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 

Abstract— Identification of simple and complex finger flexion 

movements using Surface Electromyography (sEMG) and muscle 

activation strategy is necessary to control Human Computer 

Interfaces (HCI) such as prosthesis and orthoses. In order to 

identify these movements, sEMG sensors are placed on both 

anterior and posterior muscle compartments of the forearm. In 

general, the accuracy of myoelectric classification depends on 

several factors, which include number of sensors, features 

extraction methods and classification algorithms. Myoelectric 

classification using a minimum number of sensors and optimal 

electrode configuration is always a challenging task. Sometimes, 

using several sensors including high density electrodes will not 

guarantee high classification accuracy. In this research we 

investigated the dependency and independency nature of anterior 

and posterior muscles during simple and complex finger flexion 

movements. The outcome of this research shows that posterior 

parts of the hand muscles are dependent and hence responsible 

for most of simple finger flexion. On the other hand this study 

shows that anterior muscles are responsible for most complex 

finger flexion. This also indicates that simple finger flexion can be 

identified using sEMG sensors connected only on anterior 

muscles (making posterior placement either independent or 

redundant), and vice versa is true for complex actions which can 

be easily identified using sEMG sensors on posterior muscles. 

The result of this study is beneficial for optimal electrode 

configuration and design of prosthetics and other related devices 

using a minimum number of sensors.   

 
Index Terms— Surface Electromyography (sEMG); Subband 

Decomposition ICA (SDICA); Blind Source Separation (BSS); 

Anterior; Posterior; simple and complex flexion.  

 

I. INTRODUCTION 

urface Electromyography (sEMG) represents the level of 

muscle activity recorded from the skin surface. It provides 

rich motor control information and is closely related to the 
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strength of muscle contraction [1, 2]. In the recent past 

myoelectric signals were extensively used for prosthetics [3-

6], wheel chairs [7, 8], exoskeleton robotics [9, 10], silent 

speech recognition [11] and rehabilitation applications [9, 12].  

Myoelectric classification depends on several factors which 

include electrode selection [13], placement of electrodes [14-

17], feature extraction methods, selection of appropriate 

classifier algorithms [18] and computational complexity 

associated with myoelectric classification [19, 20].  

Researchers have been working extensively to improve the 

myoelectric classification accuracy by improving the above 

factors; however, cross talk and noise makes it difficult to 

achieve higher rate of recognition. The most significant 

elements that contribute to the amount of detected crosstalk 

signal are: (i) sensor placement on the surface of the muscle 

and (ii) the spacing between the electrodes on the sEMG 

sensor [21]. The electrode placements and effect of electrode 

shift on sEMG pattern recognition has been previously 

investigated with varied results [22, 23]. In a recent study, 

Hargrove et al. [23], found different results using five 

electrodes that are connected parallel to the muscle fibers. 

Another study conducted by the same authors investigated the 

placement of electrode poles and concluded that transverse 

orientation of electrodes are more sensitive to shift than  

longitudinal orientation [14]. A previous version of our 

proposed method on sEMG electrode sensor placement 

concentrated mainly on simple gestures [15]. However, issues 

remain to be resolved such as selection and placement of 

electrodes for identification of simple and complex gestures 

[1, 18].  

Anterior and posterior hand muscles are responsible for 

simple and complex finger flexions and actions. However, it is 

known phenomenon that while muscles in the anterior 

compartment are contracting there is co-activation of muscles 

in the posterior compartment [24, 25]. In general, these 

(anterior and posterior) muscles are not contributing to flexion 

but are impeding movement to better control the action by 

muscles in the anterior compartment [24]. Hence, there is a 

need for proper signal processing and pattern recognition 

methods, which can evaluate and identify approximate 

location for placement of electrodes in identifying gestures. 

By doing the above, we can identify different simple and 
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Fig. 1.  ICA source separation system. 

 

complex gestures efficiently using minimum number of 

sensors.  

One approach is to select/reduce the number of sensors 

(used for simple and complex gestures) based on 

independency and dependency among different sensors/ 

muscles. However, noise and cross talk make this task tedious. 

