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Abstract— This paper presents a fast global scan matching
technique for high-speed vehicle navigation. The proposed
grid-based scan-to-map matching technique collectively handles
unprocessed scan points at each grid cell as a grid feature. The
grid features are transformed and located in the global frame
and updated every time a new scan is acquired. Since registered
and updated are only grid features, which are each the mean of
scan points in a grid cell, the proposed grid feature matching
technique is very fast. Representation for each grid cell by
multiple grid features further maintains accuracy regardless of
the grid size while fast processing is achieved. The technique is
therefore suited for localization of high-speed vehicle navigation.
Experimental results show the effectiveness of the proposed
technique numerically and experimentally.

I. INTRODUCTION

While mobile robots have been successfully navigated by
Global Positioning Systems (GPSs) in known environments,
navigation of mobile robots in unknown environments still
remains challenging. The robots cannot be navigated by
GPSs because of the unavailability of the paths to follow.
This gives rise to need for Simultaneous Localization and
Mapping (SLAM) and other registration-based localization
and mapping techniques, which iteratively update the map
of local environments and the location of the mobile robot.
A series of waypoints can be introduced once the local map
and the robot location has been known.

Since successful localization and mapping relies upon the
successful association of the new observation to the past
observations, existing techniques can be classified in terms
of the type of data extracted from the observation into
two categories, feature-based and scan-based. In the feature-
based techniques, a set of features including different types
of geometric models such as points, lines, curvatures, and any
arbitrary shapes is extracted from the observation and used
as landmarks to associate the new and previous observations
[1], [2]. The advantage of the feature-based technique is
fast computation since a limited number of features are to
be processed. Its disadvantages are accuracy and reliability.
Accuracy could be significantly dropped since only data
representing extracted features are utilized for mapping and
localization whilst the remaining are discarded. Reliability is
an issue since feature extraction is challenging and may not
be successful [3], [4], [5].
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The scan-based techniques [6], [7], [8], [9], on the other
hand, directly utilizes unprocessed scanned data as obser-
vations which are generally sets of points obtained from
range sensors such as a sonar and a laser scanner. One of
the fundamental challenges of the scan-based techniques, as
an approach to associate the new scan to the past scans, has
thus been the association or matching of one scan to another,
namely the scan-to-scan matching. The most common scan-
to-scan matching approach is based on the Iterative Closest
Point (ICP) technique [10] which allows the point-to-point
matching between two scans by minimizing the total distance
between them. Despite the popularity of the technique,
the point-to-point matching may yield inappropriate data
association since the matching is dominated by the densely
populated neighboring points. Weiss and Puttkamer [11]
proposed an improved technique that additionally considers
an angle between two neighboring scan points. Biber and
Straßer [12] introduced a grid space and matched scans by
collectively representing scan point in each grid as a normal
distribution in the name of Normal Distribution Transform
(NDT). Although they could exhibit improved accuracy
due to the full use of unprocessed data, these local point-
to-X techniques inevitably yield and accumulate the scan
matching error while making the process computationally
expensive unless accuracy is intensionally dropped as a trade-
off.

This paper presents a fast global scan matching technique,
which has been proposed by taking the advantages of both
the feature-based and scan-based techniques. The proposed
technique handles unprocessed scan points similarly to the
scan-based techniques but collectively represents scan points
as features by introducing a grid to the space of concern and
features of each grid cell, or grid features (GFs). A global
grid is defined with the initial robot pose as the reference,
and all the scans are registered onto the global grid. In the
registration, GFs of each scan are matched to the map GFs,
which are already registered in the global grid, in the name
of grid-based scan-to-map matching. One of the features of
this technique is its ability to control efficiency and accuracy
rather independently since the technique can locate multiple
map GFs in each grid cell. While efficiency depends on the
grid size, the accuracy is most influenced not by the grid size
but by the location and number of map GFs. The proposed
technique can thus be both efficient and accurate by using a
large grid size. The accuracy of the proposed technique can
further be improved as scans are fully utilized to derive GFs.

This paper is organized as follows. The next section
explains the general framework of the global scan matching



framework whereas the proposed grid-based technique for
fast vehicle navigation is presented in Section III. Section IV
presents experimental results which investigate the effects of
the proposed technique whereas conclusions and future work
are summarized in the final section.

