MR Dampers in Smart Structures with Nonlinear Non-affine Dynamics improvising Intelligent Control

By

Zeinab Movassaghi

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Engineering School of Civil and Environmental Engineering University of Technology, Sydney Australia

June 2014

Executive Summary

The increasing complexity of high-rise buildings, cable-stayed long-span bridges, deep-sea offshore structures or suspension systems demands effective tools for control and health monitoring. These infrastructure systems are usually integrated with actuation, sensing, computation resources and information networks, taking advantage of the synergy of civil engineering and mechatronics in an emerging area called *civiltronics*. Towards the achievement of high performance smart structures, semi-active vibration control in complex civil structures has been very promising, particularly in the mitigation of external excitations and dynamic loadings owing to its meritorious features of low cost, strong robustness and high reliability against various loading sources. Structural behavior and energy efficiency can be improved via directly controlling the input of the smart devices. For example, semi-active controlled dampers, from the dissipation point of view by using suitable control schemes for parameterized relationships describing the system dynamics of the structure integrated with the smart devices with respect to the applied electrical signal. This research is concerned with the problem of controlling the nonlinear, non-affine dynamics of smart structures with magneto-rheological (MR) dampers. A laboratorial set-up of a one-storey steel frame and a benchmark five-storey building model integrated with MR dampers are used in this research. These smart structures are subject to scaled earthquake vibrations excited by a shake table. A static hysteresis model is adopted for the MR damper, in which current-dependent nonlinear functions are used to represent the damper force-velocity characteristics. Here the semi-active control problem of the smart structure system is formulated in current-input non-affine nonlinear state space equations. The complications in the design are tackled by using intelligent control, whereby adaptive fuzzy logic control is proposed to deal with nonlinearity of the control dynamics and non-affinity in the control input, assuming the availability of the displacement and velocity information of the last floor. Here, self-organising adaptive fuzzy logic control is developed to prevent cases that the resulting fuzzy inference system may be unnecessarily large or too small to adequately represent the complex dynamics of the smart structure under control. The main objectives of this research are thus to model the overall smart structure system and to develop self-organising adaptive fuzzy logic schemes for the continuous-time multiple-input multiple-output uncertain nonlinear dynamics of the structure. The proposed control algorithms are implemented in MATLAB and SIMULINK. To illustrate

their effectiveness in seismic vibration suppression of civil structures due to earthquake excitations, simulation results are presented together with discussions on performance evaluation and further remarks on the implementation aspects.

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not been submitted for a similar degree nor has it been submitted as part of requirements for any other degree.

I also certify that the thesis has been written by me. Any help I have received in my research work and the preparation of this thesis itself has been acknowledged. In addition, I certify that all the information sources and literature used are referenced in the thesis.

Zeinab Movassaghi

This thesis is especially dedicated to my dearest father, mother, sisters and brother for their love, blessings and encouragement.

PUBLICATIONS

The following technical papers have been published based on the work of this thesis:

- Movassaghi, Z., Ha, Q., Samali, B., "A Self-structuring Adaptive fuzzy Control Scheme for Non-affine nonlinear systems used in Smart Structures", Sixth International conference on Structural Health Monitoring of Intelligent Infrastructure (ISHMII-6), Hong Kong, 9-11 December, 2013
- Movassaghi, Z., Samali, B., Ha, Q., "Smart Structures Embedded with MR dampers Using Non-Affine Fuzzy Control", 22nd Australasian Conference on the Mechanics of Structures and Materials (ACMSM), Sydney, Australia, 11-14 December 2012
- Royel,S., Movassaghi, Z., Kwok, N., and Ha,Q., "Structural control Using MR dampers with Second Order Sliding Mode Controller", *Proceedings of the 1st international conference on control automation and information sciences* (ICCAIS), Ho Chi Minh City, Vietnam, 26-29 November 2012
- Movassaghi, Z., "Considering Active Tuned mass dampers in two different structures", *Australian Control Conference (AUCC)*, Sydney, Australia, 15-16 November 2012
- Movassaghi, Z., Samali, B., Ha, Q., "Adaptive Neuro-Fuzzy Modelling of a highrise structure equipped with an Active Tuned Mass Damper", 6th Australasian Congress on Applied Mechanics, ACAM 6, Perth, Australia, 12-15 December 2010

ACKNOWLEDGEMENTS

The research project reported in this thesis was supported by the Centre for Built Infrastructure Research (CBIR) of the University of Technology, Sydney. This financial support is greatly acknowledged and appreciated.