This opens an opportunity to use Blind Source Separation 

(BSS) techniques such as Independent Component Analysis 

(ICA) for this task. This research reports pattern recognition 

based on Subband Decomposition ICA (SDICA) system that 

is able to identify dependency and independency among 

sensors/muscles placed on posterior and anterior compartment 

of muscles while doing simple and complex finger flexions.  

One of the main aims of this research is to measure 

dependency and independency among sEMG sensors/muscles, 

which helps in the identification of suitable muscles 

responsible for each finger/hand actions. The specific aim of 

this study is to reduce the necessary number of sEMG 

channels presented in a sEMG pattern recognition system. 

There are two main reasons for this reduction. Firstly, if we 

reduce the number of physical sEMG channels we make the 

sEMG-recording device simpler and cheaper. Secondly, if we 

diminish the number of channels and features we reduce the 

dimension of the vector of variables presented to the classifier, 

hence, less training examples are needed and, furthermore, the 

classifier requires less memory and computational power. 

II. SUBBAND DECOMPOSITION ICA AND GLOBAL MATRIX 

COMPUTATION 

ICA has been found very effective in solving BSS 

problems. It is a statistical technique for decomposing a 

complex data set into independent sub-elements. It develops 

from BSS and tries to transform an observed multidimensional 

vector into factors that are statistically independent from each 

other as much as possible [26, 27]. For a linear ICA model, the 

recordings are a linear combinations of the sources, and also 

that the original sources are independent from each other. In 

fact, it factorizes the observation vector x into mixing matrix 

A and source matrix s by searching the most non-Gaussianity 

distributions, i.e.      , where x and s are n-dimensional 

real vectors, and A is a mixing matrix. ICA strives to find a 

separation matrix W (up to permutation and scaling) that 

maximizes the non-Gaussian features of the data x, thus 

optimally separating the original signals s to make estimated 

sources u, i.e.,      [27]. 

The key assumption used in ICA is that (i) the sources 

should be as statistically independent as possible; (ii) the 

sources should not have Gaussian distributions. The 

performance of the estimated sources is determined by cost 

functions such as kurtosis, mutual information, negentrophy 

etc. Hence, ICA is considered as an optimization technique, 

which maximizes the cost function under the condition   
  . An example of the ICA source separation process is 

shown in Fig. 1.  
For traditional ICA, one of the major requirements is that 

the sources are linear and independent. This option is relaxed 

somewhat in SDICA, where we assume that only a certain set 

of sub components are independent from each other. The main 

idea here is to divide the signal into its subspectra or 

subbands, and then process individual subbands using 

traditional ICA algorithms. These subbands can then be 

ranked and processed independently by ICA/BSS algorithms, 

provided that some of the time/frequency subbands (at least 

one) are temporally decorrelated or mutually independent [28-

30].   

In order to apply ICA algorithms to any application, it is 

assumed that the sources       are non-Gaussian and mutually 

independent. For biomedical applications such as EMG, 

Electroencephalography (EEG) and Electrocardiography 

(ECG) this assumption may not be true. Hence, we assume 

that all sources       are not essentially independent (this 

could be due to cross-talk or artefacts) and can be represented 

as  

 

                                              (1)                       

 

where       p =1,…,M, are narrow band subcomponents. In 

practical applications, we must find at least two groups of sub-

component which are mutually independent [28, 30]. 

Similarly, the observed signals are represented as  

 

                                                (2)                                

 

where,       p =1,…,M, are narrow band subcomponents 

which are obtained from the filter bank (refer to Fig. 2). 

In general, subbands are chosen based on high pass or 

Bandpass filtering methods. The basic structure of the 

subbands are illustrated in Fig. 2, where the transform consists 
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of a set of bandpass filters whose transfer functions are 

              with the associated impulse responses 

          respectively. In the ICA/BSS, the global matrix G 

is computed as:      . We apply traditional ICA/BSS 

algorithm such as FastICA [27] on each subband signals and 

obtain the series of separating matrices:               
where    is the separation matrix estimated for subband        
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Fig. 2.  Subband decomposition: A filter bank structure and computation of 

unmixing matrices. 

 

and    is the separation matrix estimated for subband       . 

