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Abstract— An algorithm is proposed for matching data from
different sensing modalities. The problem is formalised as a
kidnapped robot problem, where Bayesian fusion is used to
find the most likely location where both modalities agree. The
key idea of our algorithm is to model the correlation between
the two modalities as a likelihood used to update a location
prior. Data, in this case, is represented as 2.5D thickness maps
from a laser scanner and a Remote Field Eddy Current (RFEC)
tool, used in non-destructive testing to assess the condition of
infrastructures. The laser data is limited, while RFEC data is
continuous. Given some prior in location, the aim is to find
the 2.5D thickness map from the laser that corresponds to the
RFEC data, which should be noted is highly noisy. Real data
from CCTV inspections of water pipes are used to validate the
proposed approach.

Keywords : Remote Field Eddy Current, Kidnapped robot
problem, map-matching, location prior

I. INTRODUCTION

When a robot loses the track of its position on a given map
is commonly referred as the “kidnapped robot problem” [4].
Once the robot is lost, it has to explore the environment
by comparing the processed sensor measurements to the
known information to re-localise itself in the map. In this
paper, we consider one step of this re-localisation problem,
where a noisy global map is given together with local
robot information and a prior on the location. We propose
a methodology to locate “the robot” (in our case a pipe
segment) in the global map (built using data from a sensing
modality), given a locally referred measurements (obtain
with a different sensing modality) and a rough estimate on
where to search for possible matches.

More practically, the global map is built with an in-
line RFEC inspection tool, shown in Fig. 1(a). The tool
travels inside an underground pipeline allowing to assess its
condition. This type of inspection tools collects data that
directly relates to the thickness of the pipeline. All data are
associated with a location using wheel odometers embedded
on the tool. This allows creating a 2.5D map, similar to
an elevation map, where the two dimensions represent the
axial and circumferential locations and the half dimension
represents the thickness of the pipeline. In our experiment,
the global map consists of 1 km of pipeline dedicated for
research purposes.

The locally referred measurements have been obtained
by exhuming small (∼1 m) pipe sections as shown in
Fig. 1(b). These sections are cleaned and analysed with a
three dimensional (3D) laser scanner as shown in Fig. 1(c).

Fig. 1: Overview of the data acquisition. (a) The pipeline
is inspected using Remote Field Eddy Current (RFEC) tool,
(b) some pipes section are extracted (c) to be assessed using
laser scanner. (d) The extracted pipes are replaced by new
pipe sections and (e) a CCTV inspection is run through the
pipe at the end of the process.

After transforming the geometry captured by the laser scan-
ner into thickness [10], we obtain a local, high resolution,
and accurate 2.5D map. Note that exhuming a part of the
pipeline, instead of introducing the robot into the pipeline,
results in the same theoretical formulation of the kidnapped
robot problem since we consider only one iteration for re-
localisation. Since the robot measurements are transformed
into a 2.5D thickness map of the extracted pipe section, they
are referred as local maps for the rest of the paper. In our
current research, these local maps are used as ground truth
for evaluation of the RFEC technology.

Both, the data from the RFEC tool and laser scanner, have
to be aligned to be compared to each other. It is possible
to do a rough alignment using the odometer information
while travelling inside the pipe and the distance measured
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above the ground when excavating the pipe sample. However,
due to the inherent drift in the odometry, the lack of loop
closures, and the inaccuracy of the manual procedure to
measure distances above the ground, alignment of only 1 m
of data results quite challenging. Furthermore, as the pipeline
are buried deep underground and the terrain changes, the
distances measured inside the pipe and the ones measured
above the ground are different. A common advice from
technology providers of REFC tools is to dig within a
window of 20 m to get a specific 3 m long pipe section.

Alignment of 2.5D maps is commonly referred in the
literature as template matching, map matching or registration
depending on the research field and application. The problem
is generally formulated as the minimisation of a distance be-
tween the two maps/images. In the field of medical imaging,
authors often deal with different modalities such as MR and
ultrasound, and use metrics such as Mutual Information (MI)
for measuring the dissimilarity between the different data for
2D [14] and 3D images [8]. This problem is also present
for localisation in the robotic field, where multi-modal map
matching techniques are commonly used for localisation in
robotics [15], [7]. In the problem tackled in this paper, we
also deal with different sensing modalities.

The MI metric, however, sometimes shows unexpected
results, producing better scores for wrongly registered maps
than for properly registered ones [11]. This problem can be
solved by using Normalised Mutual Information (NMI), or
using problem-designed metrics. For example, in the case of
a known linear relationship between the sensor modalities,
Pearson correlation [9] is simple and considerably reduces
the computation cost of the algorithm.