I am greatly thankful and indebted to my supervisors, A/Prof. Quang Ha, Prof. Bijan Samali and Prof. Vute Sirivivatnanon for their support and guidance in all aspects of my research activities.

Finally, I would like to express my special thanks to my family for their encouragement and love throughout my candidature.

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	iii
CERTIFICATE OF AUTHORSHIP/ORIGINALITY	V
DEDICATION	vi
PUBLICATIONS	vii
ACKNOWLEDGEMENT	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
NOTATIONS	xviii

TABLE OF CONTENTS

1.	CHAPTER 1: INTRODUCTION	19
1.1.	Problem statement	19
1.2.	Objectives and scope of the thesis	21
1.3.	Contribution of this thesis	21
1.4.	Thesis Layout	22
2.	CHAPTER 2: LITERATURE REVIEW	24
2.1.	Introduction	24
2.2.	Passive vibration control systems	26
2.3.	Active vibration control devices	32
2.4.	Hybrid vibration control devices	35
2.5.	Semi-active vibration control devices	38
2.5.1.	Variable orifice damper	39
2.5.2.	Variable friction damper	43
2.5.3.	Controllable tuned liquid damper	44
2.5.4.	Controllable fluid damper	45
2.6.	MR fluids and devices	50
2.7.	Characteristics of MR fluids	
2.8.	MR devices and applications	53
2.9.	MR damper modelling	58
2.9.1.	Bingham model	59

2.9.2.	Bouc-Wen model	62
2.9.3.	Modified Bouc-Wen model	63
2.9.4.	Static hysteresis model of MR damper	65
2.10.	Lyapunov control	67
2.11.	Linear quadratic regulator (LQR) control	67
2.12.	Fuzzy logic	68
2.13.	Fuzzy logic control for structural vibration reduction	70
2.14.	Summary	70
3.	CHAPTER 3: STRUCTURES WITH ACTIVE TUNED MASS DAMPERS	71
3.1.	Introduction	71
3.2.	Structural System	72
3.3.	Building Structure equipped with Tuned Mass Dampers	73
3.4.	Structural model of a five storey building structure	74
3.4.1.	Fuzzy Logic Controller design for the five storey structure	74
3.5.	Structural model of a fifteen storey building structure	77
3.5.1.	Fuzzy Logic Controller design for the fifteen storey structure	78
3.6.	Structural Response considering different changes in Active Tuned Mass Dampers	for the five
storey	and fifteen storey structure	80
3.7.	Structural Response considering Tuned Mass Dampers in different locations for the	five and
fifteen	storey structure	
3.8.	Conclusion	
4.	CHAPTER 4: ACTIVE VIBRATION CONTROL OF TWO BENCHMARK STRU	JCTURES
EQUI	PPED WITH MULTIPLE TUNED MASS DAMPERS	
4.1.	Introduction	
4.2.	Structural Model of bench mark structures	90
4.3.	Multiple tuned mass damper configuration	92
4.4.	Active Vibration Control of the two benchmark structures	92
4.5.	Structural Modelling of the five storey structure	94
4.6.	Structural Modelling of the fifteen storey structure	
4.7.	Conclusion	
5.	CHAPTER 5: SELF-ORGANISING ADAPTIVE FUZZY LOGIC CONTROL FO	R NON-
AFFIN	NE NONLINEAR SYSTEMS	100
5.1.	Introduction	
5.2.	Affine state space equations versus non-affine state space equations	
5.3.	Self- organising adaptive fuzzy system description	102
5.3.1.	Description of fuzzy systems	102
5.3.2.	Self-organising algorithm	

