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Abstract

Determining the magnitude of primary production (PP) in a changing ocean

is a major research challenge. Thousands of estimates of marine PP exist glob-

ally, but there remain significant gaps in data availability, particularly in the

Southern Hemisphere. In-situ PP estimates are generally single-point measure-

ments and therefore we rely on satellite models of PP in order to scale up over

time and space. To reduce the uncertainty around the model output, these

models need to be assessed against in-situ measurements before use. This study

examined the vertically-integrated productivity in four water-masses associated

with the East Australian Current (EAC), the major western boundary current

(WBC) of the South Pacific. We calculated vertically integrated PP from ship-

board 14C PP estimates and then compared them to estimates from four com-

monly used satellite models (ESQRT, VGPM, VGPM-Eppley, VGPM-Kameda)

to assess their utility for this region. Vertical profiles of the water-column show

each water-mass had distinct temperature-salinity signatures. The depth of the

fluorescence-maximum (fmax) increased from onshore (river plume) to offshore

(EAC) as light penetration increased. Depth integrated PP was highest in river

plumes (792 ±181 mg C m−2 d−1) followed by the EAC (534 ±116 mg C m−2

d−1), continental shelf (140 ±47 mg C m−2 d−1) and cyclonic eddy waters (121
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±4 mg C m−2 d−1). Surface carbon assimilation efficiency was greatest in the

EAC (301 ±145 mg C (mg Chl-a)−1 d−1) compared to other water masses. All

satellite primary production models tested underestimated EAC PP and overes-

timated continental shelf PP. The ESQRT model had the highest skill and lowest

bias of the tested models, providing the best first-order estimates of PP on the

continental shelf, including at a coastal time-series station, Port Hacking, which

showed considerable inter-annual variability (155-2957 mg C m−2 d−1). This

work provides the first estimates of depth integrated PP associated with the East

Australian Current in temperate Australia. The ongoing intensification of all

WBCs makes it critical to understand the variability in PP at the regional scale.

More accurate predictions in the EAC region will require vertically-resolved in-

situ productivity and bio-optical measurements across multiple time scales to

allow development of other models which simulate dynamic ocean conditions.
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Introduction

Marine primary production (PP) is a fundamental measure of the ocean’s ca-

pacity to convert carbon dioxide to particulate organic carbon at the base of the

food-web and sets the upper limit for ocean productivity (Eppley and Peterson,

1979). Microscopic phytoplankton are primarily responsible for marine primary

productivity, with 29% of total ocean PP estimated to occur within continen-

tal shelf seas (coastal waters), comprising only 11% of the ocean’s surface area

(Longhurst et al., 1995).

Direct measurements of PP are undertaken using a variety of methods in-

cluding 14C (Steemann-Nielsen, 1952), 13C (Hama et al., 1983), chlorophyll a

(Chl-a) fluorescence (Lawrenz et al., 2013) and oxygen isotopes (Juranek and

Quay, 2010). These measurements can be time-consuming and are inherently

variable over short temporal and spatial scales (Chassot et al., 2010). They
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are also spatially and temporally limited and require multiple depth (or inte-

grated) sampling (Kahru et al., 2009). Scaling these relatively sparse discrete

measurements to regional, let alone basin-scale or global projections, remains a

significant challenge, particularly if we are to understand the consequences of

projected changes in coastal and basin-scale ocean circulation (Wu et al., 2012).

While thousands of measurements of marine primary productivity have been

made throughout the world’s oceans (e.g. ClimPP; see Friedrichs et al. (2009)),

there remain significantly under-sampled regions, including much of the tem-

perate Southern Hemisphere. In many cases it is unreasonable to wait for large,

replicated in-situ datasets in order to investigate variability in regional PP.

Scaling up over space and time therefore requires numerical models that quan-

titatively relate readily measured parameters to primary productivity. For some

regions, this necessarily involves estimating primary production from satellite-

derived estimates of bio-optical properties such as Chl-a (Behrenfeld and Falkowski,

1997b; Behrenfeld et al., 2005).

Coastal regions affected by western boundary currents (WBC), are of par-

ticular physical and biological significance. WBCs move oligotrophic waters

poleward, displacing cooler waters, generating mesoscale eddies (Everett et al.,

2012) and inducing coastal-upwelling which increases near shore nutrient stocks

(Roughan and Middleton, 2002; Suthers et al., 2011). WBCs therefore set up

steep cross-shelf gradients in resources for phytoplankton growth and are highly

dynamic, further enhancing the need for relatively frequent, synoptic assess-

ments of PP.

In this study, we undertake a spatial survey of PP in temperate coastal wa-

ters affected by the East Australian Current (EAC) and use a range of modelling

approaches to estimate PP in different water masses. First we use shipboard

14C measurements collected in spring to estimate the vertically-integrated pro-

ductivity of different water masses associated with this WBC. We then scale up

measurements of PP using four different satellite models. PP estimates from

models such as the vertically generalized production model (VGPM) described

by Behrenfeld and Falkowski (1997a) have typically been validated in the North
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Atlantic and North Pacific waters (Saba et al., 2010; Friedrichs et al., 2009;

Carr et al., 2006). PP model assessments have not yet been undertaken in the

Western Tasman Sea, a hotspot for global warming (Wu et al., 2012). In order

to apply these models to a range of scientific questions including fisheries man-

agement (Chassot et al., 2011), identifying fisheries hotspots (Zainuddin et al.,

2006) and characterising ocean ecosystems (Chassot et al., 2010), we need to

understand their limitations as a first step to their application in Southern

Hemisphere waters.

