximation 

(RPA) and neglects local field effects. AuCu(I) was simulated using a body centered 

tetragonal (bct) unit cell with a=2.804, c=3.673 Å with Au at (0,0,0) and Cu at 

(0.5,0.5,0.5). As random disordered structures cannot be simulated within WIEN2K, the 

effect of disorder in (Au,Cu) phase was explored by using three different periodic 

structures with various atomic arrangements. Unit cell D1 was the bct unit cell that can 

be derived from the fcc one by the Bain correspondence and had a =2.751, c=3.89 Å 

with Au at (0,0,0) and Cu at (0.5,0.5,0.5). This is the same atomic arrangement as the 

ordered AuCu(I) but with cubic packing and a lattice parameter equivalent to that found 

in the disordered alloy. Unit cell D2 was a 1x2 supercell of the fcc structure (a=3.89 Å), 

with atoms of Cu located as shown in figure 1(a). Finally, cell D3 was a 4x1 supercell 

of fcc (a=3.89 Å) with Cu atoms located as shown in figure 1(b). For comparison, the 

dielectric functions of pure Au and Cu were also calculated. 
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 The effect of the different measured or calculated dielectric functions on the 

quality of any localized surface plasmon resonances in hypothetical nanostructures was 

simulated using analytical expressions derived from Mie theory. It is assumed as a first 

approximation that the dielectric function of the nanoparticles would be the same as that 

of the bulk material and that their surfaces would be smooth and un-oxidized. In 

practice. In practice, oxidation of the Cu component is likely [25] and  the resonances of 

real particles would be slightly red-shifted relative to those calculated using this 

idealized scenario.. The methodology is explained further in Arnold and Blaber [26]. 

 

3. Results 

3.1. Microstructure of samples 

The atomic composition of the bulk samples was found by EDS to be 50.5 at.% 

Au- 49.5 at.% Cu, whereas in the films the atomic composition was 49.6 at.% Au- 50.4 

at.% Cu. From XRD it was determined that the furnace-cooled bulk sample had a c/a 

ratio of 0.934, indicating that it was fully ordered to AuCu(I) phase. The bulk sample 

that had been quenched from 500 °C had a c/a ratio of ~0.98 (if indexed on the fct unit 

 

Figure 1. (Color online) Atomic configuration of two Au-Cu unit cells 
based on equiatomic fcc (Au,Cu), (a) unit cell D2, (b) unit cell D3. 
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cell), indicating that it had ordered slightly during the quench. This is typical behavior 

for AuCu since some ordering will inevitably occur in it even during a water quench 

[27, 28]. The microstructure of the fully-ordered sample contained the laths that are 

characteristic [28] of ordered domains within AuCu(I), figure 2(a), whereas that of the 

quenched sample was relatively featureless, as expected, figure 2(b). The satellite 

reflections on the electron diffraction patterns of the furnace-cooled sample indicated 

ordering to a superstructure but these reflections are absent in the quenched sample 

supporting the other evidence that no long range order had been established in that case. 

The "ripple" structure observed in the quenched sample is most likely due to ion milling 

damage, as supported by the observation of reduced contrast in the lattice images due to 

amorphized surface layers.  
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Figure 2. Microstructure of Au-Cu samples. (a) Transmission electron 
micrograph and electron diffraction pattern of furnace-cooled sample. (b) 
Transmission electron micrograph and electron diffraction pattern of quenched-
cooled sample. (c) Atomic resolution transmission electron micrograph of 
quenched sample along [011] direction showing absence of laths or twins. 
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Due to a strong crystallographic texture in the thin films, only a few peaks were 

detected by XRD. However, the presence of a peak at d = 0.1360 nm, figure 3, is 

characteristic of {220}(Au,Cu) (implying a fcc lattice parameter of 0.384 nm, and, from 

the literature [8], a Cu content of the order of 55 to 57 at.%), while peaks at d =0.1424 

nm and d =0.1473 nm matched (220)AuCu(I) and (022)AuCu(I) (if indexed on a fct cell) 

implying a 0.396 nm, c 0.371 nm, and c/a= 0.937, i.e. practically fully ordered 

AuCu(I). Using these observations we concluded that (i) the material was fcc but only 

weakly crystalline in the as-deposited state, (ii) after heat treatment at 450 °C followed 

by a rapid cool, the fcc grains in the film had annealed and grown considerably, as 

indicated by a significant increase in the intensity of the {220} peak, and (iii) re-heat-

treating the crystalline structure for 20 minutes at 375°C converted the fcc structure to 

AuCu(I), as evidenced by the splitting of the {220}fcc peak into (220)fct and (022)fct.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (Color online) Portion of the X-ray diffraction pattern of a series of thin 
film samples. (i) Poorly crystalline fcc sample after deposition at room  temperature. 
(ii) Heat treating at 450 °C causes grains to grow and intensity of the {220}fcc peak 
to grow. (iii) A further heat treatment for 20 minutes at 375 °C causes the sample to 
transform to AuCu(I), as indicated by the appearance of reflections characteristic of 
the (220)AuCu(I) and (022)AuCu(I). 
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3.2 Dielectric function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured and calculated values of 2 for the pure elements are shown in panels 

(a) and (b) of figure 4 and serve as a calibration of our methodology. Our measured 

values lie within the scatter bands of values reported in the literature for each element. 

