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Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides
and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many
tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransfor-
mation of ®—6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation
and cell death. In contrast, several analogous products from the biotransformation of ®—3 PUFAs impair
particular tumorigenic pathways. For example, the ®—3 17,18-epoxide of eicosapentaenoic acid activates anti-
proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are
effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of
potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Neverthe-
less, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-
occurring membrane phospholipid esters, have provided the impetus for development of further molecules.
The alkyl phospholipids have been tested against a range of cancers and show considerable activity against
skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which
alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic
approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments
may also be assessed. This could provide a range of important treatment options in the management of advanced
and metastatic cancer.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years cancer drug development has undergone fundamen-
tal changes in which there has been a shift away from non-specific
cytotoxic agents in favor of more selective agents that target dysregulat-
ed pathways in cancer cells. By this approach a number of molecules
that inhibit tyrosine and other kinases that are overactive in tumor
cells have already become clinically indispensible. For example,
imatinib targets the bcr-abl and c-kit tyrosine kinases that are aberrant-
ly expressed in acute myelogenous leukemia and gastrointestinal
stromal tumors, and sorafenib targets the Raf/MEK/ERK- and vascular
endothelial growth factor (VEGF) receptor-linked cascades that are
over-expressed in renal and hepatocellular carcinomas (Heinrich et al.,
2003; Druker et al., 2006; Escudier et al., 2007; Llovet et al., 2008). In
general, these agents are much better tolerated and exhibit fewer
adverse effects than the more established, but non-specific, cytotoxic
anticancer drugs. However, there is an ongoing need for the develop-
ment of further well-tolerated targeted molecules to provide additional
options in cancer chemotherapy. Whether used as single agents or
in combination with other anticancer drugs, such agents can be used
to develop novel cancer treatment regimen, especially in advanced
disease.

There is accumulating evidence that many lipids and lipid analogues
are critical regulators of tumorigenesis. Much of this information has
emerged from investigations that have been undertaken in vitro in
tumor cells or in vivo in experimental animals after dietary conditioning
and using tumor cell xenografts. The exploitation of such molecules in
cancer therapy is at an early stage, but some show considerable prom-
ise. In considering which lipid-based molecules might be developed it
is important to derive mechanistic information that underpins their
anticancer actions. However, there are also particular issues that arise
with lipid-based drugs. Although the biological properties of certain
molecules have appeared promising, and could be captured in novel
cancer therapeutics, relatively few have made it through the drug devel-
opment process because of chemical instability, rapid metabolism
in vivo and, in some cases, the incidence of side effects. For example, a
number of synthetic prostaglandin (PG) analogues have previously
been developed as potential antiulcer, antihypertensive and fertility
control agents (Collins & Djuric, 1993). Some have reached advanced
trials or have even entered clinical use, but their application has been
limited somewhat by adverse effects that are often extensions of the
activity of the corresponding naturally-occurring prostanoids. Never-
theless, particularly in the area of cancer chemotherapy, several lipid-
based agents have emerged that offer promise as effective antitumor
agents. This review focuses on the roles of lipids and their analogues
in the regulation of tumorigenesis. Existing lipid-based agents that are
used in cancer chemotherapy and others that have the potential for
development as clinically useful molecules are also discussed.

2. The control of cell growth and cell death
2.1. The cell cycle regulates cell proliferation and mitogenesis

An appreciation of the mechanisms by which lipids and their metab-
olites regulate tumorigenic processes requires background information
on the growth and dissemination of cancer cells. Cancer is a multistage
process in which cells develop the capacity for unregulated prolifera-
tion, become resistant to proapoptotic stresses that kill normal cells,
and acquire the ability to migrate to adjacent and distant tissues to
establish secondary metastases.

The cell cycle describes the sequence of events between successive
rounds of mitosis by which cells proliferate. Most mammalian cells
are quiescent in Go phase but may re-enter the cell cycle in G; phase
in response to mitogenic stimulation (Zetterberg & Larsson, 1985).
During mitogenesis cyclins and their associated cyclin-dependent ki-
nases (CDKs) are activated in a coordinated fashion to regulate gene

transcription and cell replication. The activities of cyclin/CDK complexes
are also modulated by interactions with antiproliferative CDK-
inhibitors, including p21°P!, p27X! and the INK4 proteins (p16™<4?,
p15™NK4b p18INK4e apnd p19™K4dy (Malumbres & Barbacid, 2001). DNA
synthesis occurs in S-phase, which is followed by G, phase, in which
the cell prepares for mitosis (M phase). Cell cycle regulatory genes are
subject to mutation in cancers and the amplification or dysregulation
of cyclins, CDKs and CDK-inhibitors is common (Vermeulen et al.,
2003). Over-activation of cyclin-CDK complexes results in unregulated
gene transcription and increased rates of mitogenesis (Williams &
Stoeber, 2012).

2.2. Signaling pathways and cell proliferation

Several signaling cascades have important roles in the regulation
of cell growth and survival. The proliferative extracellular signal-
regulated kinase (ERK), which is a member of the mitogen-activated
protein kinases (MAPKs), is activated by growth factors, hormones
and chemokines that are ligands for the corresponding growth factor,
cytokine and chemokine receptors (Tilton et al., 2000; Roberts & Der,
2007; Fig. 1A). Mitogenic stimuli trigger the translocation of activated
ERK from the cytoplasm to the nucleus, which then stimulates the
formation of active cyclin D1-CDK4/6 complexes (Chambard et al.,
2007).

The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) path-
way is also activated by growth factors and hormones and promotes
cell survival (Fig. 1A). Indeed, full induction of cyclin D1 by mitogens
requires the participation of both PI3K/Akt and ERK pathways (Sherr
& Roberts, 1999). Other downstream targets for PI3K/Akt include
kinases, such as glycogen synthase kinase-3, and transcription factors,
like the NF-kB/IkB complex (Reddy et al., 2000). Akt regulates cell
proliferation by targeting the CDK-inhibitors p21°P! and p27%"!, and
cell survival by direct inhibition of pro-apoptotic mediators like Bad,
Bim and procaspase-9.

NF-xB is normally present in the cell cytoplasm as an inactive
complex bound to inhibitory proteins of the IxB family, but IkB may be
dissociated by a variety of stimuli, including infection, proinflammatory
cytokines, mitogens and growth factors, and reactive oxygen species
(ROS) (Viatour et al., 2005; Gloire et al., 2006). Dissociation of IkB acti-
vates NF-B and modulates cell proliferation and survival by activating
the expression of cyclin D1 and the anti-apoptotic bcl-xL and bcl-2
(Guttridge et al., 1999; Piva et al,, 2006; Fig. 1A).

2.3. Cell death pathways

The most studied mechanism of programmed cell death is apoptosis,
which occurs along the so-called intrinsic and extrinsic pathways. The
intrinsic, or mitochondrial, pathway is activated by intracellular stress
signals from DNA-damaging chemicals and ROS (Fig. 1B). These stimuli
increase mitochondrial membrane permeability by modifying the
interplay between Bcl-2 family proteins that interact with mitochondri-
al membrane voltage-dependent anion channels (Shimizu et al., 2000).
Bcl-2 proteins have either proapoptotic (eg Bak, Bax, or Bok) or anti-
apoptotic roles (eg Bcl-2, Bcl-XL, or Mcl-1); the BH3-only proteins
(eg Bid, Bim, or Puma) also modulate pro- and anti-apoptotic Bcl-2
protein interactions. Apoptotic stimuli shift the balance between these
proteins and promote mitochondrial membrane destabilization, cyto-
chrome c release into the cytoplasm and activation of executioner
caspases that cleave cytoplasmic and nuclear macromolecules and pro-
duce the morphologic features of apoptosis, like DNA fragmentation
(Degterev et al., 2003).

ROS are not only mediators of damage to cell macromolecules
but also modulate signal transduction. Major sources of ROS are
mitochondrial complexes that mediate oxidative phosphorylation and
enzymes, such as cyclooxygenases (COX), cytochromes P450 (CYP),
lipoxygenases (LOX), and NADPH- and xanthine oxidases that operate
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Fig. 1. (A) Overview of pro-tumorigenic NF-kB, ERK and PI3K/Akt signaling cascades that are activated by membrane receptors for growth factors, chemokines and cytokines that promote
tumor expansion. The functional kinases are activated along canonical pathways involving upstream kinases. Downstream targets include transcription factors and proteins that regulate
the cell cycle and cell death, including cyclin D1, CDK-inhibitors and pro- and anti-apoptotic Bcl-2 proteins. (B) Inter-relationships between intrinsic and extrinsic apoptotic mechanisms
and necroptosis. Intracellular stresses from a number of sources, including cytotoxic drugs and reactive oxygen species (ROS), promote intrinsic apoptosis due to a shift in Bcl-2 protein
composition, cytochrome c release and caspase activation. Death receptor ligands activate extrinsic apoptosis and necroptosis by recruiting adaptor and mediator proteins to intracellular
death-inducing signaling complexes (DISCs), the composition of which determines the mode of cell killing. The resultant ASK/JNK/p38 MAPK activation also promotes Bid cleavage, which

disrupts mitochondrial Bcl-2 protein interactions and activates intrinsic apoptotic pathways.

by radical-dependent mechanisms (Glickman & Klinman, 1996;
Murray, 1999; Rouzer & Marnett, 2003). Interference with coupled
proton and electron flow between mitochondrial complexes increases
ROS production (Brand & Nicholls, 2011). Reactive lipid hydroperoxides
are also formed when COX and other enzymes act on unsaturated fatty
acids and mediate protein damage. ROS also activate the proliferative
EGFR/Raf/MEK/ERK signaling pathway (Wu et al., 2008) by inhibiting
protein phosphatases that otherwise terminate signaling (Klann &
Thiels, 1999).

The extrinsic pathway of apoptosis transduces signals from TNFc,
FasL and TNF-related apoptosis-inducing ligand (TRAIL) via their
cognate death receptors (TNFa-receptor-1/2, CD95 (APO-1/Fas) and
TRAIL-receptors 1/2; Fig. 1B). Following ligand activation, death recep-
tors recruit adaptor proteins, the MAPK kinase kinase ASK1, procaspases
and other modulatory proteins to their cytoplasmic death domains to
form death-inducing signaling complexes (DISCs). ASK1 is upstream
from the Jun-N-terminal kinase (JNK) and p38 MAPKs that mediate
apoptosis and cell cycle arrest (Tobiume et al., 2001). Although the
extrinsic and intrinsic pathways are distinct, they converge on the
proapoptotic BH3-only proteins, that induce mitochondrial perme-
abilization (Sarosiek et al., 2013).

Unlike apoptosis, necrosis was previously considered to be a passive
form of cell death in response to pathogens or toxins that promote
massive ATP depletion. Necrotic cell death is characterized by break-
down of the plasma membrane, the release of cellular contents and a
proinflammatory response. This contrasts with the ordered dismantling
of the cell that occurs in apoptosis. However, it has emerged recently
that programmed necrosis, or necroptosis, is activated by death
receptor ligands and also involves assembly of intracellular DISCs
(Fig. 1B), but is caspase-independent (Christofferson & Yuan, 2010).
The signals that determine which proteins remain within the DISC,
and so determine whether apoptosis or necroptosis ensues, are not
completely clear, but could relate to ATP availability.