If the specific subband components are mutually independent 

for at least two subbands, say subband p and subband q, then 

global matrix      can be represented as 

 

           
                            (3) 

 

     is a sparse generalised permutation matrix P with only 

one non-zero component in the diagonal of the matrix (each 

row and column). In this way we can identify independent 

components for any linearly transformed signals in time, 

frequency and time-frequency representations [28, 30, 31].   

III. METHODOLOGY AND DATA ACQUISITION 

For this research study, required sEMG data was taken from 

the Khushaba et al. [32] EMG data repository. The sEMG data 

acquisition and experimental procedures are described in 

detail in Khushaba and Kodagoda [32]. A brief description of 

their data acquisition procedure is explained below: the EMG 

data were acquired from 8 normally limbed individuals (6 

males and 2 females) with no muscular disorders. During the 

experiment, subjects were seated on an armchair, with their 

arm supported and fixed in one position. The sEMG data was  

recorded using eight EMG sensors (DE 2.x series EMG 

sensors) mounted across the circumference of the forearm and 

processed by the Bagnoli desktop EMG system (Delsys Inc). 

In their research study, Khushaba et al. [32] placed four sEMG 

channels (ch1, ch2, ch7 and ch8) on posterior compartment of 

the hand and the other four channels (ch3, ch4, ch5 and ch6) 

were placed on anterior part of the participant‘s hand. Based 

on the location of the forearm surface electrodes numbered 1-

8, it is possible to identify the muscles located immediately 

beneath each of these electrodes. The approximate location of 

the sEMG sensor placement used by Khushaba et al. [32] is 

explained in Table I. 

Khushaba et al. [32] collected fifteen classes of movements 

from eight individuals, which included both simple and 

complex finger movements. The simple flexions include the 

movement of just one finger flexion at a time, they are:  

 

TABLE I 
SEMG SENSOR PLACEMENT AND MUSCLES USED FOR DATA ACQUISITION [32]  

 

Sensors Muscles 

Electrode 1 Extensor digitorum 

Electrodes 2 and 3 Brachioradialis 

Electrode 4 Flexor carpi radialis 

Electrodes 5, 6 and 7 Flexor carpi ulnaris 

Electrode 8 Extensor carpi ulnaris 

 

Thumb (T), Index (I), Middle (M), Ring (R) and Little (L). 

The complex finger flexions include the following: Thumb-

Index (T-I), Thumb-Middle (T-M), Thumb-Ring (T-R), 

Thumb-Little (T-L), Index-Middle (I-M), Middle-Ring (M-R), 

Ring-Little (R-L), Index-Middle-Ring (I-M-R), Middle-Ring- 

Little (M-RL), and finally the Hand Close (HC). The surface 

EMG data were collected at the rate of 4000 samples/sec and 

were amplified with a gain of 1000 using Delsys Bagnoli 

Desktop EMG measurement system.  

For this research, the original data (Khushaba et al. [32]) 

was re-sampled to 1000 samples/sec. Movement artefact (<20 

Hz), power-line interference (50 Hz) and high-frequency noise 

(>450 Hz) were also removed. In total, 2880 recordings with a 

length of 20000 samples (5s) were available for analysis (8 

subjects × 8 channels × 15 motions × 3 sets). These sEMG 

signals were further processed using SDICA and normalised 

determinant values of global matrices were computed. The 

entire feature extraction and data analysis process is shown in 

Fig. 3 and is explained in the next section.  

IV. FEATURE EXTRACTION AND DATA ANALYSIS 

Initially, anterior and posterior (4 sensors each) sEMG 

subbands were computed using bandpass filters in the 

frequency range 10Hz to 450Hz. For each subband, we 

applied the traditional ICA/BSS algorithm and extracted 

succession of separating matrices               where 

   is the separation matrix estimated for subband       and 

   is the separation matrix estimated for subband        The 

most independent/dependent anterior and posterior sEMG 

subbands were chosen based on Band Performance Index 

(BPI). BPI is given by 
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where     represents the 𝑖𝑗th element of the matrix G. The 

term         specifies the maximum value among the 

elements in the 𝑖th row vector of G. The minimum value of 

 𝑃𝐼 will give independent pair of subbands [28, 31].  For each 

finger flexion, BPI indices were computed for all global 

matrices  𝑃𝐼(    )  for                               . 