The aims of this study are to: 1) examine how 14C estimates of PP change

with depth and water-mass in the western Tasman Sea; 2) compare vertically-

integrated shipboard 14C PP estimates with modelled estimates derived from

satellite-based measures and 3) use the satellite model with the highest skill to

examine the temporal patterns of PP at PH100, a long-term coastal time-series

station established south of Sydney in the 1940s. Despite the limited spatial

and temporal coverage, this work represents the first assessment of PP model

efficiency in these waters and provides critically important PP data from water

masses associated with this dynamic WBC.

Methods

In-situ measurements and water sampling

The study domain was in the western Tasman Sea (Fig. 1) and extended

from 29 ◦S to 36 ◦S and eastward to 155◦E, spanning subtropical and temperate

latitudes. Sampling was timed to coincide with the spring bloom, when Chl-

a biomass is at its highest (Everett et al., 2014). Hydrographic, optical and

biogeochemical properties were sampled from 15–31 October 2010 on board the

R/V Southern Surveyor.

Vertical profiles were completed (measuring depth, temperature, salinity

(PSS-78) and fluorescence) using a Seabird SBE911 and Chelsea AquaTracker

fluorometer mounted on a CTD rosette. Water samples were collected for Chl-a

analysis using 10 L Niskin bottles. These samples were taken at the surface,
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and nominal depths of 10, 25, 50, 75 and 100 m. The closest bottle-depth was

adjusted to sample the fluorescence-maximum (fmax) based upon the fluores-

cence profile on the downcast. Water samples were also taken for 14C uptake

analysis at the surface and fluorescence-maximum (see details below).

Water-masses were differentiated by examining location, geostrophic veloci-

ties (Fig. 1) and temperature and salinity profiles (Fig. 2). These water-masses

were defined as - river plumes (5 stations), continental shelf (4 stations), cyclonic

eddy (2 stations) and East Australian Current (EAC; 4 stations; Table 1).

At each station the mixed layer depth (MLD; Table 1) was defined as the

minimum depth at which either of the following criteria was satisfied:

T < T10m − 0.4◦C (1)

S > S10m + 0.03 (2)

where T and S are temperature and salinity at each depth and T10m and

S10m is temperature and salinity at 10 m depth (Condie and Dunn, 2006).

Bio-optical measurements

Water-column irradiance measurements were taken using a free-falling hy-

perspectral photometer (Range: 350-800 nm, Resolution: 10 nm; Optical Pro-

filer, Satlantic USA; hereafter photometer) at 10 of the stations. The number of

photometer deployments were limited due to ocean conditions and operational

requirements. Depth profiles of photosynthetically active radiation (PAR) were

calculated by integrating the irradiance between 400-700 nm. At stations where

the photometer wasn’t deployed, PAR profiles were derived using a downwelling

irradiance (PAR) sensor (QCP-2 Log Quantum Cosine Irradiance Sensor) which

was mounted on the CTD rosette. The vessel was orientated to ensure the PAR

sensor was deployed in the sun.

Depth specific light attenuation (Kirk, 2011) was calculated using:
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kd (z) = − 1

PARz

dPARz
dz

(3)

where PARz is depth-specific photosynthetically available radiation (µmol

photons m−2 s−1) and z is depth of measurement (m). Water-column average

irradiance-weighted kd was calculated as in (Kirk, 2011):

kd =

∫∞
0
kd (z)PARz dz∫∞
0
PARz dz

(4)

A paired t-test showed there was no significant difference in PAR (t = 1.386,

df = 13, p = 0.19) at the discrete 14C measurement depths or kd (t = 0.1792,

df = 9, p = 0.86) derived from either the PAR sensor (CTD) or free-falling

photometer.

The euphotic depth of the water-column (the depth at which irradiance

reaches 1% of the surface irradiance), was calculated at each station using:

zeu =
1

kd
(5)

and the optical depth of the water-column was calculated as:

ζ = kdz (6)

In this equation the specified optical depth (ζ) corresponds to different phys-

ical depths (z) but to the same overall diminution of irradiance, in waters of

differing optical properties (Kirk (2011); Table 2).

HPLC-derived chlorophyll a concentration

Samples for in situ Chl-a analysis (ChlH,z) were collected on GF/F filters

(Whatman) using gentle filtration (< 5 mmHg) and stored in cryo-vials in liquid

nitrogen before being analysed back on shore. The pigments were extracted in

100% methanol in the dark at 4 ◦C and analysed by High Performance Liquid

Chromatography (HPLC) using a Waters (Milford, MA, USA) Alliance HPLC,

comprising a 2695XE separations module with column heater and refrigerated

autosampler and a 2996 photo-diode array detector, following a modified version
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of the Van Heukelem and Thomas (2001) method (see Hassler et al. (2012) for

details). Concentrations of ChlH,z were determined from standards from Sigma-

Aldrich (Sydney, NSW, Australia).

Vertical fluorescence profiles

In-situ Chl-a fluorescence intensity is reduced at high ambient light intensi-

ties, a process called non-photochemical quenching (NPQ; Falkowski and Kol-

ber, 1995). To correct for the reduced estimate of Chl-a fluorescence during

daylight hours, a light-dependent correction of the vertical fluorescence profiles

was developed following Behrenfeld and Boss (2006):

Fluc,z = Fluq,z × (0.3 + 0.7 × exp(−0.001×PARz )−1; (7)

where Fluc,z is the corrected estimate of fluorescence at each depth, Fluq is

the estimate of fluorescence without correction at each depth, and PARz is the

light (µmol photons m−2 s−1) at depth z (m) of the observation. The possible

fractional reduction in fluorescence yield due to NPQ is 0.3 to 1.0.