2.4. Defects in proliferative and death pathways in cancer cells

High constitutive levels of the ERK, PI3K/Akt and NF-kB proliferative
and prosurvival pathways are frequently observed in human cancers,
due to molecular alterations in genes that encode key pathway interme-
diates or to upstream activation mediated by mutations or amplification
of cell-surface receptors (Schubbert et al., 2007; Courtney et al., 2010).
In normal cells, protein phosphatases modulate signal duration by
controlling the dephosphorylation of phosphoprotein signaling inter-
mediates; these may also be dysregulated in cancer cells (Klann &
Thiels, 1999). Deregulated ERK, PI3K/Akt and NF-kB signaling in cancer

cells promotes uncontrolled growth and survival, and oncogenic trans-
formation and progression.

Tumors of small diameter are adequately oxygenated by diffusion,
but tumor expansion requires a substantial new blood supply to deliver
oxygen and nutrients (Gimbrone et al., 1972; Folkman, 1990). The hyp-
oxic environment in solid and growing tumors promotes the activation
of pro-angiogenic genes, such as VEGF. Angiogenesis not only facilitates
the vascularity of tumors, but also promotes the metastatic potential of
tumor cells (Kleiner & Stetler-Stevenson, 1999). It is now also clear that
pro-inflammatory signals within the tumor microenvironment, due in
part to over-activity of NF-xB signaling, contributes to the invasive
and angiogenic phenotype that promotes metastasis (Rajput & Wilber,
2010).

3. Lipids and fatty acids
3.1. Esterified and free fatty acids in cells

Triglyceride and phospholipid esters have important biological
functions in energy storage and as membrane structural components.
Triglycerides possess a glycerol backbone, with each of the three
hydroxyl groups esterified to fatty acid residues. The major pathway of
triglyceride synthesis begins with glycerol-3-phosphate that undergoes
three esterifications mediated by acyltransferases (Athenstaedt &
Daum, 2006). Phospholipids are also acylglycerols but possess
hydrophilic substituents at the 3-position (Fagone & Jackowski, 2009).
Phospholipids are designated according to this substituent, eg phospha-
tidylcholine is derived from choline and is the major phospholipid
found in mammalian cell membranes, while other phospholipids are
phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol
and cardiolipin. Hormone-sensitive lipases hydrolyze triglycerides
that are stored in adipocytes, and produce free fatty acids that can
undergo oxidation to produce a large number of high energy ATP mol-
ecules (Athenstaedt & Daum, 2006).

Free fatty acids may be esterified in cell membrane phospho-
lipids that may undergo hydrolysis by phospholipases to generate
bioactive lipid mediators, including diacylglycerol, phosphatidic
acid, lysophosphatidic acid and polyunsaturated fatty acids (PUFAs)
(Park et al., 2012). Esterified fatty acids may be saturated (having no
carbon-carbon double bonds, such as palmitic acid (16:0)), mono-
unsaturated (having one double bond, such as oleic acid (18:1 ®—9))
or polyunsaturated (having multiple carbon-carbon double bonds,
such as arachidonic acid (20:4 w—6)). The double bonds in naturally
occurring unsaturated fatty acids are primarily in the cis configuration.
Trivial names for lipids such as arachidonic acid are commonly used,
although the more systematic nomenclature is favored, eg of the form
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C:D, where Cis the number of carbon atoms in the fatty acid chain and D
is the number of double bonds in the fatty acid; thus arachidonic acid is
20:4. In PUFAs the location of the double bond in relation to the termi-
nal methyl carbon is designated as n or ®. Arachidonic acid is classified
as an n—6 or ®—6 PUFA, because the most distal olefinic bond is six
carbons from the terminal methyl group.

The properties of cell membranes are significantly altered by the de-
gree of unsaturation of their component fatty acids. While unsaturated
fatty acids have fewer degrees of freedom than saturated fatty acids,
the potential energy barrier for carbon-carbon single bond rotation in
unsaturated chains is lower (Feller et al., 2002). Acyl chain flexibility
therefore increases with unsaturation due to rapid isomerization
through different conformational states (Feller & Gawrisch, 2005).
Docosahexaenoic acid (DHA; 22:6 w—3), for example, can occupy its
full conformational space in tens of nanoseconds (Soubias & Gawrisch,
2007). Thus, compared with less saturated bilayers, PUFA-rich mem-
branes are thinner and have greater fluidity, corresponding to a lower
density of component molecules (Salmon et al., 1987; Rajamoorthi
etal., 2005). Significant differences in the flexibility and fatty acid spatial
distribution of ®—3 and ®w—6 PUFA-containing bilayers also exist due
to the longer saturated chain regions present in ®w—6 PUFAs (Eldho
et al., 2003; Rajamoorthi et al., 2005). Alterations to membrane
properties brought about by fatty acid composition influence important
cellular processes, including the function of integral membranes and
lipid microdomain formation.

3.2. Fatty acid biotransformation: roles of enzymes
and regulation of cell viability by eicosanoid metabolites

Phospholipase A,-dependent hydrolysis of membrane phospholipid
esters releases free fatty acids within the cell (Park et al., 2012). Liberat-
ed PUFAs are substrates for three families of enzymes: the COX enzymes
that produce PGs, prostacyclin and thromboxanes, the LOX enzymes
that produce hydroxyeicosatetraenoic acids (HETEs), lipoxins and

Esterified PUFA

Free PUFA

LOD

©3 ©-6 ®-3 -6
Series 3 Series 2 o-3 Epoxides | -6 Epoxides
Prostaglandins | Prostaglandins (including (EETs)

(including PGE;) 17,18-epoxy EPA)

Series 3 Series 2 HETEs
eries Thromboxanes
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'
®-3 -6
15-HEPE 15-HETE
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Series 4 Lipoxins | Series 5 Lipoxins
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Fig. 2. Biotransformation of PUFA by COX, LOX and CYP enzymes to metabolites that
modulate tumorigenesis. The bolded products — PGEs, 17,18-epoxy-EPA and resolvins —
are metabolites of the = —3 PUFA eicosapentaenoic acid (EPA) that have anti-cancer
properties that can be adapted in drug development strategies.

leukotrienes (LTs), and the CYP monooxygenases that generate epox-
ides and atypical HETEs (Spector & York, 1985; Oates et al., 1988;
Oliw, 1994). These PUFA metabolites alter cell viability by modulating
ERK, PI3K/Akt and NF-kB signal transduction pathways, that are impli-
cated in tumorigenesis because they control cell proliferation, survival,
angiogenesis and metastasis.

COX enzymes catalyze the formation of the prostanoid precursor
PGH, from ®—6 arachidonic acid that is converted to the range of
series-2 PGs (PGD,, PGE,, PGF,, and PGI,) and thromboxane by specific
synthases; the analogous series-3 prostanoids are produced by the
action of COX on the ®w—3 PUFA eicosapentaenoic acid (20:5 ®—3)
(Fig. 2). Although the preferred substrate is arachidonic acid, COX en-
zymes can also accommodate other w—3 and ®—6 PUFA as substrates,
but with varying efficiencies (Vecchio et al., 2010); such reactions also
generate products that are structurally similar to the PGs derived from
arachidonic acid, but that have quite distinct biological activities
(Wada et al., 2007; Siddiqui et al., 2008).

PGs bind to specialized cell surface receptors: EP1-EP4 are receptors
for PGE,, DP1 and DP2 accommodate PGD- and the FP and IP receptors
bind PGF,., and PGI,, respectively (Breyer, 2001; Breyer et al., 2001).
Some PGs also bind nuclear peroxisome proliferator-activated receptors
(PPARs) that activate DNA response elements in the promoter regions of
target genes linked to inflammation, cell proliferation, apoptosis and dif-
ferentiation (Alaynick, 2008). For example, PGI; can transactivate PPAR;,
and the dehydration product of PGD,, 15d-PG],, is a natural ligand for
PPAR, (Elrod & Sun, 2008).

LOX enzymes are a family of non-heme iron-containing dioxygenases
that catalyze hydrogen atom abstraction from the bis-allylic carbons in
arachidonic acid, which is followed by radical rearrangement and oxy-
gen addition to generate hydroperoxyeicosatetraenoic acids (HPETEs).
LOX isoforms are normally expressed in leukocytes (5-LOX), platelets
(12-LOX) and endothelial/epithelial cells (15-LOX; Shappell et al.,
1999). 5-LOX converts arachidonic acid into 5-HPETE whereas 12- and
15-LOX generate the 12- and 15-HPETE isomers, respectively (Funk,
2001). HPETEs either undergo reduction to the alcohols, termed
HETEs (Fig. 2), or are conjugated with glutathione and converted to
the cysteinyl-leukotrienes (Oates et al., 1988). Leukotrienes (LTs)
exert their biological functions via LTB,4 receptors (BLT1, BLT2) or the
two G-protein-coupled receptors CysLT1 and CysLT2 (Haeggstrom &
Funk, 2011).

While CYPs are most studied for their roles in drug and xenobiotic
oxidations, they also have physiologically important roles in the bio-
transformation of fatty acids and other lipophilic endobiotics. CYP2]2,
CYP2C8 and CYP3A4 convert the »—6 arachidonic acid to four enantio-
meric epoxyeicosatrienoic acids (or EETs; Fig. 2): 5,6-EET, 8,9-EET,
11,12-EET, and 14,15-EET (Roman, 2002; Fig. 2, Fig. 3). Arachidonic
acid is also oxidized by the CYP4A/4F w-hydroxylases to several HETEs
(Fig. 2), the principal being the proinflammatory 20-HETE (Roman,
2002). These CYPs also oxidize the ®—3 PUFA eicosapentaenoic acid
(EPA) to five epoxides — four of which are analogues of the correspond-
ing ®—6 EETs (the 5,6-, 8,9-, 11,12-, and 14,15-EPA-epoxides) but the
fifth is ®—3 17,18-epoxy-EPA that is formed at the ®-3 olefinic bond
that is absent in ®w—6 arachidonic acid (Fer et al., 2008; Fig. 3).

Many CYPs are modulated by xenobiotic exposure, proinflammatory
cytokines and dietary nutrients, and in a range of disease states, includ-
ing cancer and hepatic cirrhosis (Murray et al., 1987; Murray, 1991;
Morgan, 1997). Thus, hepatic CYPs 2C8 and 3A4 are inhibited or induced
by exposure to coadministered drugs, which can give rise to pharmaco-
kinetic drug interactions and could also modulate EET formation
(Guengerich, 2006; Crettol et al., 2010). In contrast, CYP2J2 is inhibited
by terfenadine derivatives and 17-octadecynoic acid (Jiang et al., 2007;
Chen et al., 2009) and is subject to altered regulation in hypoxia and by
antioxidant chemicals (Marden et al., 2003; Lee & Murray, 2010). In
normal tissues EETs modulate hormone and ion channel activity and
have been found to regulate proliferation, apoptosis and angiogenesis
in tumor cells by activating the proliferative EGFR/Raf/MEK/ERK and
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Fig. 3. (A) CYP-dependent oxidation of the olefinic bonds in the ®—6 and w—3 PUFAs arachidonic acid and eicosapentaenoic acid (EPA) to epoxides. While the 5,6-epoxides are chemically
unstable, the 8,9-, 11,12- and 14,15-epoxides formed from both PUFAs increase cell proliferation and inhibit apoptosis. The 17,18-epoxide of EPA selectively inhibits proliferation and ac-
tivates apoptosis. (B) General structure of the synthetic ®—3 monoepoxides of the C20-C22 long-chain saturated fatty acids that exhibit anti-tumor activity in breast cancer cells.

anti-apoptotic PI3K/Akt cascades (Jiang et al., 2005; Chen et al., 2009;
Panigrahy et al., 2012). Evidence has also been provided for signaling
through the Jak-STAT and PPAR pathways (Chen et al., 2001; Pozzi
et al., 2010). Important target genes include the cell cycle regulators
cyclin D1 and the CDK inhibitor p27*"*! (Potente et al., 2002; Cui et al.,
2011). EETs promote angiogenesis by up-regulating endothelial nitric
oxide synthase and activating endothelial cell proliferation via ERK
and PI3K/Akt pathways (Pozzi et al., 2005).