Among them (series of Global matrices), for each finger 

flexion task, two subbands     and    that correspond to the 

minimal BPI were selected. A rigorous empirical study was 

employed to select subbands with minimum BPI values, which 

has ensured the selection of best subband combination for 

further analysis.    
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Source dependency and independency of simple and 

complex finger flexions of sEMG signals were computed 

using determinant of global matrix. Like other matrix 

factorization techniques such as Principal Component 

Analysis (PCA), ICA has a scaling problem. Hence, prior to 

the measure of dependency and independency, the determinant 

of G need to be normalized. Frobenius norm is one of the 

widely used matrix norm found in the literature and is 

explained as: 
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where,    denotes the conjugate transposition of G and i  

represents  the singular values of G [33].  

According to mathematical principle, determinant values 

are zero for linear dependency and closer to one for linear 

independency [34]. Based on the above principle, normalised 

global matrix determinant values are mapped as independent 

(0.5≤‖ ‖≤1), dependent (0.1≤‖ ‖≤0.5) and high level 

dependent (0.01≤‖ ‖≤0.1) values. The rationale for the above 

selection is explained in detail in [35, 36].  

V. RESULTS 

The performance indexes (BPI values) and the relevant 

subbands computed for posterior and anterior sensors of each 

finger flexion are listed in Table II. The results show 

consistency and are significant with p value, p <0.001. The 

dependency independency results for posterior and anterior 

muscles (mean and standard deviation) are shown in Table III. 

Based on the results obtained from this study, muscles 

responsible for simple and complex actions were mapped and 

the results are explained in Table IV.  

One of the main objectives of this study was to reduce the 

number of sensors in sEMG based finger movement studies. 

Based on the results (independency and dependency of 

muscles) obtained from this study (Table III and Table IV), we 

can map the muscles and identify the minimum number of 

sensors needed for each action; the results are given in Table 

V.  

VI. DISCUSSION 

The use of surface electrodes to record myoelectric signals is 

extremely difficult due to large variation in EMG features 

[25]. Although surface electrodes are less reliable and precise 

than fine-wire electrodes [2, 37], the former are self-evidently 

superior for practical purposes, where invasive procedures are 

inappropriate or ill-advised. Therefore, it is not surprising that 

a number of the results in Table III and IV are counter-

intuitive. For example, despite only anterior forearm muscles 

having the capacity to cause flexion of the hand and fingers, 

posterior muscles are frequently either ‘dependent’ or ‘high-

level dependent’. Furthermore, out of the electrodes placed 

TABLE II 

TWO SUBBANDS    AND    THAT CORRESPOND TO THE MINIMAL BPI 
(PERFORMANCE INDEX OF SUBBANDS) COMPUTED FOR EACH FINGER FLEXION 

  

FINGER 

MOVEMENTS 

SUBBANDS 

  AND    

(POSTERIOR) 

BPI 

VALUE 

SUBBANDS 

  AND    

(ANTERIOR) 

BPI 

VALUE 

Thumb  (T)        0.0184        0.126 

Index finger  (I)        0.125        0.0150 

Middle  
finger (M) 

       0.163        0.0153 

Ring finger (R)        0.161        0.0151 

Little finger (L)        0.125        0.0182 

Thumb – 
Index(TI) 

       0.091        0.258 

Thumb – 

Middle (TM) 
       0.085        0.218 

Thumb – Ring 
(TR) 

       0.064        0.216 

Thumb – Little 

(TL) 
       0.248        0.095 

Middle – Ring 
(MR) 

       0.213        0.097 

Ring – Little 

(RL) 
       0.216        0.094 

Index – Middle 
(IM) 

       0.225        0.093 

Index-Middle-

Ring (IMR) 
       0.0276        0.127 

Middle-Ring-
Little (MRL) 

