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ABSTRACT 

In the past two decades, extremely rapid progress in the nanotechnology R&D sector has 

been met by equally rapid commercialisation of this new technology. As a consequence, 

engineered nanoparticles (ENPs) are increasingly released into the environment. For the 

purpose of soil and groundwater remediation, large amounts of nanomaterials are 

intentionally discharged to the environment. Risk assessment of these novel technologies is 

therefore required due to the uncertainties regarding their potential side effects. To support 

this, research into the environmental fate of ENPs is urgently needed but has been so far 

hindered by significant analytical challenges. Developing novel methodologies to better 

understand the ENPs behaviour in the environment is therefore crucial to assessing their 

potential risk. 

Iron nanoparticles, and more specifically nanoscale zero-valent iron (nZVI), are becoming 

increasingly popular for the treatment of contaminated soil and groundwater; however, their 

mobility and reactivity in subsurface environments are significantly affected by their 

tendency to aggregate. Assessing their stability under environmental conditions is crucial for 

determining their environmental fate. A multi-method approach (including different size-

measurement techniques and the DLVO theory) has been developed to thoroughly 

characterise the behaviour of iron oxide nanoparticles (Fe2O3NPs – used as a surrogate for 

nZVI) under environmentally relevant conditions. Although recent studies have 

demonstrated the importance of using a multi-method approach when characterising 

nanoparticles, the majority of current studies continue to use a single-method approach.  

Under some soil conditions (i.e. pH 7, 10 mM NaCl and 2 mM CaCl2) and increasing 

particle concentration, Fe2O3NPs underwent extensive aggregation to form large aggregates 

(> 1 μm). Coating the nanoparticles with dissolved organic matter (DOM) was investigated 

as an alternative “green” solution to overcoming the aggregation issue instead of using the 
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more commonly proposed polyelectrolytes. At high concentrations, DOM effectively 

covered the surface of the Fe2O3NPs, thereby conferring negative surface charge on the 

particles across a wide range of pH values. This provided electrostatic stabilisation and 

considerably reduced the particle aggregation effect. DOM-coated Fe2O3NPs also proved to 

be more stable under high ionic strength conditions. The presence of CaCl2, however, even 

at low concentrations, induced the aggregation of DOM-coated Fe2O3NPs, mainly via charge 

neutralisation and bridging. This has significant implications in regards to the reactivity and 

fate of these materials in the environment. 

Humic acid (HA) and Suwannee River natural organic matter (SRNOM) were tested and 

compared as surrogate for DOM to stabilise Fe2O3 NPs. The advantages of DOM over 

conventional organic surface modifiers are that DOM is naturally abundant in the 

environment, inexpensive, non-toxic and readily adsorbed onto the surface of metal oxide 

nanoparticles. The DOM-coated Fe2O3 NPs were characterised by developing a multi-

method approach including various analytical methods: flow field-flow fractionation 

(FlFFF), high performance size exclusion chromatography (HPSEC) and Fourier transform 

infrared spectroscopy (FTIR). The stability of the coated NPs was also evaluated by 

assessing their aggregation and disaggregation behaviour over time. 

Results showed that both HA and SRNOM were rapidly and readily adsorbed on the surface 

of Fe2O3 NPs, providing electrosteric stabilisation over a wide range of pH. HPSEC results 

showed that the higher molecular weight components of DOM were preferentially adsorbed 

onto the surface of Fe2O3. As SRNOM consists of macromolecules with a higher molecular 

weight than HA, the measured size of the SRNOM-coated Fe2O3 NPs was 30 % larger than 

the HA-coated Fe2O3 NPs. FTIR results indicated the occurrence of hydrogen bonding 

arising from electrostatic interaction between the DOM and Fe2O3 NPs. Finally, a stability 

study showed that after 14 days, small agglomerates and aggregates were formed. The HA-

coated Fe2O3 NPs formed agglomerates which were easily disaggregated using a vortex 
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mixer, with the coated NPs returning to their initial size. However, SRNOM-coated 

Fe2O3 NPs were only partially disaggregated using the same method, which indicates that 

these aggregates have a more compact structure. 

To date, research focusing on the development of novel surface modifiers to increase the 

mobility of iron-based nanoparticles has only been carried out in highly idealised systems 

which facilitated their detection and quantification. In fact, one of the main analytical 

challenges in characterising nanomaterials is related to the difficulty of quantifying 

nanomaterials once they are dispersed in complex environmental matrices. Finding new 

analytical methods to overcome this issue would significantly help in the development of 

effective remediation materials. A novel method based on radiolabelling has been therefore 

developed and enables the detection and quantification of iron-based nanoparticles in intact 

soil cores. The radioisotopes (i.e. 59Fe) were incorporated in the core of the nanoparticles 

during its synthesis. The mobility of radiolabelled nanoparticles was assessed by gamma 

counting analysis and then compared with the mobility of commercialised nanoparticles 

which was determined by common ICP-MS method. Results showed limited mobility of 

both nanomaterials with less than 1% of the injected mass eluted from the columns. The use 

of specific isotopic signature allowed determining the retention profiles of radiolabelled 

nanoparticles which was a major advantage compared to conventional ICP-MS method. 

Results indicated that the majority (i.e. 80%) of the particles were retained in the first 

centimetres of the columns suggesting that rapid aggregation of iron-based nanoparticles 

after its injection was the main explanation of its limited mobility. The method was further 

developed by coupling gamma counting and ICP-MS measurements to evaluate both the 

mobility of radiolabelled nanoparticles and its potential to co-transport contaminants in 

contaminated soils. Results showed that, although the mobility of iron-based nanoparticles 

was limited, the breakthrough of both contaminants and iron-based nanoparticles occurred 
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simultaneously suggesting that iron-based nanoparticles has the potential to co-transport 

contaminants. 

Adsorption of natural organic matter (NOM), aggregation and disaggregation have been 

identified as three of the main processes affecting the fate and behaviour of ENPs in aquatic 

environments. However, although several methods have been developed to study the 

aggregation behaviour of ENPs in natural waters, there are only a few studies focusing on 

the fate of such aggregates and their potential disaggregation behaviour. In this study, we 

developed and demonstrated a simple method, based on on-line light scattering 

measurement, for characterising the aggregation behaviour and aggregate structure of ENPs 

in different natural waters. Both the aggregate size of ENPs and their adsorption capacity for 

DOM were strongly related (R2 > 0.97, p < .05) to the combined effect of initial 

concentration of DOM and the ionic strength of the natural waters. The structure of the 

formed aggregates was strongly correlated (R2> 0.95, p < .05) to the amount of DOM 

adsorbed by the ENPs during the aggregation process. Under high ionic strength conditions, 

aggregation is mainly governed by diffusion and the aggregates formed under these 

conditions showed the lowest stability and fractal dimension, forming linear, chain-like 

aggregates. In contrast, under low ionic strength conditions, the aggregate structure was 

more compact, most likely due to strong chemical binding with DOM and bridging 

mechanisms involving divalent cations formed during reaction-limited aggregation.  

Finally, a multi-method approach combining the developed on-line light scattering method 

with off-line instruments such as field-flow fractionation techniques has been proposed to 

overcome the limitation of light scattering instruments related to the polydispersity of the 

samples. Results confirmed the benefits of using a multi-method approach. While the on-line 

light scattering method can provide information on the larger aggregates (i.e. size and 

structure), FlFFF proved to be a very accurate technique for characterising the smaller 
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particles remaining in suspension after sedimentation. When combined, these techniques can 

offer complementary data on the particle size distribution of the samples. 
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