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Abstract

Inner-loop power control is one of the essential radio resource management
functions of WCDMA systems. It aims to control the transmission power to ensure
that the quality of service for each communication link is adequate and the

interference in the system is minimised.

Inner-loop power control currently used in UMTS is a SIR-based fixed stepsize
power control (FSPC) algorithm. Transmit Power Control (TPC) commands are
sent to control transmission power. This kind of power control algorithm has many
limitations such as its inability to track rapid changes in radio channel fading.
Furthermore, it creates oscillation when the channel is stable. These limitations
result in power control error (PCE) in the received signal. High PCE leads to
several performance degradations such as more outage probability and an increase

in the total interference.

In this thesis, new inner-loop power control algorithms are proposed to minimise
PCE. One of the new algorithms utilises historical information of TPC commands
to intelligently adjust the power control stepsize. The performance of the proposed
algorithm is compared with adaptive power control algorithms proposed in the
literature. The simulation results show that the proposed adaptive power control
algorithm outperforms the conventional fixed stepsize power control algorithm.
Furthermore, it outperforms other adaptive power control algorithms in some

scenarios.

The results from the simulations in this thesis show that delays in the power control
feedback channel lead to performance degradations especially for adaptive power
control algorithms. A new delay compensation technique named partial time delay
compensation (PTDC) is proposed to mitigate the effect of delays. Simulations
show that the performance in terms of PCE can be improved using this new

compensation technique.
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Knowledge of the maximum Doppler frequency, which is closely related to user
speed, is invaluable for optimisation of radio networks in several aspects. It can be
used to improve the performance of inner loop power control. A new parameter
named Consecutive TPC ratio (CTR) is originally defined in this thesis. CTR has a
correlation with the maximum Doppler frequency so that it can be used to estimate
user speed. The simulation results show that with the use of 1dB FSPC, user speeds
can be accurately estimated up to 45 km/h. A new adaptive power control
algorithm, named CAAP, in which the stepsize is adjusted using CTR, is also
proposed. The simulation result shows that CAAP can achieve similar performance
as that of the adaptive power control algorithm in which the stepsize is adjusted
based on perfect knowledge of the optimal fixed stepsize for every user speed.
Furthermore, the performance of CTR aided speed estimation can be recursively

improved with the use of CAAP.
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