       0.0240        0.114 

Hand Close 

(HC) 
       0.0235        0.135 
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Fig. 3.  Algorithm to compute dependency and independency of sEMG 

signals. 
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over the muscles (described in Table I), only electrode 1 on 

extensor digitorum is able to cause finger movement: 

brachioradialis assists with elbow flexion and the remainder 

all act on the hand at the wrist. Of the forearm muscles, only 

flexor digitorum superficialis (no electrode), flexor digitorum  

profundus (no electrode), extensor digitorum (electrode 1), 

extensor indices and extensor digiti minimi are able to flex or 

extend the medial four digits. With regard to the thumb, flexor 

pollicis longus and extensor pollicis longus are primarily 

responsible for thumb flexion and extension. A possible 

explanation for myoelectric signals from muscles acting on the 

elbow and wrist is coactivation to stabilize these joints during 

finger movement [24, 38]. 

A. Simple finger movements 

Recording of myoelectric signals from the thumb showed 

that the signal for the anterior muscles was dependent (see 

Table III), implying that the anterior muscles of the forearm 

were active during thumb flexion. With regard to the other 

digits, the myoelectric signal from the anterior muscles was 

independent for the index, middle, ring and little fingers 

whereas the signal from the posterior muscles was dependent 

suggesting the posterior muscles were active during flexion of 

these fingers. Therefore, of the recordings of the digits acting 

unilaterally only the thumb is dependent for the anterior 

muscles, with the remaining digits showing greater activity for 

the posterior muscles. 

It is difficult to explain the correlation of ‗dependent‘ with 

‗anterior‘ for the thumb. The primary muscle causing thumb 

flexion is flexor pollicis longus. This muscle is a deep flexor 

and its electrical activity is unlikely to be recorded by an 

electrode on the anterior surface of the forearm. Although 

extensor pollicis longus is probably coactivated during thumb 

flexion, this muscle is also located deeply in the posterior 

compartment of the forearm until near the wrist where it is 

more superficial and it is seen ‗outcropping‘ from under 

extensor carpi radialis and extensor digitorum. In any case 

there are no electrodes in the proximity of either flexor pollicis 

longus or extensor pollicis longus. 

With regard to individual flexion of the index, middle, ring 

and little fingers there is consistent correlation of ‗dependent‘ 

with ‗posterior‘ for recordings of myoelectric signals 

including those from extensor digitorum muscle (electrode 1). 

This may indicate coactivation of extensor digitorum muscle 

during flexion of these fingers by flexor digitorum 

superficialis. Similarly, myoelectric signals from the other two  

muscles mentioned in Khushaba and Kodagoda [32], extensor  

carpi ulnaris (electrode number 8) and flexor carpi ulnaris 

(electrodes 5, 6 and 7), may be due to stabilization of the wrist 

by these muscles while the long finger flexor muscle flexor 

digitorum superficialis contracts. Furthermore, there is a 

possibility that flexor carpi radialis muscle (electrode 4) and 

extensor carpi radialis (no electrode) may also stabilize the 

wrist during finger flexion. 

B. Combined finger movements 

Correlation of ‘dependent’ with ‘posterior’ for combined 

flexion of the thumb with the index (TI), middle (TM) and 

ring (TR) fingers fit the pattern described above for these three 

fingers individually. Furthermore, there is a correlation of 

TABLE III 

INDEPENDENCY AND DEPENDENCY MEASURE (AVERAGE GLOBAL MATRIX 

VALUES) OF POSTERIOR AND ANTERIOR MUSCLES USING ICA 

 

Finger 

movements 

Independent 

(‖ ‖>0.5) 

Dependent 

(‖ ‖<0.5) 

High level 

dependent 

(‖ ‖<0.1) 

Thumb  (T) Posterior 
(0.7±0.05)  

Anterior 
(0.2±0.03)  

 

Index finger  (I) Anterior 

(0.7±0.036) 

Posterior 

(0.3±0.04) 

 

Middle finger 
(M) 

Anterior 
(0.65±0.03) 

Posterior 
(0.25±0.04) 

 

Ring finger (R) Anterior 

(0.81±0.04) 

Posterior 

(0.23±0.03) 

 

Little finger (L) Anterior 
(0.75±0.04) 

Posterior  
(0.31±0.05) 