Following the correction of NPQ, ChlH,z from CTD casts was used to cali-

brate the vertical fluorescence profile (df=131, t-stat=25.966, p<0.01, r2=0.78)

using the exponential equation:

ChlF,z = 3.768 × 10−10 × Flu5.9348c,z (8)

In the following sections, the best available Chl-a product was used for each

analysis. ChlH,z was used for the calculation of depth-specific (surface and fmax)

primary production parameters (below). For the integrated PP, the vertical

ChlF,z profile from the fluorometer was used. Integrated Chl-a (ChlF,int: mg

m−2) was calculated to the 1% euphotic depth using a trapezoidal integration

of ChlF,z.

Depth-specific primary production calculations using 14C

14C uptake measurements were made at 22 stations, across 4 water-masses

(river plume, continental shelf, cyclonic eddy and EAC) and Photosynthesis-

Irradiance (P-I) curves for carbon fixation were determined for the surface and
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fmax. To maximise the spatial coverage, we reduced the vertical resolution of

sampling for PP and considered the surface sample representative of the upper

mixed layer and the fmax sample representative of the lower euphotic zone. P-I

curves were obtained according to the small bottle technique (Lewis and Smith,

1983). Water samples were transferred from the Niskin bottles into acid-washed

dark bottles and stored in a cooler (15-30 minutes) until 14C incubations. From

each sample, 162 ml of water was transferred to a 500 ml black-coated bottle

with addition of 171 µCi of NaH14CO3. Seven ml of this solution was then

transferred into 20 ml scintillation vials. Vials were incubated for 1 hour under

seven different light intensities made with blue and neutral films that simulated

underwater light fields; Lee Filters, Burbank, CA, USA). The first was a dark

chamber (0 µmol photons m−2 s−1), and the remaining six intensities ranged

from 20 to 2000 µmol photons m−2 s−1. Three replicates were carried out

for each of the light intensities with light measured daily in each with a 4π

sensor (Biospherical Instruments). Incubations took place under controlled in-

situ temperatures. Samples were fixed with 250 µL of 6M HCl to stop 14C uptake

and were agitated for a minimum of 3 hours to remove unfixed 14C. Finally 10

ml of Aquassure (Perkin Elmer) scintillation cocktail was added to each sample

and the activity (disintegrations per minute; DPM) was measured on a Packard

TriCarb 2 TR scintillation counter. Time-zero counts were taken to determine

background 14C and 100% counts were used to determine the specific activity

of the working solution.

Following 14C analysis, the time zero control was subtracted from each sam-

ple and DPM values were converted to carbon-fixed, before the sample was

normalised by ChlH,z values. A least squares non-linear regression using the

model of Platt et al. (1980) was fitted to the data. The chlorophyll-specific

carbon fixation rate (P bz ; assimilation efficiency) at a given light intensity was

calculated at the surface and fmax by:

P bz = P bmax[(1 − e−α
bPARz/P

b
max)(e−β

bPARz/P
b
max)] (9)
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where P bmax is the light-saturated photosynthetic rate, PARz is PAR at each

depth (µmol m−2 s−1), αb is the chlorophyll-specific initial slope of the light-

limited section of the P-I curve (mg C (mg Chl-a)−1 h−1 (µmol m−2 s−1)−1)

and βb is the chlorophyll-specific photo-inhibition parameter (mg C (mg Chl-

a)−1 h−1 (µmol m−2 s−1)−1; Table 3). Data from 15 stations are presented

here (Fig. 1) because 7 stations were unable to be used due to incomplete data,

failed equipment or non-convergence of 14C measurements with the P-I model

(Platt et al., 1980).

The following equation was used to obtain depth-specific (surface and fmax)

14C primary productivity estimates (PPz; mg C m−3 h−1):

PPz = P bz × ChlF,z (10)

Vertically-integrated daily primary production measurements

Vertically-integrated daily primary production was then calculated by ap-

plying the photosynthetic parameters (αb, βb and P bmax) from the surface and

fmax in a 2-box model approach through the water column. Hourly P bz at 1

m intervals (Equation 9) were calculated using hourly PAR profiles, vertical

ChlF,z profiles and the P-I model of Platt et al. (1980).

Hourly incoming solar radiation was estimated from orbital cycles (Brock,

1981) and PAR just below the surface (PAR0) was determined by subtracting

surface albedo. Surface albedo, as a function of zenith angle is calculated using

Fresnels equation (Kirk, 2011). A 20 % reduction was applied to the incoming

PAR to account for the mean observed difference between orbital cycles and the

downward solar radiation flux for the region during the study period (as deter-

mined from daily satellite (MODIS) PAR estimates, using methods described in

Baird et al. (2007)). Hourly PAR profiles (PARz,t) through the water column

were then able to be calculated at each CTD location using the station-specific

kd (estimated using Equation 4).

PARz,t = PAR0,texp
−kdz (11)
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The water-column was split into regions above and below the MLD to coin-

cide with the locations of the 14C incubations. At all stations, the fmax occurred

below the MLD (Table 1) and therefore the surface-derived coefficients (αb, βb

and P bmax) were applied from the surface to the MLD and the second set of co-

efficients (measured at the fmax) from the MLD to the bottom of the euphotic

zone (1% surface irradiance). To prevent the sudden change of parameter values

above and below the MLD, a 20 m moving average was applied throughout the

water-column, smoothing the transition from the surface coefficients. This ap-

proach of applying the coefficients through the upper MLD is not unreasonable

as photosynthetic parameters are relatively consistent within the upper MLD

(Westwood et al., 2011).

Hourly P bz,t was then recalculated (Equation 9) at 1 m intervals through the

water-column using the hourly- and depth-resolved light intensity (Iz,t), pro-

ductivity coefficients (αb, βb and P bmax) and ChlFlu,z. This was integrated over

the whole day using a trapezoidal integration to calculate vertically integrated

daily primary production.