3.3. Lipid rafts and the regulation of cell viability

Membrane bilayers consist of phospholipids with esterified fatty
acids chains that are packed tightly with cholesterol and sphingolipids.
Within membranes lipid rafts are small (10-200 nm), dynamic, hetero-
geneous and detergent-resistant microdomains (Simons & Toomre,
2000). Originally controversial, rafts are now implicated in many
physiological and pathophysiological processes including apoptosis,
cell signaling, viral entry and neurodegeneration (Simons & Toomre,
2000; Hancock, 2006; Adamson & Freed, 2010). Integrins and growth
factor receptors, and associated intracellular signaling molecules are
enriched in rafts that can be regarded as sites for the initiation of
signaling pathways. The focal adhesion kinase (FAK) is activated and
localized to lipid rafts by integrins, which detect adhesion to the extra-
cellular matrix in adherent cell types (Xia et al., 2004; Baillat et al.,
2008). Many signaling complexes are protected from non-raft mem-
brane phosphatases that could otherwise attenuate signaling. A switch
between raft and non-raft localization of signaling components may
be an important mechanism for regulation of signaling activity.

Lipid rafts in the outer leaflet of the plasma membrane are cholester-
ol and sphingolipid rich. Sphingomyelin, which is composed of a hydro-
phobic ceramide moiety and a hydrophilic phosphorylcholine group, is
the most common sphingolipid in the plasma membrane. Ceramides
are amides of fatty acids and sphingosine and are constituents of biolog-
ical membranes. The enrichment of ceramide in lipid rafts causes fusion
of raft microdomains into larger and more stable platforms (Silva et al.,
2009). Raft-associated death receptors may activate the lysosomal
acidic sphingomyelinase and the release of ceramide from membrane
sphingomyelin (Sessler et al., 2013). Ceramides are now recognized for
their signaling roles in the regulation of cell proliferation, differentiation,
and cell death. The hydrolysis of sphingomyelin to ceramide is catalyzed
by sphingomyelinases while de novo synthesis is mediated by multiple
ceramide synthases that produce endogenous ceramides with a range of
fatty-acid chain lengths; longer-chain ceramides are pro-apoptotic.

Ceramide accumulation in cells occurs after treatment with antican-
cer agents or saturated fatty acids, such as palmitic acid (Merrill & Jones,

1990). Direct addition of C2-ceramide (~1 pM) altered the mitochondri-
al transmembrane potential (AW) by forming channels or by targeting
Bcl-2 proteins, which released cytochrome c and activated caspase-3
(Garcia-Ruiz et al., 1997). These proapoptotic actions of ceramide are
mediated by p38 and JNK MAPKs (Chen et al., 2008). Ceramide can
also be cleaved by ceramidase which terminates the apoptotic actions
of long-chain ceramides and is over-expressed in cancer cells (Seelan
et al.,, 2000).

4. Fatty acid biotransformation enzymes in cancer and
dysregulation of metabolite signaling

4.1. COX-2 and PG over-production

Fatty acid biotransformation enzymes are frequently dysregulated in
cancers. While COX-1 is constitutively expressed in many tissues, COX-2
isincreased by proinflammatory stimuli and growth factors (Oates et al.,
1988). Over-expression of COX-2 protein is related to tumor size, grade
and proliferation and to upregulation of tumorigenic factors such as
VEGF and chemokine receptors (Wang & Dubois, 2010). In tumors
over-expression of COX-2 also increases the biotransformation of fatty
acids to PGs (Wang & Dubois, 2010). Similar to COX-2, the downstream
PGE; synthase mPGES-1 is also upregulated during inflammatory condi-
tions (Murakami et al., 2000). PGE, promotes the growth of colon and
breast cancer cells and angiogenesis by activation of the EGFR, protein
kinase A and PI3K/Akt pathways (Di Popolo et al., 2000; Tortora et al.,
2003). Moreover, disruption of the EP2 and EP3 receptors decreased
the multiplicity and size of intestinal polyps, extent of angiogenesis,
and VEGF expression in mice that were genetically susceptible to intes-
tinal polyp development (Sonoshita et al., 2001).

Other PUFA-metabolizing enzymes may also be over-expressed in a
range of cancers. Immunochemical analysis of prostate tissue showed
that thromboxane synthase expression is low in normal differentiated
luminal or secretory cells, significantly increased in poorly differentiat-
ed or advanced tumors, and markedly increased in invasive tumors
(Nie et al., 2004). Thromboxane synthase is also associated with a
poor prognosis in other tumor types and its inhibition induces cell
death in vitro in lung, bladder and colorectal cancer cells (Sakai et al.,
2006; Moussa et al., 2008; Leung et al., 2009, 2010; Cathcart et al., 2011).

4.2. LOX metabolites in tumorigenesis
LOX enzymes have also been implicated in tumor development. 5-

LOX and 12-LOX are protumorigenic, while 15-LOX inhibits carcinogen-
esis (Pidgeon et al., 2007). 5-LOX and 12-LOX are inducible by pro-

Please cite this article as: Murray, M., et al., Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs,
Pharmacology & Therapeutics (2015), http://dx.doi.org/10.1016/j.pharmthera.2015.01.008



http://dx.doi.org/10.1016/j.pharmthera.2015.01.008

6 M. Murray et al. / Pharmacology & Therapeutics xxx (2015) XXX—-XXX

inflammatory stimuli, and are often over-expressed in tumor cell lines
(Avis et al., 1996, 2001; Hong et al., 1999) and cancers (Avis et al.,
1996; Gupta et al., 2001). Histological analysis of human adenoma
samples found that 5-LOX expression was strongly correlated with
polyp size and intra-epithelial neoplasia. Consistent with these findings
the addition of 5-HETE to breast and prostate cancer cells in vitro
enhanced proliferation (Avis et al., 2001; Moretti et al., 2004) and 5-
LOX inhibition induced apoptosis in LNCaP and PC3 prostate cancer
cells; thus, 5-LOX metabolites maintain tumor cell viability (Ghosh &
Myers, 1998). Cell death was prevented by direct addition of 5-HETE
and its analogues (Ghosh & Myers, 1998). Similarly, in breast cancer
cells the inhibition of 5-LOX caused G; cell cycle arrest, decreased
growth, and increased apoptosis, as reflected by the down-regulation
of bcl-2 and up-regulation of bax (Avis et al,, 2001).

12-LOX expression was increased in advanced prostate cancer
(Gao et al.,, 1995) with existing data suggesting that 12-LOX derived
eicosanoids are proliferative and pro-angiogenic. 12-LOX inhibition in
human AGS and MKN-28 gastric cancer cells (Wong et al., 2001) and
PC3 and DU-145 prostate cancer cell lines (Pidgeon et al., 2002) was
found to decrease PI3K/Akt survival signaling and to activate caspase-
3/7 and apoptosis.

There are two isoforms of 15-LOX, with 15-LOX-1 more highly
expressed in malignant than normal human prostate tissue and 15-
LOX-2 expression decreased in breast cancer and colorectal adenomas
(Shureiqi et al., 2005; Jiang et al., 2006). Over-expression of 15-LOX-1
accelerated the growth of prostate cancer cells (Kelavkar et al., 2001),
while 15-LOX-2 had the opposite effect (Bhatia et al., 2003). These dif-
ferential effects of 15-LOX isoforms have been attributed to differences
in fatty acid substrate preference: 15-LOX-1 and 15-LOX-2 accommo-
date linoleic acid (18:2 w—6) and arachidonic acid, respectively.
Linoleic acid is converted to 13S-hydroxyoctadecadienoic acid, which
enhances growth factor-stimulated prostate cancer cell proliferation,
while arachidonic acid is converted to the anti-proliferative 15-HETE
(Hsi et al., 2002).

4.3. CYP-mediated EETs in tumorigenesis

CYP2J2 is over-expressed in many invasive human cancers and
CYP2J2-derived EETs have been implicated in driving tumor cell migra-
tion in nude mice carrying human breast cancer cell xenografts (Jiang
et al., 2005). EETs are also proliferative and proangiogenic in cerebral
capillary endothelial cells in vitro and stimulated endothelial tube
formation and angiogenesis in a Matrigel plug in vivo (Munzenmaier
& Harder, 2000; Zhang & Harder, 2002). Similarly, transfection of
tumor cells with CYP2J2 enhanced proliferation and prevented apopto-
sis (Jiang et al.,, 2005). Interestingly, it is now emerging that individual
EET enantiomers may activate angiogenesis by different mechanisms.
11,12-EET stimulates vessel formation by activating the EGF receptor
and sphingosine kinase-1 (Michaelis et al., 2003; Yan et al., 2008)
while 14,15-EET acts via PI3K/Akt signaling and Src-dependent STAT-
3-mediated VEGF expression (Zhang et al., 2006; Cheranov et al., 2008).

CYP2J2 inhibitors decreased EET production in tumor cells, which
then attenuated EGFR/ERK and PI3K/Akt signaling, prevented prolifera-
tion and decreased their ability to adhere, invade, and migrate. The
metastatic behavior of human MDA-MB-435 breast cancer cells in a mu-
rine xenograft model tumor growth was repressed, lung metastases
were decreased, and TUNEL and Annexin V staining were decreased
(Chen et al., 2009).

One of the alternate EET synthases - CYP3A4 - has also been
associated with tumorigenesis. In a breast cancer tissue microarray
study CYP3A4 was expressed in ~80% of breast cancers and was related
to decreased overall survival in breast cancer (Murray et al., 2010).
CYP3A4 expression was associated with the presence of nodal metasta-
ses (Haas et al., 2006). It is feasible that multiple CYP epoxygenases
may contribute to tumorigenesis in different tumors depending on
their relative expression.

5. Anticancer strategies based on
lipid-derived metabolites and signaling

5.1. Inhibition of enzymes that produce pro-tumorigenic metabolites

Inhibition of COX-2 activity is an attractive strategy for the preven-
tion of tumorigenesis and has been shown to be effective in colon,
lung and prostate cells in vitro (Kamijo et al., 2001; Nagatsuka et al.,
2002) and in xenografted nude mice in vivo (Nagatsuka et al., 2002).
Clinical trials have tested the value of selective COX-2 inhibitors in anti-
cancer strategies (Papadimitrakopoulou et al., 2008; Antonarakis et al.,
2009), but their association with adverse cardiovascular risk detracts
from their use (Bresalier et al., 2005). Whether this approach is clinically
viable with better tolerated drugs is presently unclear. Recently a group
of novel ®—3 monounsaturated fatty acids was found to inhibit
the in vitro proliferation and migration of breast cancer cells that
over-expressed COX-2 (Cui et al., 2012). These lipid-based agents
were well coordinated in the active site of the enzyme and decreased
PGE; formation. If lipid-based molecules of this type could be devel-
oped, the original clinical strategy might be revived.