 

Thumb – Index 

(TI) 

 Posterior 

(0.3±0.03) 

Anterior 

(0.07±0.01) 

Thumb – 
Middle (TM) 

 Posterior 
(0.2±0.02) 

Anterior 
(0.06±0.01) 

Thumb – Ring 

(TR) 

 Posterior 

(0.3±0.02) 

Anterior 

(0.06±0.02) 

Thumb – Little 
(TL) 

 Anterior 
(0.2±0.03) 

Posterior 
(0.07±0.01) 

Middle – Ring 

(MR) 

 Anterior 

(0.3±0.02) 

Posterior 

(0.06±0.02) 

Ring – Little 

(RL) 

 Anterior 

(0.2±0.03) 

Posterior 

(0.07±0.01) 

Index – Middle 

(IM) 

 Anterior 

(0.3±0.03) 

Posterior 

(0.05±0.02) 

Index-Middle-

Ring (I-M-R) 

 Anterior 

(0.25±0.02) 

Posterior 

(0.06±0.01) 

Middle-Ring-

Little (M-RL) 

 Anterior 

(0.3±0.01) 

Posterior 

(0.05±0.02) 

Hand Close 

(HC) 

 Anterior 

(0.26±0.03) 

Posterior 

(0.04±0.01) 

 

 TABLE IV 
MUSCLES RESPONSIBLE FOR SIMPLE AND COMPLEX ACTIONS (BASED ON THE 

RESULTS OBTAINED FROM THIS STUDY) 

 

Finger 

movements 

Posterior Anterior Muscles 

responsible  

for digit flexion 

Thumb  (T) X    a 

Index finger  (I)  X b 

Middle finger (M)  X b 

Ring finger (R)  X b 

Little finger (L)  X c  

Thumb–Index(TI)   a + b 

Thumb–Middle 

(TM)   

  a + b     

Thumb–Ring(TR)   a + b    

Thumb–Little(TL)   a + b + c 

Middle–Ring (MR)   a + b 

Ring – Little (RL)   b + c 

Index–Middle (IM)   a + b 

Index-Middle-Ring 
(IMR) 

  a + b 

Middle-Ring-Little 

(MRL) 

  b + c 

Hand Close (HC)      a + b + c    

 

a = flexor pollicis longus and flexor pollicis brevis; b = flexor digitorum 

superficialis, flexor digitorum profundus and lumbricals; c = flexor digiti 

minimi brevis.  
Note: Here  indicates the dependency (muscles responsible for 

finger flexion) and X indicates independency (muscles either inactive or 

not contributing for finger flexion). 

. 
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‘high level dependent’ for the thumb and little fingers (TL), 

middle and ring (MR), ring and little (RL) and index and 

middle (IM) fingers, presumably for the same reason. 

However, the reason for the reversal of ‘anterior’ and 

‘posterior’ between the categories of ‘dependent’ and ‘high-

level dependent’ is not known. From Table III and IV it is 

evident that there is a correlation of dependency and high level 

dependency between the three-finger movements (IMR and 

MRL) and hand closure. It is possible that this correlation is 

related to the fact that hand closure consists primarily of 

flexion of the index, middle, ring and little fingers which are 

extensively represented in both the three-finger movements. 

Very few muscles are directly involved in flexion of the 

thumb: these are flexor pollicis longus and flexor pollicis 

brevis. Similarly, there are relatively few muscles directly 

involved in finger flexion: chiefly flexor digitorum 

superficialis and flexor digitorum profundus. On the other 

hand, a large number of muscles may be coactivated during 

both normal flexion of the thumb and fingers, and forced 

flexion of these digits (see list above). However, since 

myoelectric signals can only be recorded from superficial 

muscles directly under each electrode, only those specific 

muscles identified for each electrode can be responsible for 

the EMG recordings discussed in the present study and hence 

the same (minimum number of sensors needed for each 

flexion) is justified in Table V. 

Despite the difficulties associated with myoelectric signals 

from surface electrodes, this remains the only pragmatic 

method of recording muscle activity with real-world 

applications such as myoelectric and prosthetic control. These 

difficulties may contribute to the seemingly anomalous 

activation of posterior muscles during finger flexion. 