In our case, due to the noisy nature of the global map,
these methods shows poor results. Luckily, the pipeline
contains structural elements such as joints. They are both
visible within the RFEC data and in the exposed pipe
section before exhumation. In our experimentation, distance
measurements were taken between the exhumed pipe section
and these structural elements allowing us to have a strong
location prior when aligning the data. Similarly to [1], the
prior is incorporated in the registration approach using a
Bayesian approach.

The performance of the proposed method is evaluated us-
ing the location obtained by visually inspecting the pipeline
after exhumation of all pipe sections. The pipe sections are
replaced by new pipes (shown in Fig. 1(d)) made from
different material, making possible to find them with a
CCTV inspection (shown in Fig. 1(d)). Finally, the structural
elements are used to align the video with the data captured
by the RFEC tool. This provided us with the exact locations
of the exhumed pipe section with respect to the global map
given by the RFEC tool. We present results here that show
the validity of the approach.

II. MAPPING OF THE PIPELINE

The global map m is built by scanning the entire pipeline
using an in-line RFEC tool. The tool generates a magnetic
field while travelling through the one-kilometre pipeline. The

ferromagnetic medium of the cast-iron pipe interacts with the
magnetic field and the response of the excitation is recorded
by the tool.

The magnetic properties recorded are the log-amplitude
and the phase shift of the magnetic field, which have been
proved to have a linear relationship with the pipe thick-
ness [2]. Simultaneously to the acquisition of the magnetic
field properties, the displacement of the tool is recorded by
three embedded wheel encoders. The information obtained
from the wheel encoders are merged to get the odometry
information.

The data collected is highly noisy and requires a thorough
filtering process to obtain the correlation with the thickness
of the pipe. Faulty and miss-calibrated sensors are present in
the data.

The missing sensors are interpolated using the neighbour-
ing sensors and the miss-calibration is corrected using a
Butterworth filter [3] in the Fourier space. An example of
this filtering is displayed in Fig. 2.

Furthermore to the simple filtering, a background removal
technique, shown in Fig. 3, is applied to the RFEC signal
to counteract the effect of the magnetic field passing twice
through the pipe’s wall. This approach is explained in [5].

The inspection performed with the RFEC tool allows us
to produce a global map with a grid size of 2×37 mm. This
resolution is limited by the design of the tool itself and the
sampling rate of the signal.

III. LOCAL MAP

The local map mlocal is defined by the thickness map of
a pipe section, which is usually a one-meter long cylinder.
To create this thickness map, we use a commercial high-
resolution 3D laser scanner shown in Fig. 4.

After scanning, the raw 3D model acquired by the laser
scanner contains outliers and needs to be processed to be
transformed into the same state space as the map m, which
is a 2.5D thickness map. The model is processed with a state-
of-the-art 3D point cloud algorithms detailed in [10]. After
removing the outliers, the 3D point cloud is then ray-casted
to obtain the thickness map of a 1.5mm uniform sampling.

(a) (b) (c) (d)

Fig. 2: (a) Raw data have missing and miscalibrated sen-
sors. (b) The missing sensors are interpolated using the
surrounding sensors. (c) The data are then transformed into
the Fourier space. (d) The lack of calibration is solved by
applying a Butterworth filter in the Fourier space.



Fig. 3: The calibrated RFEC signal, shown in the first row,
is processed with a background removal algorithm to obtain
the data shown in the middle row. In case of high source of
noise such as the two last lines, the data still presents poor
correlation with the laser scans, shown in the last row.

IV. MAP-MATCHING

Let the state x be the location of the laser scanner within
the global map

x =

[
x
θ

]
, (1)

where x is the axial position of the laser scan and θ is the
circumferential shift. The aim is to transform both maps m
and mlocal into a likelihood space using a correlation-based
measurement model [12].

A. Matching the grid space

In order to compute the correlation function, the maps
need to be defined at the same resolution. The local map
mlocal, which has a much larger resolution, is down-sampled
to fit the grid size of the map m.

These maps are defined in cylindrical coordinates, but
they are manipulated as matrices that do not account for the
cylindrical wrapping of the data. It is however interesting
to consider the cylindrical properties of the maps while

matching the grid-size of the data. We create an overlap of
the data in the 2D matrix which represent the map mlocal.
More formally, from the original mlocal of size X × Θ, we
create a temporary matrix mtemp of size X ×Θ+2 defined
as follows,

mtemp =

 m1,Θ m1,1 · · · m1,Θ m1,1

...
...