5.4.	Self-organising adaptive fuzzy logic control for affine nonlinear systems	105
5.5.	Self-organising adaptive fuzzy logic control for non-affine nonlinear systems	109
5.6.	Numerical examples	112
1) Exa	mple 1	112
2) Exa	mple 2	119
5.7.	Summary	122
6.	CHAPTER 6: SEMI-ACTIVE CONTROLLED BUILDINGS UNDER EXCITATI	ONS
		124
6.1.	Introduction	124
6.2.	Structural system	124
6.3.	Structure equipped with MR dampers	126
6.4.	Damper modelling and setup	126
6.5.	Structures with embedded MR dampers	129
6.6.	Fuzzy logic controller	129
6.7.	Simulations of a one storey structure embedded with MR dampers and different	
contro	ller	130
6.7.1.	Structural model of a one storey building	130
6.7.2.	Simplified evaluation model.	131
6.7.3.	Designing the fuzzy logic controller	133
6.7.4.	Designing the self-organising adaptive fuzzy logic controller	136
6.7.5.	Simulation results of the one storey structure	137
6.7.6.	Evaluation criteria	148
6.7.7.	Response ratios	149
6.7.8.	Summary	150
6.8.	Simulation of a five-storey structure embedded with MR dampers and different con	trollers
6.8.1.	Introduction	150
6.8.2.	Structural model of a five storey building	151
6.8.3.	Simplified evaluation model	152
6.8.4.	Designing the fuzzy logic controller	
6.8.5.	Designing the self-organising adaptive fuzzy logic controller	154
6.8.6.	Simulation results of the five storey structure	155
6.9.	Evaluation criteria	
6.10.	Response ratios	
6.11.	Summary	162
7.	CHAPTER 7: THESIS CONCLUSION	163
7.1.	Summary	

7.2.	Contributions	.163
7.3.	Conclusion	.165
7.4.	Direction for future work	165
REFER	ENCES	.167
APPEN	NDIX	180
APPEN	NDIX A: PROOF OF LEMMA 3 IN CHAPTER 5	.180
APPEN	NDIX B:MATLAB CODES FOR ONE STOREY STRUCTURE	183
APPEN	NDIX C:MATLAB CODES FOR FIVE STOREY STRUCTURE	.201
APPEN	NDIX D: FUZZY LOGIC	220

List of Tables

Table 2-1- Characteristics of three different types of MR fluids (LORD Corporation)	51
Table 2-2- Typical characteristics of ER and MR fluids	53
Table 2-3- Characteristics of the 20ton MR damper	54
Table 3-1- Fuzzy Variables	75
Table 3-2- Fuzzy associative memory (FAM) of the Fuzzy Logic controller	
Table 3-3- Parameters of the fifteen storey structural system	77
Table 3-4- Rule base definition for the fuzzy logic controllers in the fifteen storey structure	79
Table 3-5- Rules for the fuzzy logic controller in the fifteen storey structure	79
Table 3-6- Scaling factors for the actuators installed in the fifteen storey building	
Table 4-1- Rule base definition for the fuzzy logic controller	
Table 4-2- Structural characteristics of the sole ATMD, five storey structure	
Table 4-3- Structural characteristics of the 3ATMDs, five storey structure, equal mass	95
Table 4-4- Structural characteristics of the 3ATMDs, five storey structure, non-equal mass	95
Table 4-5- Structural characteristics of the sole ATMD, fifteen storey structure	96
Table 4-6- Structural characteristics of the 3TMDs, fifteen storey structure, equal mass	97
Table 4-7- Structural characteristics of the 3TMDs, fifteen storey structure, non-equal mass	97
Table 4-8- Maximum displacement (mm) of the last storey for the five and fifteen storey struct	tures.98
Table 6-1- Fuzzy Variables	133
Table 6-2- Different set ups	
Table 6-3- Configurations of RD-1005-3 MR damper	
Table 6-4- Response ratios	149
Table 6-5- Fuzzy Variables	
Table 6-6- Different set ups	154
Table 6-7- Configurations of RD-1005-3 MR damper	
Table 6-8- Response ratios	