II. GLOBAL SCAN MATCHING

Figure 1 shows the overall process of the global scan
matching, which is also called the scan-to-map matching.
Unlike the conventional scan matching, or the scan-to-
scan matching, where the new scan is matched only to
the previous scan, the global scan matching matches the
new scan to all the past scans that are registered onto
the the globally defined map. To understand the overall
process mathematically, let the previous scan in the previous
robot frame be {R−}Zk−1 =

{{R−}zik−1|∀i ∈ {1, · · · ,m}}
and the new scan in the new robot frame be {R}Zk ={{R}zik|∀i ∈ {1, · · · ,m}} where k is the time step and m
is the number of points in the scan. {R−} and {R} denote
the robot frame at time step k − 1 and the that at time step
k.

When the new scan {R}Zk is obtained, the global scan
matching first estimates the transformation matrix {R−}{R} ps

k

using laser scanner readings together with any scan-to-scan
matching technique such as ICP and NDT, the encoders
readings, the Inertial Measurement Unit (IMU) readings, or
their combination. Out of them, the scan-to-scan matching
with laser readings is most powerful and effective since the
laser reading is less subject to noise. It is generically given
by the optimization problem

m∑
i=1

d
(
{R−}zik

(
{R−}
{R} ps

k

)
,{R−} Zi

k

)
→ min
{R−}
{R} ps

k

(1)

where d (·) is a distance measure to minimize, and {R−}Zi
k

is corresponding information constructed from the previous
scan. The powerfulness and effectiveness are however true
only when the laser scanner observes surroundings in close
proximity and the robot movement, particularly the orienta-
tion change, is small. The optimization could otherwise fail
since the ill-posed objective function in Eq. (1) could be
multi-modal. The encoders and the IMU are used to make
the objective function better-posed and provide a better initial
guess to the optimization problem. After the derivation of
{R−}
{R} ps

k, each new scan point in the {R} frame is then
transformed to that in the {R−} frame:

{R−}zik

(
{R−}
{R} ps

k

)
= R(φsk) {R}zik + tsk (2)

In order for global correction, each new scan point {R−}zik
is further transformed to that in the global frame {G} using
the robot pose estimated at the previous time step in the {G}
frame:

{G}zik = R
(
{G}θk−1

){R−}
zik +{G} xk−1 (3)

where {G}xk−1 = [{G}xk−1,
{G} yk−1]ᵀ and {G}θk−1 are the

robot pose in the global frame estimated at time step k− 1.

The iterative estimation of the robot pose in the global frame
is performed by considering the robot movement, {R−}xk

and {R−}θk, which is equivalent to tsk and φsk, respectively:

{G}xk = R
({G}θk−1) tsk +{G} xk−1

{G}θk = φsk +{G} θk−1
(4)

where the initial pose of the robot, [x0, θ0], defines the global
frame.

The new scan and the robot pose may, however, be
incorrectly located due to the scan matching error, and the
error accumulates over time since the scan matching is only
local. Once the new scan is transformed to the {G} frame,
the global scan matching further matches the new scan to the
map in the {G+} frame, which is the global frame corrected
by the global scan matching from the original guess of the
global frame. The optimization problem is given by

m∑
i=1

d
(
{G+}zik

(
{G+}
{G} pm

k

)
,{G+} Zi

k

)
→ min
{G+}
{G} pm

k

(5)

where {G+}
{G} pm

k = [tmᵀ
k , φmk ]ᵀ is the global scan matching

transformation matrix, and transforms the new scan to the
corrected global frame. The derivation of the global scan
matching transformation matrix is detailed in the next sub-
sections. Following the identification of {G+}

{G} pm
k , the new

scan in the {G+} frame is found as

{G+}zik

(
{G+}
{G} pm

k

)
= R (φmk ) {G}zik + tmk (6)

Simultaneously, the robot pose in the {G} frame is also
corrected by {G+}

{G} pm
k :

{G+}xk = R (φmk )
{G}

xk + tmk
{G+}θk = {G}θk + φmk

(7)

Because the scan matching error is removed, the global scan
matching does not accumulate the error.

III. GRID-BASED SCAN-TO-MAP MATCHING

A. Grid Representation and Scan Grid Features

Once it is acquired and converted to the {G} frame, the
new scan is ready to be represented on a grid as a set of
GFs. Let the grid cells containing scan points more than the
minimum number of scan points be

Sk =
{
{G}z̄jk|∀j ∈ {1, · · · , n

s
k}
}

where nsk is the number of grid cells containing scan points
more than the minimum number ms

min. The scan GF in the
jth grid cell is derived simply as

{G}z̄jk =
1

m
sj
k

m
sj
k∑

i=1

{G}zjik (8)

where msj
k is the number of scan points in the jth cell, and

{G}zjik is the ith scan point in the jth cell.