The combination of the COX-2 and 5-LOX inhibitors celecoxib and
zileuton, as an adjunct to chemotherapy has been tested in 134 patients
with advanced non-small cell lung carcinoma. Although results did not
demonstrate overall clinical benefit, potential advantages of celecoxib
plus chemotherapy appeared possible in patients with moderate to
high COX-2 expression (Edelman et al., 2008). To date there have
been no attempts to inhibit CYPs to decrease EET production in tumors.
This strategy would be complicated by the high likelihood of pharmaco-
kinetic drug-drug interactions. It may be possible, however, to identify
selective inhibitors of PUFA biotransformation enzymes for future use,
perhaps in combination with established anticancer agents.

5.2. Synthetic antitumor alkyl phospholipids (ALPs)

5.2.1. ALPs decrease tumor cell viability

Edelfosine (Fig. 4) was the first synthetic ALP analogue evaluat-
ed as a potential anticancer agent, followed by ilmofosine that has a
thioether moiety in place of the methoxy substituent (Fig. 4). Further
structural modification to remove the glyceryl nucleus produced the
alkylphosphocholine analogue miltefosine, and replacement of the
choline moiety with a piperidine system produced perifosine (Fig. 4).
More recently, two other molecules, erucylphosphocholine and its
homocholine analogue erufosine, have been developed that possess a
longer 22-carbon chain and a w—9-cis-double bond (Fig. 4). These
structural developments have enhanced the selectivity of the agents
for cancer cells over normal cells and improved their metabolic stability
(Mollinedo et al., 1997; Ruiter et al., 1999; Gajate et al., 2004).

The cellular uptake of ALPs is dependent on lipid rafts (van der Luit
et al., 2007). ALPs elicit a number of antitumor actions in cells, including
interference with membrane lipid raft function, impaired PI3K/Akt sur-
vival signaling, inhibition of phosphatidylcholine synthesis, generation
of ROS and activation of endoplasmic reticulum stress (Gajate et al.,
2012; Fig. 5). Thus, the evidence to date supports multiple potential
mechanisms in the mode of action. ALPs decrease the viability of
tumor cells in several ways. They promote cell cycle arrest in G2/M
phase by inducing the CDK-inhibitor p21“P! and inhibit proliferative
ERK and PI3K/Akt signaling, possibly by interfering with the membrane
association of Raf-1, leading to a decrease in Raf-1 kinase activity
(Samadder & Arthur, 1999; Elrod et al., 2007; Kumar et al., 2009).

By modulating lipid raft composition ALPs enhance the recruitment
of the death receptor Fas/CD95, which activates apoptosis in a ligand-
independent manner. Fas/CD95 was found to be essential for apoptosis
because ALPs were ineffective in Fas/CD95-deficient cells and retroviral
transduction of Fas/CD95 restored sensitivity (Gajate & Mollinedo,
2007). Further recruitment of FADD, procaspase-8, TRAIL-R1, TRAIL-R2
and Bid into lipid rafts promoted apoptotic DISC formation (Gajate &
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Fig. 4. Structures of anti-tumor alkylphospholipids and alkyl-lysophospholipids that have been evaluated, or are continuing to be evaluated, in clinical studies.

Mollinedo, 2007). This mechanism operated in a range of cell lines in-
cluding HL-60 promyelocytic leukemia, HEL erythroblast leukemia and
Jurkat cells (Gajate et al., 2009). Raft disruption by cholesterol depletion
abrogated edelfosine uptake (Mollinedo et al., 2011).

5.2.2. ALPs activate tumor cell apoptosis

As mentioned, there is evidence for additional antitumor actions of
ALPs. It has been suggested that edelfosine redistributes lipid rafts
from plasma membrane to the mitochondrion and modulates mitochon-
drial phosphocholine content, which alters membrane permeability,

plasma

membrane lipid raft

( ‘Haf, ?death receptor)
(altered DISC composition)

V\\~ raft/non-raft

induces swelling of the organelle and activates apoptosis (Mollinedo
et al.,, 2011). Indeed, the relative potencies of ALPs to induce apoptosis
in S49 cells were related to the capacity to inhibit the enzyme CTP:
phosphocholine cytidylyltransferase that participates in phosphatidyl-
choline synthesis (van der Luit et al., 2007). It has been proposed that
continuous phosphatidylcholine synthesis is essential for cell survival
and that a lack of phosphatidylcholine blocks the downstream synthesis
of membrane lipids.

Other apoptotic mechanisms have also been proposed to account for
the actions of ALPs in tumor cells. In some cell types ALPs activate ROS
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Fig. 5. Alkylphospholipids (ALPs) decrease cancer cell viability by multiple mechanisms. Disruption of lipid rafts on the plasma membrane, and possibly also the mitochondrial membrane,
modulates the distribution of death receptors and Raf and other kinases between raft and non-raft locations. ALPs also impair phosphatidylcholine synthesis and activate reactive oxygen
species (ROS) production and endoplasmic reticulum (ER) stress that may promote apoptotic cell death. Disruption of PI3K/Akt survival signaling and proliferative ERK signaling may also

contribute to the decrease in cell viability produced by ALPs.
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production, which oxidizes thioredoxin, and enables its dissociation
from the N-terminus of ASK1 (Matsukawa et al., 2004). ASK1 then
activates downstream proapoptotic JNK/p38 MAPK signaling, which
cleaves Bid, disrupts the mitochondrial membrane, enhances cyto-
chrome c release and promotes cell death (Nieto-Miguel et al., 2006;
Gajate & Mollinedo, 2007; Fig. 5). Overexpression of the antiapoptotic
Bcl-2 proteins Bcl-XL or Bcl-2 prevented ALP-induced cytochrome c
release from the mitochondrion in multiple myeloma cells (Gajate &
Mollinedo, 2007).

APLs also induce endoplasmic reticulum stress, possibly as a conse-
quence of impaired phosphatidylcholine production, and which could
be an alternate mechanism of ASK1-JNK activation (Nieto-Miguel
etal,, 2007). Consistent with this possibility, phosphatidylcholine deple-
tion has been shown separately to induce the endoplasmic reticulum
stress-related pro-apoptotic transcription factor CHOP/GADD153 (van
der Sanden et al., 2003), that may in turn activate the pro-apoptotic
Bcl-2 family members Bax and Bak and the BH3-only protein Bim. It

has been suggested that the sensitivity of tumor cells to APLs may relate
to differential activation of the profile of pro- and anti-apoptotic Bcl-2
proteins (Mollinedo et al., 1997).

5.2.3. Clinical use of ALPs

Although well tolerated in preclinical studies the systemic clinical
use of synthetic ALPs has been restricted somewhat by their hemolytic
potential and gastrointestinal toxicity (Berdel et al., 1987). Other impor-
tant toxicities reported in clinical studies include fever, myalgia, arthritis
and pain. Most studies to date have evaluated ALPs as single agents
(Table 1). Topical application of miltefosine as a 6% solution or ointment
has been found to have activity in the treatment of skin-metastasized
breast cancers and cutaneous lymphomas. Thus, in 100 patients across
five studies of varying duration, 18 patients experienced complete
remission over the study period, 25 a partial remission and the disease
was stabilized in 36 (Dummer et al., 1993; Terwogt et al., 1999; Clive
et al,, 1999; Smorenburg et al., 2000; Dumontet et al., 2006). The

Table 1

Summary of clinical evaluations of alkyl phospholipids.
Drug Patient group [patients (major tumor types)] Comments Reference
Single agent
Edelfosine 16 (7 NSCLC)* PR® in 2 patients Berdel et al., 1987
Iimofosine 53 (12 lung adenocarcinoma, 15 malignant PR in 3 patients Herrmann et al., 1987

melanoma, 10 colon adenocarcinoma)

[Imofosine 15 — only 10 evaluable (6 CRC) Minor response in 1 von Mehren et al., 1995
Iimofosine 15 — only 14 evaluable; NSCLC No activity Woolley et al., 1996
[Imofosine 39 — only 36 evaluable (21 CRC) Pharmacokinetic study Giantonio et al., 2004
Miltefosine 54 (31 colorectal, 13 NSCLC, 10 head and neck) Dose-finding study Verweij et al., 1992
Miltefosine 15; cutaneous lymphoma 6% ointment, topical application, CR in 5, PR in 5, Dummer et al.,, 1993

Miltefosine 34; metastatic CRC

Miltefosine 19; head and neck

Miltefosine 21; sarcoma

Miltefosine 34 — only 30 evaluable; skin metastasized breast cancer
Miltefosine 25; cutaneous metastasized breast cancer
Miltefosine 20 — only 18 evaluable

Miltefosine 12; cutaneous T-cell lymphoma

Perifosine 22 (11 CRC)

Perifosine 42 (19 CRC, 6 renal)

Perifosine 18 — only 17 evaluable; metastatic melanoma
Perifosine 19; prostate cancer

Perifosine 19 — only 18 evaluable; head and neck
Perifosine 23 — only 22 evaluable; sarcoma

Perifosine 17 — only 15 evaluable; sarcoma

Perifosine 25 — only 24 evaluable; prostate cancer
Perifosine 10; pancreatic adenocarcinoma

Perifosine 18 — only 17 evaluable; advanced breast cancer
Perifosine 36 (7 lung, 5 melanoma, 4 gastrointestinal)
Perifosine 37; Waldenstrom's macroglobulinemia
Perifosine 64; renal cell carcinoma

Perifosine 16; chronic lymphocytic leukemia

Combination treatments with perifosine
Radiation 21 (17 NSCLC)
Capecitabine 34; metastatic CRC

26 capecitabine alone

84 — only 73 evaluable; relapsed/refractory
multiple myeloma

32 — only 30 evaluable; relapsed/refractory
multiple myeloma

Bortezomib/dexamethasone

Lenalidomide/dexamethasone

Docetaxel 21; ovarian cancer
7-Hydroxy-staurosporine 13; relapsed/refractory leukemias
Sorafenib 36; lymphoproliferative diseases

(25 with Hodgkin lymphoma)

stable disease in 3

PRin 1 patient, stable disease in 3

Limited activity

Limited activity

6% solution, topical application

CRin 7, PR in 6, stable disease in 10

CRin 1, PRin 2, minor responses in 6, stable disease in 11
6% solution, topical application

PR in 4, stable disease in 7

6% solution, topical application

CRin 5, PR in 2, stable disease in 5
Pharmacokinetic study

PR in 1, stable disease in several patients

No responses observed

Minimal activity

Minimal activity

PR in 1, stable disease in 5

Stable disease in 4

Based on PSA reduction 20% had modest response
Stable disease in 1

Stable disease in 3

No activity

PR in 4, minimal response in 9; stable disease in 20
PR in 6; stable disease in 27

PR in 1; stable disease in 6

Planting et al., 1993
Verweij et al., 1993a
Verweij et al., 1993b
Terwogt et al., 1999

Clive et al., 1999
Smorenburg et al., 2000

Dumontet et al., 2006

Crul et al., 2002

Van Ummersen et al., 2004
Ernst et al., 2005
Posadas et al., 2005
Argiris et al., 2006
Bailey et al., 2006
Knowling et al., 2006
Chee et al., 2007
Marsh et al., 2007
Leighl et al., 2008
Unger et al., 2010
Ghobrial et al., 2010
Cho et al,, 2012
Friedman et al., 2014

CRin 2, PR in 5, stable disease in 10

Further study warranted

CRin 1, PR in 6, stable disease in 19; overall 70% versus
34% in capecitabine alone

Overall response rate of 41%

Vink et al., 2006
Bendell et al., 2011; ©
Richardson et al., 2011; ©

CRin 4, PR in 11, minimal response in 7,

stable disease in 6

PRin 1, stable disease in 3

No activity

PR in 8, stable disease in 159 (PR in 7, stable disease in 8)

Jakubowiak et al., 2012

Fu et al,, 2012
Gojo et al., 2013
Guidetti et al.,, 2014

2 NSCLC, non-small cell lung cancer; CRC, colorectal cancer.
b PR, partial response; CR, complete response.

Subsequent phase III trials did not demonstrate clinical benefits (Bendell et al., 2012; Richardson et al., 2013)
40 began with single-agent perifosine; 4 achieved PR; the remaining 36 received sorafenib/perifosine.
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systemic activity of miltefosine against sarcomas, colorectal cancers,
and head and neck cancers, however, was not as promising, although in-
dividual patients were able to tolerate the drug, and some experienced
partial remissions for limited periods (Planting et al., 1993; Verweij
et al., 1993a; Verweij et al., 1993b).