List of Figures

Figure 2.1. Classification of structural control devices	26
Figure 2.2. Conventional and passive vibration control system	27
Figure 2.3. Example of base isolated structures	
Figure 2.4. Utah state capitol in USA	
Figure 2.5. Example of structures equipped with Viscoelastic damper and Tuned mass damper	30
Figure 2.6. Tokyo Skytree	
Figure 2.7. One Wall Centre in Vancouver, equipped with tuned liquid dampers at the top stor	ey32
Figure 2.8. Active vibration control system Diagram	
Figure 2.9. Control System Block Diagram	
Figure 2.10. Examples of structures equipped with Active mass damper	
Figure 2.11. Hybrid vibration control system diagram	36
Figure 2.12. Experimental structure of the smart base isolation system	
Figure 2.13. Examples of structures equipped with Hybrid mass damper	37
Figure 2.14. Canton tower in Guangzhou, China, completed in 2010	
Figure 2.15. Typical schematic diagram of semi-active vibration control system	
Figure 2.16. Schematic diagram of variable orifice damper	40
Figure 2.17. Kajima Shizuoka building constructed with semi-active hydraulic dampers	41
Figure 2.18. Schematic diagram of variable stiffness device	42
Figure 2.19. Schematic diagram of variable friction damper	
Figure 2.20. Semi-active TLCD system	45
Figure 2.21. Schematic diagram of controllable fluid damper	
Figure 2.22. Proposed electro rheological fluid damper	46
Figure 2.23. Schematic of the full-scale 20 ton MR fluid damper	47
Figure 2.24. Tokyo national museum installed with 30-t MR fluid dampers	48
Figure 2.25. MR dampers installation on the Dongting lake bridge, China	48
Figure 2.26. MR fluid without (left) and with magnetic field (right)	
Figure 2.27. MR fluid when a magnetic field is applied	51
Figure 2.28. Yield stress vs. magnetic field strength of MRF-122-2ED (LORD Corporation)	52
Figure 2.29. Magnetic properties of MRF-122-2ED (LORD Corporation)	
Figure 2.30. Three typical operating modes for MR fluid devices	
Figure 2.31. Small-scale SD-1000 MR fluid damper	55
Figure 2.32. Large-scale 20ton MR fluid damper	55
Figure 2.33. MR damper RD-1005-3	55
Figure 2.34. MR dampers installed in a bridge	

Figure 2.35. Examples of MR dampers installed in a building	56
Figure 2.36. MR damper installed in a washing machine	57
Figure 2.37. MR damper applied in lower leg prosthesis	57
Figure 2.38. Heavy duty seat suspension with MR damper	58
Figure 2.39. Characteristics of damper force for different currents provided: (a) non-linearly in force	e
versus displacement and (b) hysteresis in force versus velocity	58
Figure 2.40. Bingham model for a fluid damper	60
Figure 2.41. Verifying the Bingham model with the experimental results	60
Figure 2.42. Extended Bingham model	61
Figure 2.43. Verifying the Bingham model with the experimental results	62
Figure 2.44. Bouc-Wen model of MR damper	62
Figure 2.45. Verifying the Bouc Wen model with experimental results	63
Figure 2.46. Modified Bouc-Wen model of MR damper	64
Figure 2.47. Verifying the modified Bouc-Wen model with the experimental results	64
Figure 2.48. Hysteresis parameters for static hysteresis model of MR damper	66
Figure 2.49. Boolean functions categorising structural damage	69
Figure 2.50. Fuzzy functions categorising structural damage	69
Figure 3.1. El Centro earthquake acceleration time history, normalised to 2g	73
Figure 3.2. Five storey benchmark steel frame	74
Figure 3.3. Membership function for; (a) the acceleration at levels 4 and 5; (b) control force	75
Figure 3.4. Simulink model of the five storey building with Fuzzy Logic controllers	76
Figure 3.5. Closed-loop model of the fifteen storey structure with fuzzy logic controllers	78
Figure 3.6. Membership functions of (a) error (e), (b) derivative of error (de/dt), (c) control signal	
(u)	79
Figure 3.7. Displacement of the last storey (m) versus time, ATMD mass ratio of 1%, under El Cent	tro
quake, five storey structure	80
Figure 3.8. Displacement of the last storey (m) versus time, ATMD mass ratio of 2%, under El Cent	tro
quake, five storey structure	81
Figure 3.9. Displacement of the last storey (m) versus time, ATMD mass ratio of 3%, under El Cent	tro
quake, five storey structure	81
Figure 3.10. Displacement of the last storey (m) versus time, ATMD mass ratio of 4%, under El Cen	ntro
quake, five storey structure	81
Figure 3.11. Displacement of sole ATMD at the top floor (m) versus time, under El Centro, five	
storey structure	82
Figure 3.12. Displacement of the last storey (m) versus time, ATMD mass ratio of 1%, under El	
Centro quake, fifteen storey structure	82