. . .
...

...
mX,Θ mX,1 · · · mX,Θ mX,1

 . (2)

To resize the image mX1,Θ1 to the size X2×Θ2 we use
a proportion factor αx on the radial axis, define by

αx = round(Θ2
Θ1 + 2

Θ1
). (3)

The additional columns created are then deleted to match
the size X2×Θ2. This method gives a better approximation
while interpolating the values located near the edges of the
pipe (which correspond to the section on the radial axis).

B. Map correlation function

Following the idea of the correlation-based model de-
scribed in [12] (Chapter 6), let the map correlation function
that compares the global and local maps be

ρm,mlocal,x =

∑
x,θ

(mx,θ − m̄)(mx,θ,local − m̄)√∑
x,θ

(mx,θ(x)− m̄)2.
∑
x,θ

(mx,θ,local(x)− m̄)2
,

(4)
were m̄ is the average map value expressed as

m̄ =
1

N

∑
x,θ

(mx,θ +mx,θ,local), (5)

and N is the number of elements present in both m and
mlocal.

Also, let the map correlation function be expressed as a
probability

p(mlocal|x,m) = max{ρm,mlocal,x, 0}. (6)

Then as local map is generated from a single range of mea-
surement z, we can consider p(mlocal|x,m) as a measurement
probability p(z|x,m).

Fig. 4: Generation of a 3D model of the pipe using a laser
scanner. The 3D model is then transformed into a 2.5D
thickness map.
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Fig. 5: The prior map, on the left, is defined as a mixture of Gauss von Mises (GVM) distributions along the pipe. On the
right figure, the parameters Θ(x) and κ have been defined to emphasised the wrapping property of the GVM distribution.

Current practice advices to search at least two pipe sec-
tions upstream and downstream from the exhumed pipe sec-
tion to overcome odometry errors. We perform an exhaustive
search of the map-matching on the domains dom(x)×dom(θ)
for all these pipe sections. The search is operated off-line,
thus the computation time is not an issue.

V. LOCATION PRIOR

The one-kilometre long pipeline is constituted of short
pipe sections, which are attached together. These pipe sec-
tions are usually 3.6 m long and the attachments between
the pipes are done using Bell and Spigot (B&S) joints. The
B&S joints are visible in the data acquired by the RFEC tool.
Moreover, these joints can be also located visually when the
pipes are extracted from the ground, therefore they are a
good reference for matching the different data.

In order to get the data aligned, the distance between these
B&S joints and the section extracted have been manually
measured. From the RFEC data, an automatic algorithm
has been developed to locate the B&S joints [13]. This
algorithm uses a machine learning approach using Support
Vector Machine (SVM) to classify the Bell & Spigot joints,
and other construction features.

We use this information to build a representation of the
location prior. The prior knowledge is defined as a feature-
based map that is a Gauss von Mises (GVM) distribution [6],
more formally we define it as a Probability Density Function
(PDF),

plocal(x, θ) = N(x;µ, σ)VM(θ;Θ(x), κ), (7)

with N(x;µ, σ) the normal distribution and VM(θ;Θ(x), κ)
the von Mises distribution, which is an approximation of the

wrapped normal distribution,

N(x;µ, σ) =
e−

1
2
(x−µ)2
σ2

√
2πσ2

, (8)

VM(θ;Θ(x), κ) =
eκcos(θ−Θ(x))

2πI0(κ)
, (9)

where I0(κ) is a modified Bessel function of the first order,
σ and κ relate to the variance of each distribution, and µ and
Θ(x) are the center of each distribution (Θ(x) is a function
of x to account for the cross correlation between x and θ).

On the axial direction, σ is defined with an uncertainty
related to the size of a B&S joint. On the circumferential
direction, the rolling of the tool within the pipe is supposed to
be corrected, however, a small drift will lead to a significant
change after a long distance. Therefore, we define κ as an
equivalent to a σ of 30° on the circumferential direction.

A similar PDF is defined for each section of the pipe. The
set of PDF is then combined as a Gaussian mixture,

p(x) =
1∑
l

ψl

∑
l

ψlplocal(x, θ), (10)

where ψl is the weight of each plocal(x, θ).

VI. BAYESIAN FUSION OF THE LOCATION PRIOR AND
SENSOR MEASUREMENT

The location prior p(x) is fused to the measurement
likelihood p(z|x,m) using the Bayes rule

p(x|z) =
p(z|x,m)× p(x)

p(z)
. (11)

The location of the best match is defined by
argmax{p(x|z)}, known as the maximum a posteriori
(MAP) estimator. Since p(z) is a normalising constant,
which does not change the result of the argmax function,
we do not consider it.