Perifosine has found clinical application in the treatment of
Waldenstrom's macroglobulinemia (WM ), which is a rare lymphopro-
liferative disorder characterized by the infiltration of bone marrow
with lymphoplasmacytic cells. Existing therapies for WM include
cytotoxic agents like chlorambucil and rituximab that have overall re-
sponse rates of 30-40% and median response durations of 0.5-1 year
(Dimopoulos et al., 1995) but, in a phase Il trial, single-agent perifosine
induced at least a median response in 35% of patients with relapsed or
refractory disease and a median progression-free survival of over
1 year (Ghobrial et al., 2010; Table 1). Dose reductions were required
in 43% of patients who received perifosine because of neutropenia,
gastrointestinal symptoms, or arthritis.

The activity of perifosine is related to the inhibition of prosurvival
PI3K/Akt activity, which decreased proliferation, increased apoptosis,
and inhibited the migration and adhesion of WM cells in vitro and, in
an in vivo subcutaneous xenograft model, the drug prevented homing
of WM tumor cells to the bone marrow microenvironment (Leleu
et al., 2007). Gene expression profiling and immunohistochemistry
of WM samples from patients before and after perifosine treatment
identified differentially-expressed genes. Immunochemical analysis
revealed a decrease in pGSK3/p protein in most patient samples and a
number of PI3K/Akt and NF-kB-regulated genes were down-regulated.
Perifosine initially showed some promise in small scale clinical evalua-
tions against a wide range of tumors, at least in occasional patients
(Van Ummersen et al., 2004; Bailey et al., 2006; Cho et al., 2012).
However, subsequent phase I and phase II studies with single-agent
perifosine have been disappointing. Recently the use of perifosine in
the treatment of patients with chronic lymphogenous leukemia
appeared promising at 3 months, but was only sustained in one patient
after 6 months (Friedman et al., 2014; Table 1). Other ALPs have also
exhibited limited activity against non-small cell lung cancers, lung ade-
nomas, malignant melanomas and adrenal adenomas, among others
(Berdel et al.,, 1987; Herrmann et al., 1987).

5.2.4. Development of drug combinations containing ALPs

The use of anticancer drug combinations involving perifosine is
promising (Table 1). In recent studies perifosine enhanced the anti-
neoplastic effect of lenalidomide and dexamethasone in multiple
myeloma (Jakubowiak et al., 2012) and bortezomib, with or without
dexamethasone, in the same disease (Richardson et al.,2011). Howev-
er, a phase III trial with the latter combination showed no clinical
benefit, although overall survival may have been extended somewhat
in the perifosine arm of the trial (Richardson et al., 2013). Due to slow
recruitment and the absence of clear benefit the study has been termi-
nated (Figg et al., 2014). Earlier studies also identified promising activ-
ity of perifosine in conjunction with capecitabine for metastatic
colorectal cancer (Bendell et al., 2011). A follow-up randomized
phase III trial again found that overall or progression-free survival
was not increased by the drug combination, at least in the refractory
colorectal cancer setting (Bendell et al., 2012). These disappointing
findings in myeloma and colorectal cancer could be attributed to the
dosing schedules that were selected; further studies with different
regimen may be warranted.

In vitro synergism was observed in cells that were treated with the
combination of perifosine and the multikinase inhibitor sorafenib
(Locatelli et al., 2013). In in vivo xenograft studies there was a reduction
in tumor burden, increased survival, and enhanced tumor cell killing
produced by this combination compared with single agents (Locatelli
et al., 2013). A recent study also evaluated the combination in patients
with lymphoproliferative diseases (Guidetti et al., 2014; Table 1).
Patients who had received single-agent perifosine for relapsed and

refractory lymphoproliferative diseases, and who achieved less than a
partial response, received the combination therapy until the disease
progressed or toxicity was unacceptable. Initial results supported a
clinical response in 7 of 25 patients with Hodgkin lymphoma. Also
promising, 4 of 8 patients with chronic lymphocytic leukemia
responded to perifosine alone (Guidetti et al., 2014). The clinical
responses observed in the patients with relapsed and refractory Hodg-
kin lymphoma suggest that this subgroup could serve as target popula-
tion for new studies (Guidetti et al.,, 2014).

Recent preclinical studies have identified several additional
perifosine-containing drug combinations of potential value. Treatment
of human acute myeloid leukemia cells with perifosine and the cyclin-
dependent kinase inhibitor SNS-032 enhanced cell death compared to
treatment with either agent alone — most likely due to a decrease in
PI3K/Akt survival signaling by perifosine (Meng et al., 2013). Combina-
tion of perifosine with the mTOR inhibitor CCI-779 produced cell cycle
arrest and growth inhibition in a number of human cancer cell lines
(Pitter et al., 2011). These preclinical data suggest that inhibition of
the PI3K/Akt/mTOR pathway at two points in the cascade may produce
more optimal effects, and this is being assessed clinically (https://
clinicaltrials.gov; accessed December 12, 2014). NCT02238496 is a
Phase II study that is assessing the efficacy of the combination of
perifosine and the mTOR inhibitor temsirolimus in recurrent or progres-
sive malignant glioma. Two other active trials are also assessing this
combination but are not recruiting patients: NCT01051557 (a Phase I/
Il study to assess efficacy and safety in recurrent and progressive malig-
nant glioma) and NCT01049841 (a Phase I study of different dose sched-
ules in recurrent pediatric solid tumors). Two further trials that are
aimed at assessing single-agent perifosine in recurrent and progressive
malignant glioma (NCT00590954) and recurrent pediatric solid tumors
(NCT00776867) are also active but not recruiting.

Apart from drug combinations, earlier preclinical studies identified
promising activity of perifosine in combination with radiation for non-
small cell lung cancer (Vink et al., 2006; Table 1), brainstem gliomas
(Becher et al, 2010) and prostate cancer cells in vitro and in vivo (Gao
et al., 2011). Beneficial effects have also been noted with the other
ALPs erucylphosphocholine and erufosine in human astrocytoma and
glioblastoma cell lines in combination with radiation (Riibel et al.,
2006). Complete and sustained regression of squamous cell carcinoma
xenografts occurred after combined treatment of radiation and
perifosine (Vink et al,, 2006). Short-term treatment with erufosine pro-
duced only a transient decrease in the growth of the T98G glioblastoma
tumors that was enhanced by repeated application (Henke et al., 2012).
These data suggest that in vivo efficacy may depend on an extended
treatment schedule.

Together, it appears that combination approaches involving the
better tolerated ALPs and conventional cytotoxic or targeted agents,
or concurrent radiation, hold significant promise. Experimental stud-
ies also suggest that the clinical application of such combinations
could also be useful in the management of some drug-resistant
tumors. However, optimal schedules do not yet appear to have been
identified.

5.3. Other lipid-derived molecules with the
potential for development as anti-cancer agents

5.3.1. Anticancer mechanisms of & —3 PUFAs

Evidence is accumulating that intake of w—3 PUFA can decrease
cancer risk. From population studies the incidence of breast, prostate
and colon cancers is lower in populations that have high dietary in-
takes of oily fish, such as the Japanese (Hardman, 2002). Moreover,
as fish intake by these groups decreases, and is replaced by western
diets high in ®—6 PUFA, there is an increase in tumor incidence.
Indeed, in Japanese women who migrated to North America, the inci-
dence of breast cancer reportedly increased within a single generation
(Hardman, 2002). Direct evidence for a relationship between tissue
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levels of ®—3 PUFA and cancer risk has also been obtained. In one
study, the incidence of breast cancer was found to be lowest in
women with the highest ratio of ®—3/w—6 PUFA in breast adipose tis-
sue (Maillard et al,, 2002).

Findings from experimental studies have largely supported the pop-
ulation studies. The principal long chain w—3 PUFAs DHA and EPA were
anti-proliferative and decreased the viability of cells from a range of
tumor types, including colon, prostate and hepatocellular carcinomas
(Cerella et al., 2010). Dietary supplementation with ®—3 PUFA de-
creased the development of human breast and colorectal tumors that
had been implanted in nude mice, including decreased tumor volume,
decreased microvessel density and decreased VEGF expression (Tevar
et al., 2002).

There are a number of possible mechanisms by which ©—3 PUFA
decrease tumorigenesis, including direct effects on ROS production
to promote apoptosis, alterations in the conversion of ®—6 PUFA to
protumorigenic eicosanoid metabolites, altered regulation of PUFA bio-
transformation enzymes and the conversion of ®—3 PUFA to metabo-
lites that have anticancer activity (Fig. 2). In the non-ionized state
medium and long-chain fatty acids readily penetrate the mitochondrial
membrane (McLaughlin & Dilger, 1980; Gutknecht, 1988; Kamp &
Hamilton, 1992). Free fatty acids, including saturated fatty acids, uncou-
ple oxidative phosphorylation, release protons into the matrix space
and efflux fatty acid anions via the adenine nucleotide translocator
(Wojtczak & Schonfeld, 1993). This not only dissipates mitochondrial
AWV, impairs electron transport and decreases ATP production, but
may also activate apoptosis by promoting the release of cytochrome c.
Enhanced radical production depletes cellular glutathione and other
antioxidants, which stimulates apoptosis. There is evidence that ®—3
PUFA promote apoptosis by directly modulating mitochondrial ROS
production and, in addition, w—3 PUFA themselves are susceptible to
peroxidation which also depletes glutathione and promotes apoptosis
(Barrera, 2012).