Fig. 1. Overall process of global scan matching

Fig. 2. Grid-based scan-to-map matching

B. Map Grid Features and Selection of Corresponding Map
Grid Feature

Figure 2 illustratively shows the motivation of representing
and handling multiple map GFs in each grid cell. As shown
in the figure, the scan GF of an object can be significantly
different depending on the robot pose. The map with multiple
GFs allows the matching of the new scan to a map GF
irrespective of the robot pose. Mathematically, grid cells
registering at least one scan GF up to time step k − 1 are
represented as

M1:k−1 =
{
M j

1:k−1|∀j ∈
{

1, · · · , ngk−1
}}

where M j
1:k−1 is the property of the jth grid cell, and ngk−1

is the number of grid cells. M j
1:k−1 is given by

M j
1:k−1 =

{
M jl

1:k−1 =
{
z̄jl1:k−1,m

jl
k−1

}
|∀l ∈

{
1, · · · , ngjk−1

}}
where M jl

1:k−1 is the property of the lth map GF in the jth
cell with the mean, z̄jl1:k−1, and the total number of scan
points, mjl

k−1. ngjk denotes the total number of map GFs in
the jth cell, and a corresponding map GF must be selected
if ngjk ≥ 2.

The selection of a corresponding map GF for the scan GF
in the proposed technique starts with quantifying the distance
of the scan GF to each map GF in the same cell and finding
the closest map GF:

z̄jl∗1:k−1 = argmin
{
d
(
{G}z̄jk, z̄

jl
1:k−1

)
|∀l ∈

{
1, · · · , njk−1

}}
(9)

where

d
(
{G}z̄jk, z̄

jl
1:k−1

)
=
∥∥∥z̄jl1:k−1 −{G} z̄jk∥∥∥ (10)

If the distance is close enough, or less than the threshold,
the closest map GF should become the corresponding map
GF. If not, a new map GF should be created since no map
GF is similar. The selection of the corresponsing map GF is
resultantly given by

ẑjk =

{
z̄jl∗1:k−1 if argmin {d (·)} < γ
{G}z̄jk Otherwise

(11)

C. Identification of Error Correction Parameters
Having the matching map GF identified for each scan

GF, the transformation matrix {G+}
{G} pm

k can be identified by
matching all the scan GFs to the corresponding matching
map GFs. The identification of {G+}

{G} pm
k begins with the

initial values set to 0 as it is valid to assume that {R−}{R} ps
k

and the previous robot pose estimation is reasonably correct.
The proposed technique first transforms each scan GF to that
in the {G+} frame using the currently guessed {G+}

{G} pm
k :

{G+}z̄jk

(
{G+}
{G} pm

k

)
= R (φmk )

{G}
z̄jk + tmk (12)

With all the scan GFs and the matching map GFs described in
the {G+} frame, the transformation matrix {G+}

{G} pm
k can be

then computed by minimizing the objective function given
by the sum of differences between the scan GFs and the
corresponding matching map GFs:

Φ
(
{G+}
{G} pm

k

)
=

ns
k∑

j=1

D
(
{G+}z̄jk, ẑ

j
k

)
→ min
{G+}
{G} pm

k

(13)

where

D
(
{G+}z̄jk, ẑ

j
k

)
=

1

2

(
{G+}z̄jk − ẑjk

)ᵀ (
{G+}z̄jk − ẑjk

)
(14)

The objective function of the proposed technique allows the
global scan matching with improved accuracy by matching
to multiple GFs while requiring the transformation and
matching of only GFs instead of all the scan points. This
makes the proposed technique efficient and accurate.