The calculated 2 for Cu correctly depicts the well-known double peak [11] of the 

interband transitions from the d-band. However the position of the absorption edge for 

both elements is too low by about 0.5 eV. This is a known limitation of the RPA for the 

noble metals [29-32]. Absolute magnitudes of the computed 2 for Au and Cu lie within 

 

Figure 4. (Color online) 2 values of Au, Cu, AuCu and (Au,Cu). (a) Calculated 
and measured values for Au. (b)  Calculated and measured values for Cu. 
Literature values for elemental Au and Cu are from Henkel et al. [1] and the 
CRC Handbook of Chemistry and Physics [2]. (c) 2 for the ordered (O) and 
disordered (D1-D3) AuCu unit cells calculated here using DFT. (d) 
Experimental values of 2. Values of 2 for AuCu from the literature are shown 
from Köster and Stahl ('K&S') [7], Rivory [9] and Scott and Muldawer ('S&M')  
 



12 
 

the envelope of experimental errors known to be introduced by factors such as surface 

roughness, void fraction or stress [33].  

The calculated effect of ordering on the optical properties of the Au-Cu alloy is 

shown in figure 4(c).  It is clear that the optical properties of the four simulated 

structures are predicted to be very similar. Although a true disordered structure has not 

been calculated, the results from these different periodic structures indicate that the 

effect of the site occupancy is relatively minor. Measured values for the 2 of these 

materials are shown in figure 4(d) alongside data taken from the literature [1, 9, 19].  

The present results indicate that neither the ordering nor the onset of tetragonality 

accompanying it make much difference to the optical properties. For 2, the measured 

values match the data of Koster and Stahl between 1.5 and 2.0 eV, and those of Rivory 

between 2.0 and 2.3 eV. The values of 2 found for our thin films are essentially 

identical to those reported by Koster. In contrast, however, above the absorption 

threshold, the 2 values of our bulk samples are lower than the literature values by about 

3 units- a significant difference.  

The absorption edge itself, whether of (Au,Cu) or AuCu(I), is positioned about 

mid-way between that of the elements as expected from a simple rule of mixing. Below 

the absorption edge (ie. photon energies below about 2.1 eV) the 2 data of Scott and 

Muldawer have values comparable to pure Cu or Au whereas our measurements, and 

the data of Koster, indicate a considerably larger 2.  

The values of 1 are shown in figure 5. The values for pure Au and Cu lie within 

the range of the values reported in the literature. It is clear that the measured 1 of the 

bulk material lies between the published values of 1 for Au and Cu for energies greater 



13 
 

than about 2.1 eV. Below that energy the 1 is slighter greater than expected. However, 

the values for the thin film Au,Cu samples are indistinguishable from those of Cu. The 

values found for 1 are very similar to those reported by Koster and Stahl [7] (as cited 

by Henkel [1]).  

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

The difference in dielectric function between the bulk and thin film samples may 

be attributed to the large grain size in the bulk samples, which are also relatively free of 

defects. The increased grain boundary scattering and porosity of the sputtered samples 

relative to the bulk ones should lead to them having a considerably greater value of 2, 

in agreement with the observations here. 

The calculated data for 2 and that measured by Rivory and Koster show a 

double peak (at ~2.1 eV and ~3.5 eV) above the absorption edge. Rivory correlated the 

appearance of the higher energy peak to the onset of ordering, and attributed it to 

 

Figure 5. (Color online) Measured, calculated and literature values for 1 
for (Au,Cu) and AuCu(I). Literature values for elemental Au and Cu are 
from Henkel et al. [1] and the CRC Handbook of Chemistry and Physics 
[2] 
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transitions from the lower d-bands to the Fermi level. Although the present DFT 

calculations produce this peak irrespective of ordering, disordering does cause a 

flattening out of the double peak observed in the ordered structure. This is also 

supported by the DOS which shows a more attenuated  double-peaked structure in the 

d-band, figure 6. Broadly speaking, the DOS also has two high regions, with the one 

closest to the Fermi level being mostly due to Cu while the deeper lying region of high 