There is also evidence that the anti-tumor actions of ®—3 PUFA are
mediated in part by preventing the actions of protumorigenic ®—6
PUFA metabolites. Thus, ERK phosphorylation and HIF-1a protein
over-expression in colon cancer cells and in xenografts in nude mice
were inhibited by ®—3 PUFA (Calviello et al., 2004). In colorectal cells
EPA decreased COX-2 expression and PGE, formation and increased
the formation of its EPA-derived analogue PGE3, which antagonized
PGE,/EP4-dependent pro-tumorigenic signaling (Hawcroft et al.,
2010). Decreased growth of prostate and breast cancer cell xenografts
in nude mice by intake of fish oil or ®—3 PUFA has also been associated
with decreased PGE, production (Karmali et al., 1987; Rose & Cohen,
1988; Rose & Connolly, 1997; Berquin et al., 2007). By up-regulating
the CDK-inhibitors p21P! and p27%P! DHA decreased cell cycle
progression, which could account in part for its antiproliferative actions
(Narayanan et al., 2003). Suppression of COX-2 could be mediated by
inhibition of NF-kB, which decreases the expression of anti-apoptotic
Bcl-2 family proteins and reactivates apoptosis (Schwartz et al., 1999).
®—3 PUFA supplementation also decreased the synthesis of the pro-
inflammatory 5-LOX-mediated metabolite LTA; and inhibited the
release of the cytokines IL-13 and TNF-a (Taccone-Gallucci et al.,
2006). Together these findings are consistent with the impairment of
pro-tumorigenic signaling mechanisms by =—3 PUFA.

Long chain ®—3 PUFAs have been found to modulate lipid raft
composition in MDA-MB-231 breast cancer cells and to alter signaling
by raft-associated proteins. Thus, EPA and DHA modulated the
phosphorylation of EGFR that influences tumor cell growth (Schley
et al.,, 2007). ®—3 PUFAs also decreased the activity of the oncogenes
ras and AP-1 downstream from the EGFR, which inhibited mitosis
(Hardman, 2002). It has also been shown that ®—3 PUFA decrease
membrane expression of the chemokine receptor CXCR4 in MDA-MB-
231 breast cancer cells, which decreases their migration potential
(Altenburg & Siddiqui, 2009). This appears to be due to the incorpora-
tion of ®—3 PUFAs into the cell membrane, which disrupts the

cholesterol-rich lipid rafts that are required for CXCR4 dimerization
and signaling through NF-xB (Wang et al., 2006).

5.3.2. Anti-tumorigenic w—3 PUFA metabolites

Apart from indirect effects on ®—6 PUFA biotransformation, there is
also evidence that certain ®—3 PUFA metabolites exert antitumor
actions in their own right. Eicosanoid metabolites derived from ®»—3
PUFAs have diminished pro-inflammatory, proliferative, invasive and
pro-angiogenic actions compared to those formed from ®—6 PUFA
(Abou-el-ela et al., 1989; Rose & Connolly, 2000; Hardman, 2002). The
anti-angiogenic activities of EPA in human endothelial cells, including
decreased invasion and endothelial tube formation, have been attribut-
ed to COX-2-derived PGEs5 and possibly other metabolites (Fig. 2); PGE3
directly suppressed the induction of the pro-angiogenic mediator
angiopoietin-2 by VEGF (Szymczak et al., 2008). The underlying mech-
anisms by which certain w—3 PUFA metabolites regulate angiogenesis
and related processes have not been completely clarified, but could
involve altered prostanoid receptor signaling. Thus, ®w—3 EPA-derived
eicosanoids activate prostanoid receptors, but less efficiently than the
corresponding w—6 arachidonic acid-derived products (Wada et al.,
2007).

CYP-mediated epoxides of ®—3 PUFAs have also been shown to
exert growth suppressing and anticancer effects (Fig. 2). The 17,18-
epoxide of EPA, but not its regioisomers, decreased endothelial cell
proliferation and activated apoptosis (Cui et al., 2011; Fig. 3A). This
led to cell cycle arrest by activation of the growth suppressing p38
MAPK and subsequent down-regulation of cyclin D1 (Cui et al., 2011).
Zhang et al. (2013) showed recently that DHA epoxides exerted anti-
cancer effects by suppressing VEGF-mediated angiogenesis. Inhibition
of angiogenesis resulted in a decrease in primary tumor growth and
metastasis in vitro.

Certain LOX-dependent metabolites may also exhibit anti-tumor
activity including the antiproliferative arachidonic acid metabolite
15-HETE and the resolvins (Fig. 2), which are LOX-mediated metab-
olites formed from ®—3 EPA and DHA (the E-series resolvins and
protectins, respectively) (Haeggstrom & Funk, 2011). More com-
plex eicosanoids may also be formed in dual biotransformation re-
actions. Thus, DHA is converted to 17S-hydroxy-DHA by 15-LOX,
then to 7S-hydroperoxy,17S-hydroxy-DHA by 5-LOX and on to resolvin
D1 (75,8R,175-trihydroxydocosa-4Z,9E,11E,13Z,15E,19Z-hexaenoic acid)
after epoxidation, which could involve CYPs. Similarly, 4S-hydro-
peroxy,17S-hydroxy-DHA is another LOX-generated product from
17S-hydroxy-DHA that also undergoes epoxidation to produce
resolvins D3 and D4. These resolvins exhibit anti-inflammatory proper-
ties in vivo when administered either intravenously or orally (Dangi
et al., 2009).

5.3.3. Adaptation of anti-tumor ®—3
PUFA epoxides in cancer drug development

Certain ®—3 PUFA epoxides hold promise as a novel group of poten-
tial anticancer agents. Very recently a small series of synthetic ®—3
epoxides of C20-C22 long chain saturated fatty acids was evaluated
for their anti-proliferative and pro-apoptotic actions in human breast
cancer cells (Dyari et al., 2014; Fig. 3B). These were developed from
the naturally occurring ®—3 17,18-epoxy-EPA by removal of the
additional olefinic bonds, because of the potential for oxidation to the
isomeric epoxides that stimulated proliferation and inhibited apoptosis.
The synthetic ®—3 epoxy-fatty acids impaired the viability of MDA-MB-
231 cells (decreased ATP production, increased caspase-3 activity and
increased annexin V/propidium iodide staining) and, to a lesser extent,
MDA-MB-468, MCF-7 and T-47D breast cancer cells. Activity was de-
pendent on the ability to activate JNK signaling because pharmacologi-
cal inhibitors and silencing of JNK impaired apoptosis. Decreased
proliferation was associated with down-regulation of cyclin D1, and
led to failure to complete the cell cycle. The epoxides themselves are
unlikely to be suitable for in vivo application, however, due to low

Please cite this article as: Murray, M., et al., Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs,
Pharmacology & Therapeutics (2015), http://dx.doi.org/10.1016/j.pharmthera.2015.01.008



http://dx.doi.org/10.1016/j.pharmthera.2015.01.008

M. Murray et al. / Pharmacology & Therapeutics xxx (2015) XXX—-XXX 11

i i )\/\/\/\/\/\/‘OL i
/\/U\OH W\A)LOH OH WMMAOH
butyric acid palmitic acid 13-methyltetradecanoic acid oleic acid
/\/\/W/\/\i i i
o OH /\/\/\/\/\/\/\/\/‘LOH WM/;/W\AOH
linoleic acid vaccenic acid a-eleostearic acid
o o o
/\/E/W\/\/\/U\OH /\/\/—W/\:/\/\/\)J\OH S\)J\OH
punicic acid jacaric acid tetradecylthioacetic acid

Fig. 6. Structures of saturated fatty acids (butyric acid, palmitic acid and 13-methyltetradecanoic acid), unsaturated fatty acids (oleic acid, linoleic acid, vaccenic acid, a-eleostearic acid,
punicic acid and jacaric acid) and the thiofatty acid tetradecylthioacetic acid that exhibit antiproliferative, proapoptotic or antimetastatic properties against tumor cells and xenografts.

stability: epoxide hydrolase converts the epoxides to the inactive diols
(Inceoglu et al., 2008). A potentially valuable approach is the co-
administration of soluble epoxide hydrolase inhibitors, such as trans-
4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy|-benzoic acid, that en-
abled retention of the in vivo activity of DHA 19,20-epoxide against
tumor growth in a lung carcinoma model (Zhang et al., 2013).

5.4. Other fatty acids with the potential
for application in anti-cancer strategies

Several studies have found that naturally occurring fatty acids from
a range of sources, including saturated and certain unsaturated
analogues, activate apoptosis and impair ATP production. Some of
these lipid-based agents have the potential for application in future
cancer treatments.

Butyric acid and similar short-chain saturated fatty acids were found
to induce cell cycle arrest in GO/G1 and G2/M phases (Heerdt et al.,
1997; Fig. 6; Table 2). In COLO 205 and HT-29 colorectal cells butyrate
also upregulated the death receptor TNF-R1, activated Bid, released
cytochrome ¢ from the mitochondrion and activated executioner
caspases to induce apoptosis. Longer-chain palmitic acid (C16:0;
Fig. 6; Table 2) decreased mitochondrial AW and effected cytochrome
c release, which induced the proteolysis of poly-ADP ribose polymerase
and the fragmentation of DNA (de Pablo et al., 1999). Mitochondrial
uncoupling is greatest with C12-C16 saturated and longer cis-
unsaturated fatty acids (Korshunov et al., 1998; Bernardi et al., 2002).
However, there may be additional mechanisms by which free fatty
acids decrease tumor cell viability, including the activation of extrinsic
apoptosis, inhibition of signaling pathways to induce cell cycle arrest,
and upregulation of the tumor suppressor p53 and the CDK-inhibitor
p21P! (Emenaker et al., 2001; Fauser et al., 2011).

Table 2
Overview of potential anti-tumor actions of fatty acids.

13-Methyltetradecanoic acid (Fig. 6; Table 2) is an iso-C;5 branched-
chain saturated fatty acid that disrupts mitochondria and activates
apoptosis in tumor cells (Yang et al., 2000; Wongtangtintharn et al.,
2005; Lin et al., 2012; Table 2). In human bladder cancer cells,
this fatty acid altered the balance between Bcl-2 proteins, activated
pro-apoptotic p38 and JNK MAPKs and inhibited prosurvival PI3K/Akt
(Lin et al, 2012). In vivo growth of xenografted prostate and
hepatocarcinoma-derived cells into nude mice was also inhibited by
13-methyltetradecanoic acid. Apoptosis was induced without evidence
of major toxicity, which suggests that 13-methyltetradecanoic acid
could have value as a single- or combination-agent in human cancer
chemotherapy (Yang et al., 2000).