Applying Newton-Raphson method, {G+}
{G} pm

k is iteratively

computed by the increment ∆
{G+}
{G} pm

k :

∆
{G+}
{G} pm

k = −H−1k gk (15)



where Hk and gk are the sums of the Hessian, H̃k, and the
gradient, g̃k, of the score function:

Hk =

ns
k∑

j=1

H̃j
k, gk =

ns
k∑

j=1

g̃j
k (16)

For the jth cell, the gradient vector g̃j
k is given by

g̃j
k =

∂{G+}z̄jk

∂
{G+}
{G} pm

k

(
{G+}z̄jk − ẑjk

)
(17)

and the Hessian matrix H̃j
k is computed by

H̃j
k =

∂{G+}z̄jk

∂
{G+}
{G} pm

k

∂{G+}z̄jk

∂
{G+}
{G} pm

k

ᵀ

+
∂2
{G+}

z̄jk

∂
{G+}
{G} pm

k

2

(
{G+}z̄jk − ẑjk

)
(18)

where

∂{G+}z̄jk

∂
{G+}
{G} pm

k

= ∇
(
R (φmk )

{G}
z̄jk + tmk − ẑjk

)
(19)

and
∂2
{G+}

z̄jk

∂
{G+}
{G} pm

k

2 =
∂

∂
{G+}
{G} pm

k

 ∂{G+}z̄jk

∂
{G+}
{G} pm

k

 (20)

If this is two-dimensional, GFs in the {G+} frame are

{G+}z̄jk

(
{G+}
{G} pm

k

)
= R (φmk )

{G}
z̄jk + tmk

=

[
cosφmk − sinφmk
sinφmk cosφmk

][ {G}zjxk
{G}z

jy
k

]
+

[
tmx

k

t
my

k

]

=

[
{G}zjxk cosφmk − {G}z

jy
k sinφmk + tmx

k
{G}zjxk sinφmk + {G}z

jy
k cosφmk + t

my

k

]
(21)

The derivative in Equation (17) is given by

∂{G+}z̄jk

∂
{G+}
{G} pm

k

= ∇
(
R (φmk )

{G}
z̄jk + tmk − ẑjk

)
=

 1 0
0 1
a b

 (22)

where

a = −{G}zjxk sinφmk −{G} z
jy
k cosφmk (23)

b ={G} zjxk cosφmk −{G} z
jy
k sinφmk (24)

The gradient is thus derived as

gk =

 zjxk − z̄
jx
k

z
jy
k − z̄

jy
k

a
(
zjxk − z̄

jx
k

)
+ b

(
z
jy
k − z̄

jy
k

)
 (25)

By further differentiating the gradient, Hessian matrix can
be derived:

∂

∂tmx

k

 ∂{G+}z̄jk

∂
{G+}
{G} pm

k

 =

 0 0
0 0
0 0

 (26)

∂

∂t
my

k

 ∂{G+}z̄jk

∂
{G+}
{G} pm

k

 =

 0 0
0 0
0 0

 (27)

∂

∂φmk

 ∂{G+}z̄jk

∂
{G+}
{G} pm

k

 =

 0 0
0 0
c d

 (28)

where

c = −{G}zjxk cos(φmk ) + {G}z
jy
k sin(φmk ) (29)

d = −{G}zjxk sin(φmk )− {G}zjyk cos(φmk ) (30)

The substitution into Equation (18) yields the Hessian matrix.
When ∆

{G+}
{G} pm

k is computed, {G+}
{G} pm

k is then updated by:

{G+}
{G} pm

k ←
{G+}
{G} pm

k + ∆
{G+}
{G} pm

k (31)

D. Update of robot pose and map GFs

The robot pose and the map GFs can be updated once the
global transformation matrix has been determined. The robot
pose is updated using Equation (7). The map GFs are updated
differently depending on whether there is a corresponding
scan GF. If D

(
{G+}z̄jk, z̄

jl∗
1:k−1

)
< γ, the map GF is updated

according to the weighted mean formulation:

z̄jl∗1:k =
mj

1:k−1z̄
jl∗
1:k−1 +mj

k
{G+}z̄jk

mj
1:k−1 +mj

k

(32)

mjl∗
1:k = mjl∗

1:k−1 +mj
k (33)

Otherwise, the scan GF becomes the new map GF:

z̄jl∗1:k ={G} z̄jk (34)

mjl∗
k−1:k = mj

k (35)

IV. EXPERIMENTAL RESULTS

In order to investigate its performance, the proposed global
scan matching technique was applied to the localization
and mapping by a car with a drive-by-wire system. Cars
require fast navigation while they may be operated in GPS-
denied environments, so they are vehicles that would need
the proposed technique. Figure 3(a) shows a parking area
where the performance tests of the proposed technique were
conducted whereas the car used for the tests is shown in
Figure 3(b). The car is Toyota Prius and equipped with two
laser scanners, Hokuyo UXM-30LX-EW; one at the front
side of the car and the other at the rear side. Only the front
laser scanner was used in the tests. In order to show the
applicability of the proposed technique, the speed of the car
was intentionally changed from nearly 0 km/h up to 40 km/h.
The car made a loop so that the loop closure error can be
recognized and quantified.