PP =

∫ 24

1

∫ zeu

surf

P bz,t × ChlF,z (12)

Satellite derived primary production estimates

There are numerous satellite-based models of primary productivity which

can be separated into broad categories due to their formulation including depth-

integrated/wavelength-integrated (the most common), depth-resolved/wavelength-

integrated or depth-resolved/wavelength-resolved (Friedrichs et al., 2009). This

is the first attempt to assess PP models in this EAC region, so there was no

clear choice of PP model. We therefore chose to evaluate four depth- and

wavelength-integrated models which are commonly used in primary produc-

tion studies (Friedrichs et al., 2009; Saba et al., 2011; Carr et al., 2006). Due

to the significant concentrations of coloured dissolved organic matter (CDOM)

and suspended particulates within the river plumes, these stations were not in-

cluded in the model assessments, as both are known to significantly influence
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the ability of satellites to estimate Chl-a (Darecki and Stramski, 2004; Siegel

et al., 2005).

The simplest model formulation was the Eppley-Square-Root Model (ES-

QRT) (Eppley et al., 1985) and the three other models were variants of the

Vertically Generalized Production Model (VGPM) (Behrenfeld and Falkowski,

1997b). Chl-a based models were chosen because there is a considerable archive

of pigment data from the region (Thompson et al., 2011), but other bio-optical

data is very limited. The ESQRT model (Eppley et al., 1985) ignores all ex-

ternal forcings and assumes that the standing stock of phytoplankton (Chl-a)

determines the photosynthetic rate. The VGPM (Behrenfeld and Falkowski,

1997b), is one of the most widely known and used depth-integrated/wavelength-

integrated models. Variants of the original VGPM have been developed and

maintain a similar form but generally alter the parameterisation of P bopt (max-

imum Chl-a normalised productivity). VGPM uses a 7th order polynomial of

Sea-Surface Temperature (SST) to calculate the maximum photosynthetic rate.

The VGPM-Eppley model (Eppley, 1972) constrains P bopt as an exponential

function of SST. The fourth and final model we tested was the VGPM-Kameda

model (Kameda and Ishizaka, 2005) which uses both SST and surface Chl-a to

constrain P bopt and is based on two assumptions: 1) that changes in Chl-a con-

centration result from changes in large-sized phytoplankton abundance, and 2)

Chl-a specific productivity of phytoplankton tends to be inversely proportional

to phytoplankton size.

The satellite inputs for these models were derived from the MODIS-Aqua

satellite to match the timing of shipboard 14C PP estimates. Satellite data was

processed and provided by the Integrated Marine Observing System (IMOS;

http://www.imos.org.au) at 1 km resolution. Due to the limited match-up

data between the MODIS-Aqua satellite and shipboard measurements, the time-

limits were relaxed to within 24 hours of in-situ sampling (Son et al., 2011; Le

et al., 2013). A mean value from an area of 9×9 km (81 pixels) was used.

Satellite data used in these models are: Sea Surface Temperature (SST; ◦C),

OC3 Chlorophyll a (ChlS; mg m−3), and Photosynthetically Available Radia-
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tion (PAR; µmol photons m−2 d−1). In order to assess the contribution of

satellite-derived model inputs to overall model uncertainty (Saba et al., 2010),

we reran each model using in-situ measurements of SST, ChlH,z and kd. Satel-

lite estimates of PAR were still used as we didn’t have daily measurements of

PAR for each site. The models chosen are inherently insensitive to PAR inputs

(Friedrichs et al., 2009) and thus variation due to satellite versus in-situ PAR

measurements were not likely to alter the outcome of PP estimates.

Assessment of satellite PP models

To assess model performance we used the root mean square difference (RMSD)

and model bias (B). The RMSD statistic assesses model skill such that models

with lower values have higher skill, and the model bias assesses whether a model

over- or under-estimates PP (Saba et al., 2010). For each model (satellite and

CTD) we calculated the RMSD for n samples of PP:

RMSD =

(
1

n

n∑
i=1

∆(i)2

)1/2

(13)

where model-data misfit in log10 space ∆(i) is defined as:

∆(i) = log(PPm(i)) − log(PPd(i)) (14)

where PPm(i) was modelled PP and PPd(i) represents shipboard 14C PP

estimates at each site. To assess whether a model over- or underestimated PP

we calculated each model’s bias as:

B = log(PPm) − log(PPd) (15)

Port Hacking National Reference Station (PH100)

To make a first order assessment of PP through time within the region, the

best performing satellite model was used to assess the temporal patterns of

PP at a historic time-series station on the continental shelf off Port Hacking

(PH100; Fig. 1). The PH100 station has a 60 year time-series of physical and

chemical properties. Since September 2009 it has been regularly sampled for
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additional biological properties. We used satellite data from January 2010-June

2014, for which there was corresponding in-situ (25 m) estimates of ChlH,z (n

= 30). Modelled PP was calculated from both ChlS and ChlH and further

information about the collection protocols are available from the IMOS portal

(http://imos.aodn.org.au/imos/).

Data analysis

All data-analysis in this study was undertaken using MATLAB R2014B

(Mathworks; Massachusetts, U.S.A.). Differences in physical, optical and bi-

ological properties of each water-mass were tested using a one-way Analysis

of Variance (ANOVA). A pairwise-comparison, using Tukey’s least significant

difference procedure was used to determine where the differences were.