In breast cancer the monounsaturated oleic acid (18:1, ®—9; Fig. 6)
reportedly exerts anti-tumorigenic effects by suppressing human EGFR-
2 (Colomer & Menendez, 2006); this is in accord with the reported
health benefits of the Mediterranean diet, which contains large quanti-
ties of oleic acid. However, conflicting reports have also appeared. Thus,
oleic acid also mediates the production of arachidonic acid, which is
converted to eicosanoid metabolites that activate FAK phosphorylation
and drive MDA-MB-231 breast cancer cell migration (Navarro-Tito
et al., 2010). If the important factor is the intermediary conversion to
fatty acids like arachidonic acid that generates tumorigenic products
then replacement with a monounsaturated fatty acid may be useful.
Synthetic longer chain ®—3 monounsaturated fatty acids (C19-C22)
were found recently to decrease the proliferation of MDA-MB-231
breast cancer cells by inhibiting PGE, formation (Cui et al., 2012).
These agents also decreased the invasive behavior of breast cancer
cells and increased apoptosis. The molecules were well coordinated
within the active site of COX-2 via interactions with Arg120, Tyr355
and a number of hydrophobic residues. Because COX-2 is responsible
for the aggressive characteristics of many mammary tumors it is feasible

Fatty acid derivative Antitumor activity

References

Butyric acid
Caspase-3 activation
Palmitic acid

13-Methyltetradecanoic acid

Jacaric acid TROS,? caspase-3 activation

PARP cleavage

Dissipation of mitochondrial membrane potential (AW)

| Mitochondrial AW, cytochrome c release

Mitochondrial disruption, caspase-3 activation

Heerdt et al., 1998

Milovic et al., 2000

Merrill & Jones, 1990

Schlame et al., 2000
Ostrander et al., 2001

Yang et al., 2000
Wongtangtintharn et al., 2005
Lin et al., 2012

Shinohara et al., 2012

Gasmi & Sanderson, 2013

a-Eleostearic acid

Vaccenic acid
Punicic acid

Tetradecylthioacetic acid

|Mitochondrial AW, tlipid peroxidation
1DNA fragmentation

1DNA fragmentation, Caspase activation
|Mitochondrial AW, tlipid peroxidation
1DNA fragmentation

Caspase-3 activation, PARP cleavage

Tsuzuki et al., 2004
Grossmann et al., 2009
Miller et al., 2003
Grossmann et al., 2010
Gasmi & Sanderson, 2010
Tronstad et al., 2001, 2003

2 ROS, reactive oxygen species; PARP, poly (ADP-ribose) polymerase.
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that the synthetic fatty acids could have clinical utility by inhibiting the
formation of protumorigenic PGE,.

Other monounsaturated fatty acids, such as vaccenic acid (11-trans-
18:1 w—7) and punicic acid (18:3 w—5; Fig. 6; Table 2) have been
found to decrease mitochondrial permeability, impair proliferation
and deplete cytosolic glutathione (Table 2); these findings are consis-
tent with activation of the intrinsic pathway of apoptosis by ROS
(Miller et al., 2003; Grossmann et al., 2010). Apart from monounsaturat-
ed fatty acids, certain atypical PUFAs also hold promise. Jacaric acid
(Fig. 6; Table 2) from jacaranda is an isomer of linolenic acid (Fig. 6)
and has a conjugated triene system that exerts anti-tumor actions
in vitro and in nude mice carrying DLD-1 cell xenografts in vivo
(Shinohara et al., 2012). Similarly, c-eleostearic acid (9-cis-11-trans-
13-trans 18:3; Fig. 6; Table 2) from bitter gourd was relatively effective
in increasing lipid peroxidation, decreasing AV and releasing
cytochrome c from the mitochondrion in MDA-MB-231 cells in vitro.
In vivo, tumor cell-induced vessel formation was suppressed in mice
that were administered a-eleostearic acid (50 and 100 mg/kg/day;
Tsuzuki & Kawakami, 2008). ai-Eleostearic acid also inhibited capillary
network formation and migration by human umbilical vein endothelial
cells. The underlying mechanism was decreased angiogenesis by down-
regulation of VEGF-receptors 1 and 2, activation of PPAR-y and induc-
tion of apoptosis.

6. Strategies to enhance the stability of
eicosanoids and other lipid-derived agents

Because eicosanoids are autacoid signaling molecules that are
generated near the site of action, and are rapidly metabolized after
eliciting a biological response, their chemical and metabolic instability
has hindered their development as useful drugs. However, their
potential value has motivated research on strategies to inhibit their
metabolism and improve stability. To date this has led to numerous
agents with improved in vivo activity and several clinically approved
drugs. Some of these strategies are also applicable to development of
stabilized fatty acids, as both compound classes share metabolic
routes including [3- and w-oxidation. Fatty acids present their own
set of challenges to drug design and development. While ligand-
based design approaches are straight forward with prior knowledge
of the drug target, the flexibility inherent in fatty acid chains can
confound pharmacophore and pseudo-receptor modeling as the
identification of optimal low-energy and biologically active conforma-
tions may be difficult and time consuming (Cui et al., 2012). However
as the ALPs demonstrate, development of efficacious fatty acid-based
drugs in still achievable without identification of the target. In
this section the major pathways of eicosanoid and fatty acid degrada-
tion are elaborated in relation to the strategies used to circumvent
them.

6.1. C15-hydroxyl oxidation

Oxidation of the 15-hydroxyl group in PGs, prostacyclins and
lipoxins is mediated by C;s-hydroxyprostaglandin dehydrogenase and
is the major metabolic route for these eicosanoids (Collins & Djuric,
1993). Oxidation or inversion of stereochemistry at this moiety renders
these compounds biologically inactive (Collins & Djuric, 1993; Duffy &
Guiry, 2010). Inhibition of this process was first achieved by addition
of either one C15 methyl (Table 3, entry 1) or two C16 methyl groups
(Table 3, entry 2) to PGE, (Bundy et al., 1971; Robert et al., 1976). The
resulting compounds were orally active and exhibited longer dura-
tions of action than the parent. Methylation has since become a com-
mon strategy to stabilize the C15-hydroxyl group, appearing in a
number of PG and lipoxin A4 analogues (Collins & Djuric, 1993;
Serhan et al., 1995).

Inclusion of bulky groups adjacent to the C15 hydroxyl has also
proved a valuable strategy to prevent degradation. PGE, analogues

bearing phenoxy groups at the C16 position, including sulprostone
(Table 3, entry 3), were not metabolized by C;s-hydroxyprostaglandin
dehydrogenase and possessed enhanced in vivo activity compared
to alkyl analogues (Schaaf et al., 1981). Cyclohexyl (Table 3, entry
4) and phenoxy-substituted lipoxin A4 analogues were similarly re-
sistant to C15 oxidation as were the C15 methylated analogues
(Serhan et al., 1995). It is therefore not surprising that phenyloxy,
substituted phenoxy, cyclopentyl and cyclohexyl groups are common
structural motifs in stable eicosanoid analogues (Collins & Djuric,
1993).

6.2. 3-Oxidation

3-Oxidation is a major pathway for the metabolism of fatty acids and
eicosanoids (Diczfalusy et al., 1991) that occurs primarily in mitochon-
dria, and is a chain-shortening process in which fatty acids are broken
down into acetyl-CoA units that are processed in the citric acid cycle
to generate energy. Following transport to the mitochondrion, the first
step in R-oxidation is dehydrogenation between the o and (3 carbons
adjacent to the carboxylic acid. The resulting olefin is hydrated, oxidized
and cleaved to remove a 2 carbon unit from the lipid chain in order to
generate acetyl-CoA.

A common strategy to prevent 3-oxidation is insertion of a heteroat-
om into the 3-position of the fatty acid chain. The heteroatom - typically
oxygen or sulfur - prevents the first step of 3-oxidation, acetyl CoA
dehydrogenase mediated carbon-carbon double bond formation. An
early and successful application of this strategy can be found in the
development of stable prostacyclin analogues. Iloprost, a stabilized
prostacyclin analogue, was found to have a short half-life (t;, = 20-
30 min) due to rapid metabolism, primarily through R-oxidation
(Hildebrand et al., 1990). However, cicaprost (Table 3, entry 5), which
contains a 3-oxo group, has a longer half-life of 1-2 h and its clearance
was only ~20% of that of iloprost (Hildebrand et al., 1989); additionally,
~80% of the dose was excreted unchanged, which is consistent with
improved metabolic stability. Further p-oxidation-resistant ethers
were prepared, including the prostacyclin analogue 3-oxa-iloprost
(Stiirzebecher et al., 1986), and stable analogues of PGE, (Elworthy
et al,, 2004) (Table 3, entry 6) and lipoxin (Table 3, entry 7) (Guilford
et al., 2004). In general the biological activities of the parent compound
were conserved in this approach and R-oxidation was prevented, but
not always with a corresponding improvement in pharmacokinetic
profile.

Introduction of cycloalkyl, phenyl (Elworthy et al., 2004; Zhao
et al., 2007) and heterocyclic (Elworthy et al., 2004; Kambe et al.,
2012) groups adjacent to the carboxylic acid have also been used to
block -oxidation. A prostanoid derivative bearing a cyclobutylene
adjacent to the carboxylic acid group (Table 3, entry 8) had a six-
fold improvement in half-life following oral administration, as
well as greater in vitro biological activity (Matsumura et al., 1995).
In an attempt to prevent B-oxidation of PGE,, the a- and B-carbons
were replaced with a thiophene ring, which extended the half-life
(Cameron et al., 2006). Although detailed metabolic data have not
yet been provided, biological activity is generally well retained in
these compounds.

Tetradecylthioacetic acid (TTA; Fig. 6) is an anticancer lipid that
has a sulfur atom at the C3 position in the carbon chain which prevents
3-oxidation (Hvattum et al., 1991). TTA decreased proliferation and
induced apoptosis in a range of tumor cell lines in vitro and in vivo
(Tronstad et al., 2003; Iversen et al., 2006). Long-chain 3-thia-
fatty acids uncouple oxidative phosphorylation and dissipate the
mitochondrial AW due to direct interactions with the adenine nucleo-
tide translocator and which leads to decreased ATP production
(Wieckowski & Wojtczak, 1998). TTA also stimulates mitochondrial
ROS production, which depletes glutathione and renders mitochondria
susceptible to further damage (Tronstad et al., 2001, 2003). Release of
mitochondrial cytochrome ¢ enhanced caspase-3 activation and PARP
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cleavage. A diet containing TTA increased the vascularization of colon Amelioration of 3-oxidation has also been achieved by bioisosteric
cancer xenografts in mice and improved the survival of mice with replacement of the carboxylate group. Incorporation of a methane
leukemia xenografts (Jensen et al., 2007). sulfonamide isosteric group into sulprostone (Table 3, entry 3), a PGE,
Table 3
Structural modifications in prostanoid and fatty acid metabolites that have enhanced stability.
Entry Structure Parent Metabolic liability Modification Outcome Reference
1 PGE, Oxidation of 15-hydroxyl C15-methylation Orally active, 1 duration of ~ Robert et al.,
group action, 30-fold 1 in potency 1976
in vivo
2 PGE, Oxidation of 15-hydroxyl C16-dimethylation Orally active, 1 duration of ~ Robert et al.,
group action, 50-fold 1 in potency 1976
in vivo
3 PGE, 15-Hydroxyl oxidation and ~ Terminal phenoxy group Not substrate for Schaaf et al.,
NN {>-oxidation and isosteric sulfonamide C15-hydroxyprostaglandin 1981
CONHSO,Me dehydrogenase, 30-fold 1 in
) N O@ potency in vivo
HO OH
sulprostone
4 HO OH LXA4 15-Hydroxyl oxidation Terminal cyclohexyl group 1 Resistance to Serhan et al,,
COOH C15-hydroxyprostaglandin 1995
| NN dehydrogenase
=
5 prostacyclin  p-Oxidation and cyclic enol ~ 3-Oxo group and enol ether 1 Half-life, | clearance, 80%  Hildebrand
ether hydrolysis oxygen to methylene of dose excreted unchanged et al., 1989
conversion
cicaprost
6 (o] PGE, 3-Oxidation and hydroxyl 3-0xo group and hydroxyl | Clearance but no Elworthy
\\ N ,_‘\/\/O\/COOH cyclopentanone degradation cyclopeptanone to lactam 1mpr‘ovement in half-life et al.,, 2004
conversion relative to alkyl analogue.
=
OH
7 HO OH LXA4 3-Oxidation 3-0xo0 group Prevention of B-oxidation Guilford
O. _COOH but no improvement in et al., 2004
| X ~ pharmacokinetics
= o— )—F
OH
8 prostacyclin  [3-Oxidation and cyclic enol  Cycloalkyl group adjacent to 6-Fold increase in duration =~ Matsumura
o COONa ether hydrolysis COOH and ring electron of action relative to iloprost et al., 1995
: withdrawing group
HO 7T
OH *
9 O X, COOH PGE, 3-Oxidation and hydroxyl Thiophene ring adjacent to 1 Half-life Cameron
\ \ cyclopentanone degradation COOH and hydroxyl et al., 2006
N S cyclopentanone to lactam
conversion
OH
10 COOH prostacyclin ~ Cyclic enol ether hydrolysis  Benzoannelation Orally active, 1 half-life Melian &
Goa, 2002
o
W
HO :
OH
beraprost