Figure 3.13. Displacement of the last storey (m) versus time, ATMD mass ratio of 2%, under El
Centro quake, fifteen storey structure
Figure 3.14. Displacement of the last storey (m) versus time, ATMD mass ratio of 3%, under El
Centro quake, fifteen storey structure
Figure 3.15. Displacement of the last storey (m) versus time, ATMD mass ratio of 4%, under El
Centro quake, fifteen storey structure
Figure 3.16. Displacement of sole ATMD at the top floor (m) versus time, under El Centro, fifteen
storey structure
Figure 3.17. Displacement of the fifth floor (m) versus time, 1^{st} floor ATMD + 5^{th} floor ATMD, under
El Centro quake, five storey structure
Figure 3.18. Displacement of the fifth floor (m) versus time, 3^{rd} floor ATMD + 5^{th} floor ATMD, under
El Centro quake, five storey structure
Figure 3.19. Displacement of the third floor (m) versus time, 3^{rd} floor ATMD + 15^{th} floor ATMD,
under El Centro quake, fifteen storey structure
Figure 3.20. Displacement of the fifteenth floor (m) versus time, 3^{rd} floor ATMD + 15^{th} floor ATMD,
under El Centro quake, fifteen storey structure
Figure 3.21. Displacement of the seventh floor (m) versus time, 7^{th} floor ATMD + 15^{th} floor ATMD,
under El Centro quake, fifteen storey structure
Figure 3.22. Displacement of the fifteenth floor (m) versus time, 7^{th} floor ATMD + 15^{th} floor ATMD,
under El Centro quake, fifteen storey structure
Figure 3.23. Displacement of the thirteenth floor (m) versus time, 13^{th} floor ATMD + 15^{th} floor ATMD,
under El Centro quake, fifteen storey structure
Figure 3.24. Displacement of the fifteenth floor (m) versus time, 13^{th} floor ATMD + 15^{th} floor ATMD,
under El Centro quake, fifteen storey structure
Figure 4.1. Active Multiple Tuned Mass Dampers (AMTMDs)91
Figure 4.2. Last storey displacement (mm) versus time with a sole ATMD on top, the five storey
structure
Figure 4.3. Last storey displacement (mm) versus time, equal mass, five storey structure, 3ATMDs on
top
Figure 4.4. Last storey displacement (mm) versus time, non-equal mass, five storey structure,
3ATMDs on top96
Figure 4.5. Last storey displacement (mm) versus time with a sole ATMD on top, fifteen storey
structure
Figure 4.6. Last storey displacement (mm) versus time, equal mass, fifteen storey structure, 3ATMDs
on top
Figure 4.7. Last storey displacement (mm) versus time, non-equal mass, fifteen storey structure,
3ATMDs on top