Results

River plume stations generally exhibited fresher surface waters (34.18-35.58)

than other stations (Fig. 2) and were clustered in the northern part of the study

domain (28.9–29.4 ◦S) where river outputs are larger. During the study period,

the EAC was flowing along the edge of the continental shelf with a maximum

geostrophic velocity of 1.6 m s−1 (Fig. 1A). EAC stations were offshore in the

core of the EAC (Fig. 1) and had a temperature range of 21.4–22.5 ◦C and a

salinity of 35.45–35.52 in the upper 200 m of the water-column (Fig. 2B). The

continental shelf stations were located in the southern part of the study domain

off Seal Rocks (32.3–34.1 ◦S). Offshore from the continental shelf stations, a

cyclonic (cold-core) eddy was present (32.3 ◦S; Fig. 1). This eddy had formed

in the Tasman Sea during winter and migrated westward towards the coast.

Due to the presence of the eddy, the EAC retroflected away from the coast at

this location, before wrapping around an anti-cyclonic eddy to the south (34 ◦S,

154.5 ◦E; Fig. 1).

13



Vertical water-column properties

Vertical light attenuation (kd) within the river plumes (0.37 ±0.26 m−1) was

significantly higher (F3,11=3.89, p=0.04) than in the EAC (0.06 ±0.001 m−1),

continental shelf (0.09 ±0.014 m−1) and cyclonic eddy (0.07 ±0.002 m−1). As a

result, the euphotic depth (zeu) of the river plumes (19 ±12 m) was significantly

shallower (F3,11=30.21, p<0.001) than all other water-masses (Table 1), and the

EAC euphotic depth (75 ±2 m) was significantly deeper than the continental

shelf (54 ±10 m). There was little variability in the daily incoming irradiance

(PAR), which ranged from 54.2–56.9 mol photons m−2 d−1 for all the stations

during the spring sampling period.

Mixed layer depths were similar amongst stations (F3,11=3.43, p=0.056),

however the vertical distribution of Chl-a differed. Not surprisingly, vertical

profiles of the water-column show the depth of the Chl-a fluorescence maximum

(fmax) increasing from onshore (continental shelf) to offshore (EAC) stations

(Fig. 3A). River plumes had significantly shallower fmax (9 ±6 m; F3,11=32.88,

p<0.001) than all other water-masses, and the EAC fmax (59 ±9 m) was signifi-

cantly deeper than on the continental shelf (37 ±9 m). The fmax in the cyclonic

eddy (49 ±3 m) was not significantly different to either the EAC or continental

shelf. The fmax was within the euphotic depth for all stations, except for one

river plume station (13; Table 1), and was generally at or below the MLD. The

fmax was below the first optical depth at all stations (Table 1), suggesting the

bulk of the phytoplankton biomass was below the depth of satellite penetration.

Daily surface and integrated primary productivity

Surface productivity (PP0) was highest in the river plumes (118.02 ±79 mg

C m−2 d−1) compared to all other water-masses (F3,11=6.52, p<0.01). Inte-

grated primary productivity (PP) was significantly higher in the river plumes

(792.65 ±182 mg C m−2 d−1) compared to the EAC (F3,11=24.89, p<0.001)

as a result of the maximum standing stock of Chl-a in the river plumes (Ta-

ble 4). The PP of the EAC (533.57 ±116 mg C m−2 d−1) was significantly

higher than the continental shelf and cyclonic eddy (140.04 ±47 mg C m−2
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d−1 and 121.37 ±4 mg C m−2 d−1 respectively) as a result of the large eu-

photic depth. Furthermore, the efficiency of surface carbon assimilation (P b0 )

was greatest in the EAC (300.61 ±145 mg C (mg Chl-a)−1 d−1) compared to

all other water-masses (F3,11=5.48, p<0.02). Integrated carbon assimilation

(P b) was significantly higher in the EAC (123.17 ±25 mg C (mg Chl-a)−1 d−1)

compared to all other water-masses. The P b of the river plumes was signifi-

cantly higher (F3,11=18.3, p<0.001) than the cyclonic eddy (27.41 ±2 mg C

(mg Chl-a)−1 d−1) and continental shelf (30.73 ±14 mg C (mg Chl-a)−1 d−1;

Table 4).

The vertical distribution of PPz peaked between 1 and 2 optical depths

within the river plumes and between 2 and 4 optical depths in all other water-

masses (Fig. 3E). This was well below the first optical depth which approximates

the depth of satellite penetration. In contrast, P bz peaked within two optical

depths in all water-masses (Fig. 3C).

Satellite model assessment of SE Australian waters

Satellite models showed moderate correspondence with the shipboard 14C

PP estimates, but this was dependent on water mass (Fig. 4). Root mean

square difference (RMSD) ranged from 0.29 to 0.48 and model bias ranged from

0.12 to 0.33. The ESQRT model had the lowest RMSD (highest skill) and lowest

bias (Table 5), which resulted in the best match with semi-empirical shipboard

PP estimates when satellite-derived input data were used. A positive model

bias showed the satellite models overestimated PP overall. In particular, PP

was over-estimated in the shelf waters, and under-estimated in the EAC (Fig. 4).

When in-situ input data was used in the models, instead of satellite-derived

values, model skill improved marginally for the VGPM suite of models (0.25-

0.38) but marginally decreased for ESQRT (0.30; Table 5). Improvements were

evident only in continental shelf and cyclonic eddy waters (Fig. 4 E-H) where

waters are optically complex, but resulted in greater under-estimates of PP in

the EAC. Regardless of input data sources, all models deviated from 1:1 (Fig. 4

A-D).
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Annual and seasonal trends in primary production

The ESQRT model was applied to the continental shelf off Port Hacking

(PH100 station) to make a first order assessment of PP through time in this

EAC-influenced region. The model assessment showed ESQRT has the high-

est skill and lowest bias when using satellite-derived data. From January 2010

to July 2013, Chl-a and PP show a seasonal cycle (Fig. 5A,B) with a peak in

Chl-a biomass and PP occurring in spring (September/October) and a mini-

mum occurring in late summer (February/March). Satellite-derived Chl follows

a similar temporal pattern to in-situ Chl. Average daily satellite-derived PP at

PH100 during 2010-2013 was 612 mg C m−2 d−1 (Fig. 5B). There was consid-

erable inter-annual variability in PP, with values ranging from 155 to 2957 mg

C m−2 d−1.