(a) Test environments (b) Test vehicle

Fig. 3. Vehicle navigation test

TABLE I
PARAMETERS FOR THE PROPOSED GLOBAL SCAN MATCHING

TECHNIQUE

Parameter Value
Grid size [m] 1
Threshold γ 1

Minimum number of scan points ms
min 3

A. Map accuracy by the proposed technique and comparison
to GMapping

Table I lists parameters used in the proposed technique.
As shown in the table, one of the advantage of this tech-
nique is the small number of parameters that governs the
performance of the proposed technique. If the performance
of the proposed technique is less sensitive to the grid size,
only two parameters govern the performance.

Figure 4 shows the resulting map of the proposed tech-
nique, which is compared to that of the well-known GMap-
ping. While blue circles are registered map GFs, the pink
dots show the last scan indicating that the robot has made
a loop. The proposed technique was able to develop a map
with very little loop closure error whilst the GMapping has
shown a significant amount of error without being able to
close the loop. Because of the heavy computation of the
particle filter based SLAM, the GMapping updated the map
at a frequency of 1Hz. Change in orientation with this
frequency is so large that the GMapping could not update
well. On the other hand, the MATLAB based program of
the proposed technique has been able to update a map at
a frequency of 25Hz. The proposed technique could clearly
construct a more accurate map by utilizing more consecutive
scans with smaller changes in orientation. Figure 4(c) shows
the zoomed view of the loop-closing area mapped by the
proposed technique where red pluses and red circles are scan
GFs and corresponding map GFs. It is seen that there is one
map GF in a grid cell since γ = 1.

B. Effect of multiple map GFs

Having the accuracy of the proposed technique validated,
the effect of deploying multiple map GFs was investigated.
Table II lists the parameters used in this test. The grid size
was made large (4 m) as the resolution would be too large to

(a) Proposed technique

(b) GMapping (c) Zoomed view

Fig. 4. Resulting map by the proposed technique and GMapping

TABLE II
PARAMETERS FOR INVESTIGATING EFFECT OF MULTIPLE MAP GFS

Parameter Value
Grid size [m] 4
Threshold γ [1, 2, 3, 4]

Minimum number of scan points ms
min 3

build a map with a single map GF. The threshold was thus
changed from 4 to 1 to see the effect of multiple map GFs.

Figure 5 shows the map built with γ = 4 whereas
Figures 6 and 7 show those with γ = 2 and γ = 1,
respectively. The map with γ = 4 shows a heavily distorted
map, which has resulted in the map as bad as that of the
GMapping. This is because the threshold of γ = 4 allows
only one map GF for each grid cell, and the number of
map GFs created is thus not large enough to achieve global
scan matching. The maps with smaller thresholds (γ = 2
and γ = 1), on the other hand, allows multiple map GFs as
shown in Figures 6(b) and 7(b) and makes the map more
accurate.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a fast global scan matching technique, which
has been proposed by taking the advantages of both the
feature-based and scan-based techniques, has been presented.
The proposed technique handles unprocessed scan points



Fig. 5. Entire map with γ = 4

(a) Entire map (b) Zoomed view

Fig. 6. Resulting map with γ = 2

and collectively represents scan points as GFs on a globally
defined grid. In the registration of scans, GFs of each scan
are matched to the map GFs. One of the features of this
technique is its ability to control efficiency and accuracy
rather independently since the technique can locate multiple
map GFs in each grid cell. The proposed technique can thus
be both efficient and accurate by using a large grid size. The
accuracy of the proposed technique can further be improved
as scans are fully utilized to derive GFs unlike feature-based
techniques that discard data unassociated with features.

The proposed technique was applied to the localization
and mapping by a car with a drive-by-wire system. Results
first show that the proposed technique can achieve accuracy
superior to GMapping in part because it is fast and can utilize
full scans without loss of information. The maintenance of
high accuracy with a large grid size was also demonstrated,
indicating the efficacy of the proposed technique.

The work presented in the paper is the first step, and
various challenges are left open. Ongoing work includes
the active loop closure, inexpensive data registration and
incorporation of cloud computing, all of which are necessary
for fast vehicle navigation.
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