However, coactivation of muscles acting on the wrist in order 

to stabilize finger movement may explain myoelectric signals 

from muscles such as flexor carpi radialis, flexor carpi ulnaris 

and extensor carpi ulnaris. Similarly, either coactivation or 

cross-talk may be responsible for recording of myoelectric 

signals from extensor digitorum (a finger extensor) during 

flexion of the index, middle, ring and little fingers. Only a few 

specific anterior forearm muscles cause thumb and finger 

flexion. In contrast, a larger number of anterior and posterior 

muscles may be coactivated during thumb and finger flexion. 

With forceful thumb and finger flexion more proximal 

muscles may also be recruited for coactivation of muscles 

stabilizing the thumb, fingers, wrist and even elbow. The 

dependency nature of posterior (during simple flexion) and 

anterior (during complex finger flexions) muscles highlighted 

the importance of sEMG sensor placement during simple and 

complex finger flexion movements. 

VII. CONCLUSION 

In myoelectric prostheses design, it is normally assumed 

that the necessary control information can be extracted from 

the surface myoelectric signal. In order to extract valuable 

sEMG features, it is essential to place the sensors in optimum 

location so that the best features can be extracted without any 

artifacts or cross-talk. Moreover, it has been acknowledged in 

the literature that the classification accuracy in a pattern 

recognition framework is more affected by the location of the 

electrodes and choice of the feature set than by the 

classification algorithm itself. Hence, in order to get higher 

classification accuracy and robustness, prior to myoelectric 

and prosthetic design, it is essential to investigate the optimum 

sensor placement.   

Classification of simple and complex gestures using 

minimum number of sEMG sensors is always a challenging 

task. Due to the complex nature of human hand muscle 

anatomy, the placement of sEMG electrodes in a correct 

position is very difficult. Artefact and cross-talk from adjacent 

muscles also make it very hard to identify the optimum 

location of the myoelectric sensors. In this study an attempt 

has been made to identify the dependency and independency 

of sEMG muscles/sensors which are used for identification of 

simple and complex gestures. The study has identified the 

redundant nature of some of the posterior and anterior muscles 

and hence, helps in optimizing the number of sensors required 

for myoelectric and prosthetic control applications.   

From this study, it can be concluded that, it is possible to 

obtain most of the simple finger flexion movements by using 

sEMG sensors connected to posterior part of the muscles only. 

On the other hand, most of the complex finger flexions can be 

identified using sEMG sensors connected to the anterior part 

of the muscles. The proposed research study will certainly 

help in optimization of sEMG sensors and also help 

researchers and scientists who want to design prosthetic and 

myoelectric control systems for simple and complex gestures. 

Results from this study show that both simple and complex 

finger flexions can be recognized using only a few number 

sensors (up to 2 sensors). This requires careful study of hand 

muscles, choice of electrodes and the signal processing 

methods used to achieve the task. We believe that the outcome 

of this study (dependency/independency) could be used as one 

of the important pre-processing steps (electrode/muscle 

configuration) in myoelectric control, stroke rehabilitation and 

other prosthetic applications. In the near future, the authors 

would like to investigate the above-mentioned concept for 

prosthetics and stroke rehabilitation applications using a 

TABLE V 
NUMBER OF SENSORS RESPONSIBLE FOR SIMPLE AND COMPLEX ACTIONS 

(BASED ON THE RESULTS OBTAINED FROM THIS STUDY)  
 

Finger movements Number of Sensors 

needed for each flexion 

Thumb  (T) 1 

Index finger  (I) 1 

Middle finger (M) 1 

Ring finger (R) 1 

Little finger (L) 1 

Thumb – Index(TI) 2 

Thumb – Middle (TM) 2 

Thumb – Ring (TR) 2 

Thumb – Little (TL) 2 

Middle – Ring (MR) 2 

Ring – Little (RL) 2 

Index – Middle (IM) 2 

Index-Middle-Ring (IMR) 2 

Middle-Ring-Little (MRL) 2 

Hand Close (HC) 2 
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minimum number of sensors. 
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