DOS is due to Au. The features of the DOS are correlated with the two peaks in 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (Color online) Density of states for  (a) ordered alloy and (b) the 
disordered alloy (corresponding to the 4x1 supercell D3). 
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Although  1 and 2 are not independent variables (being connected to each other 

through the Kramers-Kronig relationship) their effect on LSPRs can be conceptually 

separated so that 1 can be considered to control the operating point (resonant 

frequency), and 2 the loss of a LSPR [26]. The strength or quality of a LSPR is a 

function of both parameters [26]: 

� =
�

2��
.
���
��

 

The photon energy at which a LSPR peaks is also a function of the geometry of 

the nanoparticle, which can be parameterized as depolarization, L (L=1 3�  corresponds to 

a sphere, lower values to prolate ellipsoids). The depolarization and material dielectric 

function are independent of one another, being respectively extrinsic and intrinsic to the 

properties of the condensed matter of the nanostructure. Here we make photon energy a 

 

Figure 7. (Color online) Comparison of the predicted capability of Au, Cu 
and various equiatomic Au-Cu materials to generate localized surface 
plasmon resonances in suitable nanostructures. 
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dependent variable, tuning it to whatever energy is required to give the peak plasmon 

resonance for a particular combination of material and particle shape. In figure 7 we 

show the predicted effect of L and () on Ce, the quasistatic extinction cross-section 

(normalized here by the volume V of the particle) and on Q (also for the quasistatic 

case). Clearly, pure Au remains the superior option, however, AuCu(I) and (Au,Cu) 

solid solution are both predicted to be superior to pure Cu in the range 2.2 to 2.5 eV 

(500 to 570 nm). Interestingly, the thin film AuCu retains this superiority over Cu to 

energies as low as 1.8 eV (~690 nm).  

 

5. Conclusions 

The effect of ordering on the dielectric function of equiatomic Au-Cu alloys has 

been examined using a combination of measurement and calculation. Contrary to some 

reports in the literature, the effect on the dielectric function is relatively minor and is 

masked by the characteristic scatter band of experimental measurements. Therefore, use 

of equiatomic Au-Cu in nanostructures intended for plasmonic applications is not 

influenced by the presence or absence of ordering of the structure.  As a material for use 

in plasmonic applications, AuCu is inferior to pure Au, but in the important part of the 

spectrum lying between 1.8 and 2.5 eV (corresponding to 690 and 500 nm respectively), 

this material is superior to pure Cu.  
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Figure captions  

Fig.1. (Color online) Atomic configuration of two Au-Cu unit cells based on equiatomic 

fcc (Au,Cu), (a) unit cell D2, (b) unit cell D3. 

Fig. 2. Microstructure of Au-Cu samples. (a) Transmission electron micrograph and 

electron diffraction pattern of furnace-cooled sample. (b) Transmission electron 

micrograph and electron diffraction pattern of quenched-cooled sample. (c) Atomic 

resolution transmission electron micrograph of quenched sample along [011] direction 

showing absence of laths or twins. 

Fig.3 (Color online) Portion of the X-ray diffraction pattern of a series of thin film 

samples. (i) Poorly crystalline fcc sample after deposition at room  temperature. (ii) 

Heat treating at 450 °C causes grains to grow and intensity of the {220}fcc peak to grow. 

(iii) A further heat treatment for 20 minutes at 375 °C causes the sample to transform to 

AuCu(I), as indicated by the appearance of reflections characteristic of the (220)AuCu(I) 

and (022)AuCu(I). 

Fig. 4. (Color online) 2 values of Au, Cu, AuCu and (Au,Cu). (a) Calculated and 

measured values for Au. (b)  Calculated and measured values for Cu. Literature values 

for elemental Au and Cu are from Henkel et al. [1] and the CRC Handbook of 

Chemistry and Physics [2]. (c) 2 for the ordered (O) and disordered (D1-D3) AuCu unit 

cells calculated here using DFT. (d) Experimental values of 2. Values of 2 for AuCu 
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from the literature are shown from Köster and Stahl ('K&S') [7], Rivory [9] and Scott 

and Muldawer ('S&M')  

Fig. 5. (Color online) Measured, calculated and literature values for 1 for (Au,Cu) and 

AuCu(I). Literature values for elemental Au and Cu are from Henkel et al. [1] and the 

CRC Handbook of Chemistry and Physics [2] 

Fig. 6. (Color online) Density of states for  (a) ordered alloy and (b) the disordered alloy 

(corresponding to the 4x1 supercell D3). 

Fig. 7. (Color online) Comparison of the predicted capability of Au, Cu and various 

equiatomic Au-Cu materials to generate localized surface plasmon resonances in 

suitable nanostructures. 