Discussion

Understanding the PP of waters affected by WBCs is critical. WBCs are

warming faster than other regions of the global ocean (Wu et al., 2012) and there

is little understanding of how these changes will affect pelagic ecosystems. In

particular we have low confidence in predictions of future fisheries yields because

of uncertainty over future PP and its transfer to higher trophic levels (Brander,

2007). It is therefore important to quantify and understand the sources of vari-

ation in marine PP within the EAC region, where in-situ datasets are extremely

limited compared to those published for other boundary current systems such

as the Agulhas Current (Probyn et al., 1994) and the Gulf Stream (Mouw and

Yoder, 2005).

Primary production in Australian waters and boundary currents

In global terms, temperate Australian coastal waters generally have low pri-

mary productivity (Chavez et al., 2011) due to the continent’s low percentage of

rainfall as runoff (average of 12% compared to 33% for North America; Arthing-

ton and Pusey (2003)), low relief and nutrient-poor soils (Davis and Koop, 2006).
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However, in our study region, wind- and EAC-induced upwelling intermittently

brings nutrient-rich waters onto the shelf (Roughan and Middleton, 2002) result-

ing in elevated surface Chl-a (Everett et al., 2014), so it was therefore expected

that the integrated PP of continental shelf and cyclonic eddy stations would be

greater relative to the EAC. In contrast, our results show that the EAC had

significantly higher integrated PP compared to both the continental shelf and

cyclonic eddy stations. This may be a result of the limited vertical resolution of

our 14C measurements (and the associated uncertainty in vertical integration)

but may also likely be the result of the greater depth range over which pro-

duction occurred. An additional source of uncertainty in the EAC PP data are

the relatively high estimates of Pbmax in the surface waters. These high values

are a result of the dependence of the PvsE parameters on the Chl-a biomass,

which was low in the EAC (0.03 mg m−3). Low Chl-a in the EAC will affect

the detectability of pigments by both HPLC and satellites, which may lead to

more uncertainty in this match up than in other water masses. Despite this,

the EAC PP recorded here is consistent with previous estimates (Furnas and

Mitchell, 1987, 1996). With respect to PP in other regions around Australia,

EAC waters appear to be more productive than the Leeuwin Current but sup-

port considerably lower PP than the north-west shelf, and parts of the Great

Australian Bight and Southern Ocean (Table 6).

Areal estimates of PP in the EAC from this study are lower than those made

for the core of the Gulf Stream (730-900 mg C m−2 d−1; Mouw and Yoder

(2005)), similar to the Kuroshio Current (70-620 mg C m−2 d−1; Hung (1975)),

but are higher than the Agulhas Current (85-109 mg C m−2 d−1; Probyn et al.

(1995); Mitchell-Innes (1967)). Western boundary currents are generally less

productive than eastern boundary currents which are dominated by wind-driven

coastal upwelling (Carr and Kearns, 2003). The average annual PP of eastern

boundary currents (using the Howard-Yoder Mixed Layer Depth model) was

estimated to range between 990 and 2490 mg C m−2 d−1 (California Current

and Benguela Current respectively; Carr and Kearns (2003)). The PP for the

Benguela Current is almost five-times higher than what we estimate from the
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EAC using the shipboard 14C PP estimates (Table 4) and six-times greater than

the highest satellite estimate (Fig. 4).

Satellite model performance in the Tasman Sea

In regions with low data density such as the Tasman Sea, spatial or temporal

dynamics of PP can only realistically be examined by supplementing in-situ data

with model estimates. While our dataset is very small relative to others used to

develop global satellite algorithms (Werdell and Bailey, 2005), it nevertheless

has utility in guiding the future development of models to understand regional

productivity in this dynamic western boundary current region. In this study,

we use shipboard 14C PP estimates to provide the first assessment of satellite-

derived PP models in the western Tasman Sea.

The satellite model skill in our study region ranges from 0.27-0.42 with a

mean RMSD across all models of 0.34 (Table 5). Previous PP model assessments

have used the same evaluation metrics (Saba et al., 2010; Kahru et al., 2009;

Carr et al., 2006; Friedrichs et al., 2009). Saba et al. (2011) recently did a

global assessment showing that the mean RMSD of all PP models varied from

0.16 in the Antarctic Polar Frontal Zone (high skill) to 0.44 in the Black Sea

(low skill). While Saba’s analysis did not include EAC-influenced waters, it

is evident the satellite models tested in this study had low to moderate skill,

underestimating vertically-integrated PP in the EAC and over-estimating PP on

the shelf. Our data suggest that PP uncertainty arises from two major sources:

complex optical properties on the shelf that influence satellite signals, and the

accumulation of phytoplankton at depth in offshore EAC waters.