VII. RESULTS AND DISCUSSION

The exhumation and analysis of the pipe sections is a
costly and laborious exercise, which requires actual construc-
tion work. Therefore, the amount of data available (for local
maps) is limited to a few pipe sections. For this analysis,
we consider nine pipe segments of 1 m to be compared with
five 3.6 m sections each.

A. Validation of the methodology

The validation of the methodology is performed by
analysing a CCTV inspection of the pipeline. The exhumed
pipe sections have been replaced by new sections made out of
different material, which has different coloration. Therefore,
locating these pipe sections within the CCTV data results in
a trivial task.

The data from the CCTV inspection and the global map
are aligned using the visible B&S joints. The drift from the
RFEC tool odometry can be corrected iteratively after each
joint. After alignment of the data, we obtain an accurate
localisation of the exhumed pipes.

Fig. 6, 7, and 8 show the performance of the proposed
algorithm in different scenarios. Figs. 6 and 7 show success-
ful matching using the MAP estimator on the posterior. The
proposed methodology shows robust performance in a noisy
environment (Fig. 7). When comparing the RFEC signal and
the laser scans at the correct location (second line in Fig. 3),
the important source of noise results in poor correlation
between both data.

Fig. 8 illustrates the situation of high noise in the global
map. The posterior still show a bimodal behaviour which
include the correct match and provide better information than
without using location prior.

The performance of the methodology used on the full
dataset is presented in confusion matrix of Table I. As the
table shows, the algorithm has 80% accuracy. The high
number of false positives is due to the lack of features on
some of the pipes samples. The lack of features produces the
bimodal behaviour as explain above. The algorithm, however,
produced a small number of false negatives that in practical
terms is more important than the false positives. Note that
false negatives represent the times the algorithm matched the
map with the incorrect location, while the false positives, in
this case, represent the ambiguity produced by the algorithm.

TABLE I: Confusion matrix summarising the results of the
map matching.

Predicted as
at the location out the location

At the location 8 1

Outside the location 8 28

B. Discussion

Due to the nature of the RFEC technology, the global map
m is very noisy. In the presence of features (defects in the
pipe), the algorithm performs well as the global map is not
too noisy. Failures such as the one in Fig. 8 happens when
the ratio of signal to noise is too low. Even in this noisy
condition, the posterior shows a bimodal behavior which
proves a clear improvement compared to the correlation map
only. The failure in the matching of the algorithm happens
when the ratio signal to noise is too low and there are no
features (defects) on the map.

Using the correlation map function offers the advantage to
perform the search on θ, which would not have been possible
with either MI or NMI since these distances are based on the
entropy of an image and do not account for pixels location.
Furthermore, the correlation map function is much faster to
compute than MI and NMI, which allows us to perform an
exhaustive search easily.

The computation efficiency was not important in our
experiment since the algorithm was run off-line, however,
a threshold on the location prior could be used to reduce the
search space.

The algorithm can be generalised to some other scenarios
of global maps and local measurements defined in a cylindri-
cal space. This methodology has been applied for aligning
scans produced by an Magnetic Flux Leakage (MFL) tool
with ground truth, showing promising results.

VIII. CONCLUSION

The use of a strong location prior allows to constrain
a standard map matching approach. The proposed method
accounts for the cylindrical geometry of the data and allows
finding the good location of the scanned pipe for both axial
and circumferential direction, which is not possible with an
MI-based map matching.

Up to a certain level of noise, we can recover the proper
location of the extracted pipe and for a high level of noise,
the location prior still improve the results.

The use of a correlation map function reduces the compu-
tation time and allows a multi-modal comparison in case of
a linear relationship. In future work, we will look into the
use of a gradient-based optimisation to overcome the need
of exhaustive search for a more computationally efficient
methodology.
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Fig. 6: Example of successful matching with low noise data displayed in the first line of Fig. 3. The left figure shows the
location prior. The map correlation function, in the middle, shows a local maximum in the location of the correct match.
The Bayesian fusion with the location prior is shown on the right.

Fig. 7: Example of a successful matching from a noisy data, the RFEC and laser scan data are displayed in the second line
of Fig. 3. The uses of the location prior allows to distinguish the local maxima in the correlation map.

Fig. 8: Example of multi-modal posterior from noisy data, the RFEC and laser scan data are displayed in the last line of
Fig. 3. The measurement of the global map contains too much noise to have the successful match using the MAP estimator,
however the use of the location prior allow to have much better certainty than using the single map correlation function.
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