(continued on next page)
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Table 3 (continued)

Entry Structure Parent Metabolic liability Modification Outcome Reference
11 NC prostacyclin ~ 15-Hydroxyl oxidation and ~ C16 methylation and 1 Acid stability, 1 half-life Krause et al.,
clic enol ether hydrolysis  5-cyano grou 1983
/}‘/\\CO OMe o ydroly yano group
A
HO 7 )
OH
nileprost
12 (e} PGE, 15-Hydroxyl oxidation and ~ C16-dimethylation and 1 Half-life Wills et al.,
\ N— hydroxyl cyclopentanone hydroxyl to methyl 1986
' COOMe degradation conversion
5 = :
) OH
trimoprostil
13 Cl PGE, 15-Hydroxyl oxidation and ~ C16-dimethylation and 1 Stability, orally available Tiiber et al.,
N hydroxyl cyclopentanone carbonyl oxygen to chloro 1993
) COOH degradation conversion
N = :
HO OH
nocloprost
14 COOH 17,18-epoxy Epoxide hydrolysis Epoxide to oxamide 1 Stability Falck et al.,
EPA conversion 2011

g
— NN AN
N
)

analogue, dramatically improved in vivo activity and was attributed to
[>-oxidation resistance (Jacob & Shulgin, 1981). Other potential carbox-
ylate isosteres include tetrazole and alkyl phosphinic acid (Soper et al.,
2001).

6.3. w-Oxidation

o-0Oxidation is a CYP-mediated pathway in which the carbon at the
w-end of the fatty acid chain is oxidized to a hydroxyl group that
enables further oxidation by alcohol and aldehyde dehydrogenases
(Roman, 2002). This can be considered as activation of the lipophilic
carbon chain in fatty acids to facilitate 3-oxidation at either end of the
molecule. Replacement of the terminal w-alkyl chain with aromatic
(Carpio et al., 1987; Serhan et al., 1995) and cycloalkyl (Serhan et al.,
1995) groups is a straightforward strategy to prevent m-oxidation
while retaining biological activity (Collins & Djuric, 1993). These sub-
stituents also inhibit C15-hydroxyl group oxidation, which effectively
prevents two metabolic pathways simultaneously.

6.4. Rapid metabolism

The ring systems of prostanoids and related lipid mediators are sites
of chemical and metabolic degradation. The cyclic enol ether moiety
of prostacyclin is chemically and metabolically labile to hydrolysis
(t12 = 5 min at pH 7.4) (Whittaker et al., 1976), preventing its clinical
application. One successful stabilization strategy has been replacement
of the ether oxygen with a methylene group. This modification has been
widely used and has produced clinically approved drugs, such as
carbacyclin, iloprost and cicaprost (Table 3, entry 5). Other hetero-
atoms, such as sulfur (Nicolaou et al., 1977) and nitrogen (Bundy &
Baldwin, 1978), have also been used as oxygen replacements. In-
corporation of the double bond into an aromatic system, to produce
benzoannelated analogues, has resulted in stable and functional prosta-
cyclin analogues, such as beraprost (Table 3, entry 10) (Melian & Goa,
2002). Reduction of the olefinic bond also produced more stable prosta-
cyclin analogues that retained activity (Fraga et al., 1996). The introduc-
tion of electron-withdrawing groups has been used to stabilize enol

ethers against acid hydrolysis; an example is incorporation of a 5-
cyano group at the distal vinyl carbon of nileprost (Table 3, entry 11)
(Krause et al., 1983) or fluorination of the bicyclic ring system
(Table 3, entry 8) (Fried et al., 1980; Matsumura et al., 1995).

Stabilization of the labile hydroxyl cyclopentanone ring to produce
PGE, analogues has been an important step towards the clinical utiliza-
tion of this class of compound. Removal or substitution of either the hy-
droxy or carbonyl oxygen has been used to stabilize the ring against
degradation. For example, the hydroxyl-to-methyl and carbonyl
oxygen-to-chloro substitutions found in trimoprostil (Table 3, entry
12) (Wills et al., 1986) and nocloprost (Table 3, entry 13) (Tiiber et al.,
1993), respectively, produced PGE; analogues with acceptable pharma-
cokinetic profiles. Robust PGE,-type analogues have also been prepared
through substitution of the native ring system with heterocycles. Thus,
vy-lactam (Table 3, entries 6 and 9) (Elworthy et al., 2004; Cameron
et al,, 2006; Kambe et al.,, 2012) and pyrazolidinone (Zhao et al., 2007)
systems have been used to improve chemical and metabolic stability
and to produce analogues with higher EP receptor subtype selectivity.
Stable analogues of PGEs, the COX-2/PGE synthase-derived product of
®—3 EPA biotransformation, could have value in anticancer drug
development. Modifications at C15 and C16, the ®-carbon, prevention
of p-oxidation, heteroatom replacement, benzoannelation and ring
modification (Fig. 7) could now be undertaken to attempt to capture
the anti-tumorigenic properties of the eicosanoid.

6.5. Epoxide isosteres

Bioisosteric replacement of the epoxide group has been successfully
employed to produce metabolically robust epoxide mimics. Isosteric
groups that most effectively retained the biological activity of the parent
epoxide include ethers (Falck et al.,, 2003; Imig et al., 2010), ureas (Falck
etal.,, 2009), oxamides (Falck et al., 2009, 2011), and amides (Falck et al.,
2009, 2011). In metabolic studies conducted in rat liver homogenates it
is noteworthy that ®—3 17,18-epoxy-EPA was ~80% metabolized over
30 min, while a partially saturated analogue bearing an oxamide
isosteric group remained largely intact (Table 3, entry 14).
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Fig. 7. Summary of synthetic strategies that may be used to increase PG metabolite stability against metabolic degradation, using prostacyclin as the template.

Such analogues of w—3 epoxyfatty acids, including urea, amide and
carbamate isosteres, were assessed recently for their anticancer activity
(Dyari et al, 2014). However, these proved to be much less effective
than their epoxide counterparts as anti-proliferative and pro-apoptotic
agents against human breast cancer cell lines. Further structural modifi-
cation is now warranted to assess whether alternate isosteres could be
effective.

6.6. Development of anticancer strategies
based on «—3 PUFA and their metabolites

In addition to the beneficial direct activities of ®—3 PUFA and
certain metabolites, such agents could be tested in combination with
established anticancer agents. Fish oil supplementation enhances the
efficacy of doxorubicin against MCF-7 breast carcinoma xenografts in
nude mice (Hardman et al., 2001) and doxorubicin in combination
with dietary DHA supplementation shrank mammary tumors in rats
(Colas et al., 2006). The mechanism may involve enhanced lipid perox-
idation and ROS production because antioxidants, such as a-tocopherol,
abolished the augmentation effect (Colas et al., 2005). Integration of
DHA and related PUFAs into membrane phospholipids could increase
the susceptibility of tumor cells to free radicals and cytotoxicity induced
by drugs such as the anthracyclines. There may be further mechanisms
by which w—3 PUFA metabolites, including epoxides, may contribute
to anticancer effects, such as altered raft signaling and ceramide
accumulation. These mechanisms may contribute to the beneficial ther-
apeutic effects of drug combinations, such as has been found recently
with antitumor ALPs. Thus, by combining classical chemotherapy with
targeted therapy, it may be possible to enhance toxicity while lowering
the effective concentrations of classical chemotherapeutics necessary
for effective elimination of the particular tumor.

7. Summary and conclusions

Evidence is increasing that endogenous lipids are important regula-
tors of proliferative and cell death mechanisms in cancer cells. The
adaptation of lipid-based agents into clinical strategies may represent
new approaches for the treatment of drug-resistant and advanced
tumors. The most intensively studied group of lipid-based agents has
been the ALPs. Unlike the majority of conventional anti-cancer agents
that target tumor cell DNA or dysregulated signaling cascades, the
ALPs act by several potential mechanisms, including the modulation of
tumor cell membrane function and interference with phospholipid
homeostasis (Fig. 5). This promotes intracellular stresses in tumor
cells and activates apoptosis. In other cases intracellular lipid metabo-
lites have been shown to promote cancer cell growth and survival
after treatment with cytotoxic agents. Thus, PGE, and EETs are pro-
tumorigenic metabolites formed in cells by biotransformation of the

®—6 PUFA arachidonic acid. This has led to clinical and experimental
approaches to modulate tumor expansion by inhibiting the formation
of pro-tumorigenic lipid mediators. However, to the present these strat-
egies have only been partially successful in part because of the toxicity
of the inhibitory drugs, especially COX inhibitors. However, better
tolerated agents may enable the revival of this strategy. For example,
lipid-based synthetic monounsaturated fatty acids may be useful as
inhibitors of COX enzymes in tumors that generate proliferative and
anti-apoptotic PGs. Alternately, inhibition of downstream signaling
mechanisms that promote tumor growth and survival could facilitate
new anticancer strategies. Such an approach is now being tested in
clinical studies that combine conventional anticancer agents with ALPs
like perifosine that act in part by inhibiting the PI3K/Akt prosurvival
cascade. For these strategies to be effective greater understanding of
important protumorigenic metabolites and how they modulate cancer
development is essential.

There are additional classes of lipids that have the potential for
further development as anticancer molecules. These include certain
saturated fatty acids and ceramides. In studies to date these agents
have been found to be well tolerated and to produce minimal toxicity
in non-target cells and/or preclinical animal models. The ceramides
are particularly interesting because they are released when tumor
cells are treated with conventional anticancer agents, or inhibitors. If
the release of proapoptotic ceramides could be enhanced by treatments
without the non-target toxicity associated with conventional cytotoxic
agents, this could be a useful clinical approach.

Additionally there are medicinal chemistry strategies that offer
promise in adapting the anticancer activity of naturally-occurring
molecule including lipid metabolites, such as the ®—3 PUFA derived
PGEjs, epoxides and resolvins. These agents have valuable anticancer ac-
tions but these are short-lived in cells due to rapid enzymic degradation.
Chemical modification aims to capture the beneficial anti-tumor activi-
ties of the molecules. At present these approaches are only in their
infancy and there are few examples of the application of these strate-
gies, but studies to date have been promising and have shown in vivo
activity. Further experimental studies are now required to optimize
these potential lead molecules in cells and experimental animals with
the aim of achieving clinical application.
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