To examine the influence of optical complexity on in-situ model mismatch,

we substituted satellite estimates of Chl-a (and temperature) with in-situ esti-

mates and found that this improved PP estimates in continental shelf and cold

core eddy waters, but not in the EAC. Model skill has often been improved when

in-situ Chl-a data is used instead of satellite-derived inputs (Saba et al., 2010;

Jacox et al., 2015). This is because in coastal (or upwelled) waters, the blue

region of the water-leaving radiance signal used in many standard Chl-a satellite
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algorithms is affected by other optically-active constituents (coloured dissolved

organic matter and detrital material) in addition to phytoplankton (Siegel et al.,

2005). This can result in an over-estimate of Chl-a and therefore PP. Given the

complex inherent optical properties of coastal waters (Cherukuru et al., 2014),

it is clear that alternate bio-optical approaches are necessary to estimate PP

(Huot et al., 2007). A viable avenue may be to develop light-absorption based

approaches such as those used for the North Sea-Western English Channel region

(Barnes et al., 2014).

The underestimation of the EAC PP by all models (Fig. 4) was likely influ-

enced by the depth of the fmax which was significantly deeper than the optical

depth of satellites (Fig. 3B). Saba et al. (2010) showed that 90 % of models

underestimate PP at Station Aloha in the North Pacific subtropical gyre. This

under-estimation was partially attributed to the deepening of the MLD, which

was not captured by the satellite fields. The location of the PP within the

water-column is therefore an important consideration (Jacox et al., 2015), as

the satellite models evaluated in this study rely on assumptions about the ver-

tical distribution of PP, and much of the uncertainty in model-derived PP is

attributed to uncertainty in the vertical distribution of PP (Buitenhuis et al.,

2013).

Overcoming data limitations and model complexity

Scaling up limited PP data in this changing western boundary current region

is a major research challenge. Narrowing uncertainty in PP estimates across

the vertical and horizontal dimensions, as well as through time will require

a mix of approaches. In this study we traded off vertical resolution in our

carbon fixation measurements in order to improve the spatial coverage across

water masses, resulting in obvious limitations. We also observed deep Chl-a

maxima in offshore waters that were consistently under-estimated by satellite

models. Thus, in the vertical dimension, a priority will be to make multiple

depth measurements of PP to not only increase the accuracy of areal estimates,

but also to understand vertical and horizontal nutrient enrichment processes and
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dynamics. Identifying the physical conditions that are associated with DCMs,

and the specific set of environmental predictors that could describe the size of

the DCM are also important research priorities.

In the horizontal dimension, this study showed that river plumes have high

productivity relative to surrounding shelf water, however their spatial extent and

temporal variability are relatively unknown. Understanding the implications of

steep gradients in bio-optical properties across a relatively narrow continental

shelf (∼15 km at its narrowest; 31 ◦S) suggests that standard satellite products

with 1-4 km pixel size will have limited resolution to detect changes across

the shelf and suggests that coupled physical-biogeochemical models should aim

for kilometre-scale resolution. Fortunately, Chl-a variation in the along-shelf

direction is considerably lower, with long-range spatial correlations in surface

Chl-a extending from the study domain to Tasmania (Jones et al., 2015).

In addition to the limited horizontal and vertical information about PP in

Tasman Sea waters, we have little understanding of its temporal variability.

Studies have demonstrated short-term (Armbrecht et al., 2014) and seasonal

(Everett et al., 2014) changes in coastal phytoplankton biomass using in-situ and

satellite data respectively. However, there has never been a temporal assessment

of PP in this region. Our analysis at the Port Hacking coastal time-series station

indicates significant inter-annual variation in PP, suggesting that observation

and modelling approaches need to capture dynamics at multiple temporal scales.

Given that the more complex satellite models evaluated here perform no

better than the simplest ESQRT model, it would appear unwise to apply them

in this region until we have a better understanding of the vertical and horizon-

tal distribution of primary production, and can build relationships with readily

measured environmental parameters. As in other regions, autonomous under-

water gliders have the capacity to collect spatio-temporal data and help build

and validate PP models (Jacox et al., 2015). Indeed gliders have been regu-

larly deployed on the shelf in this EAC-influenced region to understand changes

in physical properties (Everett et al., in press; Baird et al., 2011; Baird and

Ridgway, 2012).
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Concluding remarks

Our PP estimates for the EAC are higher than similar studies in the Agul-

has Current, but are of a similar magnitude to previous work in the Kuroshio

Current and Coral Sea (EAC source waters). Satellite models underestimate

the EAC PP, likely due to the depth of the phytoplankton in the water-column,

and overestimate the PP of optically complex shelf waters. River plumes were

shown to have high PP relative to the surrounding shelf waters, however their

spatial and temporal extent are not well characterised in this region. In order to

better understand PP within the EAC-influenced waters of the western Tasman

Sea, significantly more measurements are required across multiple years and

seasons. Initially these measurements can be used to quantify the productivity

of different water-masses, but eventually will be needed to further validate the

available biogeochemical (or other) models in order to scale up relatively sparse

measurements through time and space. Depth-resolved or absorption-based

models which take into account changing physiology and bio-optical properties

of phytoplankton cells, may be more appropriate for use in regions such as the

EAC, where the vertical location of the productivity is important, or coastal

regions where the waters are more optically complex. The work presented here

is the first step in this process, updating PP data for the western Tasman Sea

from previous measurements made 25 years ago, and providing the first ever

assessment of satellite-derived PP estimates in this EAC-influenced region.
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Table 3: Average (and range) values for αb, βb and Pb
max for each water-mass used for

calculations of PP estimates. The surface and fmax values are shown separately.