Figure 5.1. Self-organising algorithm flowchart	104
Figure 5.2. Initial membership functions for all input and output variables	113
Figure 5.3. Output versus desired output	113
Figure 5.4 Tracking error	113
Figure 5.5. Control signal	114
Figure 5.6. Number of rules and self-organising flag	.114
Figure 5.7. Final membership functions for input 1	115
Figure 5.8. Final membership functions for input 2	115
Figure 5.9. Final membership functions for input 3	115
Figure 5.10. Initial membership functions for all input and output variables	116
Figure 5.11. Output versus desired output	116
Figure 5.12. Tracking error	117
Figure 5.13. Control signal	117
Figure 5.14. Number of rules and self-organising flag	117
Figure 5.15. Final membership functions for input 1	118
Figure 5.16. Final membership functions for input 2	118
Figure 5.17. Final membership functions for input 3	118
Figure 5.18. Initial membership functions for all input and output variables	120
Figure 5.19. Output versus desired output	120
Figure 5.20. Tracking error	.120
Figure 5.21. Control signal	121
Figure 5.22. Number of rules and self-organising flag	121
Figure 5.23. Final membership functions for input 1	121
Figure 5.24. Final membership functions for input 2	122
Figure 5.25. Final membership functions for input 3	122
Figure 6.1. System schematic diagram	126
Figure 6.2. Damper differential configurations	127
Figure 6.3. System block diagram	131
Figure 6.4. El Centro earthquake acceleration time history	132
Figure 6.5. Schematic of a one storey structure equipped with MR dampers	133
Figure 6.6. The first input of the fuzzy logic controller	134
Figure 6.7. The second input of the fuzzy logic controller	134
Figure 6.8. The third input of the fuzzy logic controller	134
Figure 6.9. Adaptive fuzzy logic controller	135
Figure 6.10. Self-organising adaptive fuzzy logic controller	136
Figure 6.11. Simulink model of a one storey building model without MR dampers and fuzzy logic	
controller	138

Figure 6.12. Simulink model of a one storey building model with MR dampers and fuzzy logic	
controller	140
Figure 6.13. Simulink model of a one storey building model with MR dampers and self-organising	3
adaptive fuzzy logic controller	141
Figure 6.14. Simulink block of the adaptive fuzzy logic controller	142
Figure 6.15. Simulink block of non-affine nonlinear system	143
Figure 6.16. Displacement time history (m) of the one storey structure	144
Figure 6.17. Acceleration time history (m/s^2) of the one storey structure	144
Figure 6.18. Initial membership functions for all three input variables	145
Figure 6.19. Final membership function for input 1	145
Figure 6.20. Final membership function for input 2	146
Figure 6.21. Final membership function for input 3	146
Figure 6.22. Number of rules and self-organising flag – time	146
Figure 6.23. Tracking error – time	147
Figure 6.24. Current produced by the controller (A) – time	147
Figure 6.25. Control force provided by the MR damper (N) – time	147
Figure 6.26. Five storey benchmark steel frame	151
Figure 6.27. Self-organising adaptive fuzzy logic controller for non-affine nonlinear systems	155
Figure 6.28. Simulink of the five storey structure	156
Figure 6.29. Displacement time history (m) of the fifth storey	157
Figure 6.30. Initial membership function for all three input variables	157
Figure 6.31. Final membership function for input 1	158
Figure 6.32. Final membership function for input 2	158
Figure 6.33. Final membership function for input 3	158
Figure 6.34. No. of rules and self-organising flag – time	159
Figure 6.35. Tracking error – time	159
Figure 6.36. Current produced by the controller – time	159
Figure 6.37. Control force provided by the MR damper	160

NOTATIONS

- A System matrix
- **B** Input matrix for control
- C Output matrix
- D Matrix to represent direct coupling between input and output for control force
- E Input matrix for wind/earthquake excitations

F Matrix to represent direct coupling between input and output for wind/earthquake excitations

J1-J6 Evaluation criteria

- J Performance index
- u Control force
- v Measured noise vector
- W External excitations (wind/earthquake)
- **x** State vector (in the control matrix)
- $\mathbf{x}(t)$ Displacement of the storey
- $\dot{\mathbf{x}}(t)$ Velocity of the storey
- $\ddot{\mathbf{x}}(t)$ Acceleration of the storey
- $\ddot{\mathbf{x}}_{g}$ Ground acceleration
- y Measured output vector
- z Controlled output vector
- M Mass matrix
- **C** Damping matrix
- K Stiffness matrix