Water-Mass αb βb Pbmax

Surface:

River plume 0.11 (0.07-0.14) 0 (0-0.01) 12.69 (9.38-16.12)

EAC 0.27 (0.21-0.41) 0.01 (0-0.02) 32.02 (27.29-43.88)

Cyclonic eddy 0.08 (0.08-0.08) 0.01 (0-0.01) 9.48 (8.75-10.21)

Continental shelf 0.09 (0.07-0.12) 0.01 (0-0.02) 11.88 (9.07-14.11)

fmax :

River plume 0.12 (0.07-0.18) 0.01 (0-0.02) 9.15 (3.13-12.83)

EAC 0.46 (0.26-0.64) 0.05 (0.02-0.07) 19.72 (11.03-31.06)

Cyclonic eddy 0.06 (0.05-0.08) 0 (0-0) 3.54 (2.86-4.21)

Continental shelf 0.07 (0.03-0.12) 0.02 (0-0.04) 5.15 (2.27-7.82)
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Table 5: Overall model skill (RMSD) and bias for the four models - ESQRT, VGPM, VGPM-

Eppley and VGPM-Kameda. Model skill and bias are presented for both satellite- and CTD-

inputs (ChlH and ChlF ). The lower the RMSD and lower the |bias|, the better the model.

The best model results are highlighted in bold.

Model Input Data n RMSD Bias

ESQRT MODIS-Aqua 15 0.29 0.12

VGPM MODIS-Aqua 15 0.48 0.33

VGPM-Eppley MODIS-Aqua 15 0.41 0.22

VGPM-Kameda MODIS-Aqua 15 0.40 0.29

ESQRT CTD w/ ChlH 15 0.30 -0.14

VGPM CTD w/ ChlH 15 0.38 -0.03

VGPM-Eppley CTD w/ ChlH 15 0.39 -0.15

VGPM-Kameda CTD w/ ChlH 15 0.25 0.11

ESQRT CTD w/ ChlF 15 0.45 -0.34

VGPM CTD w/ ChlF 15 0.57 -0.34

VGPM-Eppley CTD w/ ChlF 15 0.64 -0.45

VGPM-Kameda CTD w/ ChlF 15 0.24 0.05
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Table 6: A summary of primary production measurements in Australian waters. Both mean

(± standard deviation) and range is presented where available. Nth = Northern; NW =

Northwestern; EAC = East Australian Current; GBR = Great Barrier Reef

Region Season Year Primary Production

(mg C m−2 d−1)

Winter/Spring

Coral Sea Jun-Jul 1988 459-654 (431 ±211)1

Coral Sea Oct 1985 117-330 (557 ±244)1

Nth. GBR & EAC Jun-Jul 1988 780-944 (841 ±90)1

Nth. GBR & EAC Oct 1985 189-356 (284 ±73)1

Central GBR May-Oct, 1983-1985 217-598 (394 ±179)2

Tropical EAC May-Oct 1983-1985 251-1456 (796 ±611)2

Temperate EAC Oct 2010 417-661 (534 ±116)3

Leeuwin Current Nov 2000 110-530 (200 ±127)4

Leeuwin Current May-Jun 2007 152 ±33 (upstream of eddy)5

Leeuwin Current May-Jun 2007 370 ±112 (downstream of eddy)5

Summer/Autumn

Central GBR Nov-April, 1983-1985 206-974 (548 ±233)2

Tropical EAC Nov-April 1983-1985 142-755 (313 ±226)2

NW Australian shelf Dec-Feb 1997-1998 2,700 ±900 (Station B)6

NW Australian shelf Dec-Feb 1997-1998 3,100 ±2,200 (Station E)6

Great Australian Bight Feb-Mar 2005-2006 <800 (eastern, central, western)7

Great Australian Bight Feb-Mar 2005-2006 800-1600 (mid shelf, coastal)7

Southern Ocean Nov-Dec 1995 409 (polar front)8

Southern Ocean Nov-Dec 1995 3180 (subtropical)8

1Furnas and Mitchell (1996), 2Furnas and Mitchell (1987), 3This study, 4Hanson et al. (2005),

5Lourey et al. (2012), 6Furnas (2007), 7van Ruth et al. (2010), 8Griffiths et al. (1999)
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Figure 1: Location map of southeast Australia showing A) Sea Surface Temperature

and B) Chl-a biomass from MODIS-Aqua Ocean Colour (L3 OC3). Arrows represent

Lagrangian paths for the 24 h leading up to the midday satellite pass. The 200 m

isobath is shown as a black line. The black and white circles denote the sampling

locations. See Table 1 for a complete description of station locations and properties.
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Figure 2: Temperature-Salinity plots for the 4 water-masses of A) River plumes (27-

47 m), B) East Australian Current (0-200 m), C) Cyclonic eddy (0-200 m) and D)

Continental shelf (0-200 m). The grey contours show the corresponding isopycnals (kg

m−3).
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Figure 3: Vertical profiles of ChlF (A and D; mg m−3), Primary Production (B and

E; mg C m−3 d−1) and Assimilation (C and F; mg C (mg Chl-a)−1 d−1) in relation

to water depth (A-C) and Optical Depth (D-F). Water-masses are shown in different

colours. The primary (black) x-axis corresponds to the EAC, continental shelf and

cyclonic eddy stations. The secondary (green) x-axis corresponds to the river plume

stations (also in green). Individual profiles for each station are shown as thin lines

and a mean profile for each water-mass is shown as a thicker line.
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Figure 4: Correlations of vertically-integrated shipboard 14C PP measurements are

shown against the output of four different productivity models (ESQRT, VGPM,

VGPM-Eppley and VGPM-Kameda). Input variables for each model are both satellite-

derived (MODIS; top row) and in-situ (from CTD casts; bottom row). The dashed

line indicates the 1:1 relationship.
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Figure 5: Daily Satellite-derived A) Chlorophyll a and B) PP estimated using the

ESQRT model are shown in grey for Port Hacking for the period 2010-2014. The

black line represents the 30 day running average. The circle in A) represents the

HPLC-derived Chlorophyll a collected in-situ. The circle in B) represents the ESQRT

modelled PP calculated using this HPLC-derived Chlorophyll a.
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