Conductance of Photons in Disordered Photonic Crystals
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The conductance of photons in two-dimensional disordered photonic crystals has been calculated
using an exact multipole/plane wave method that includes all multiple scattering processes. The
importance of evanescent coupling between adjacent layers is demonstrated and reveals that the
widely used Pichard theory of electron conductance and the probability density distribution for the
conductance of electrons based on the Dorokhov-Mello-Pereyra-Kumar equation do not apply to
photons in a strongly scattering medium. The variance of the conductance is shown numerically to
be independent of sample size for weak disorder, in accordance with the phenomenon of Universal
Conductance Fluctuations established earlier for electrons. The conductance variance is also a
strong function of disorder with the region of the Universal Conductance Fluctuation being very
narrow. We show also that the relevant transfer matrix belongs to the class of complex symplectic

matrices Sp(2N, C).

PACS numbers: 42.25.Dd,42.25.Fx

The discovery of universal conductance fluctuations
(UCF) of electrons [1], according to which the variance
of the conductance g does not depend on the size or the
degree of disorder of mesoscopic conductors, has led to
considerable research [2] to understand the nature of such
anomalously large fluctuations. A fundamental proposi-
tion [3] is that the statistical properties of conductance
are governed by one of three standard random matrix en-
sembles classified by Dyson [4]: time reversal symmetry
(orthogonal class), the absence of time reversal symmetry
(unitary class), and broken spin symmetry (symplectic
class) [2].

Since the scaling theory of Anderson localization [5]
is based on the scaling properties of the averaged con-
ductance (g), the discovery of UCF initiated a discussion
about the validity of scaling theory itself, and it has been
suggested that it should be reformulated in terms of con-
ductance distributions p(g) [6]. However, no such theory
exists at this time. In quasi-1D systems, the evolution
of p(g) as a function of conductor length L is governed
by the Dorokhov-Mello-Pereyra-Kumar (DMPK) equa-
tion [7]. This elegant theory was recently extended to
higher dimensions [8] for broken time reversal symmetry.
The electronic conductance distribution was calculated
numerically [9] for both insulating and metallic regimes
and at the mobility edge [10, 11]. Subsequently, non-
analytic behavior of p(g) was reported at the crossover
point on the mobility edge (¢ ~ 1) [12]. Despite sub-
stantial research, complete characterization of the con-
ductance distribution remains open.

Originally developed to describe the transport prop-
erties of electrons in disordered wires, the concept of
conductance can also be applied to photons [13]. Cal-
culations of p(g) have been reported in the diffusive ap-
proximation [14], using random matrix theory [15] and

for surface corrugated waveguides [16]. The distribution
of the photon conductance was also investigated exper-
imentally [17]. In the diffusive regime p(g) is approxi-
mately Gaussian, while in the strong scattering regime
(9 < 1), theory [14, 15] and experiment [18] are con-
sistent. To date, however, none of the models for the
conductance distribution for dimensions d > 2 with bulk
defects have fully incorporated multiple scattering. Here
we undertake such a calculation. While the modelling of
non-interacting photons differs from that electrons, the
majority of electronic models do not take into account
electron-electron interactions. Accordingly, the results
obtained in the photon case could be also relevant to
electrons.

Our aim here is to investigate the conductance fluctua-
tions of photons and its distribution for two-dimensional
disordered photonic crystals. Our calculations are based
on the exact method of multipole expansions and include
rigorously all scattering orders. It comprises both the mi-
croscopic approach [1], where the multiply scattered field
is calculated exactly for single layers (taking into account
all scattering events), and macroscopic approach [7] in
which these layers are stacked using exact recurrence re-
lations. We calculate the conductance of a bulk, disor-
dered, photonic crystal and investigate the effects of the
degree of disorder and sample size on the conductance,
its fluctuations, and its distribution at the crossover re-
gion (g ~ 1). This reveals the importance of evanescent
wave contributions, which in turn makes the Pichard for-
mulation of conductance and the DMPK equation not
directly applicable to photons in the strong scattering
regime, given that these only incorporate propagating
plane wave terms.

We consider a two-dimensional, disordered photonic
crystal, each layer of which is a cylinder diffraction grat-



ing with a supercell periodically replicated. The supercell
comprises a set of N, infinitely long cylinders of radii a,
refractive indices n;, with centers located at ¢;. The prop-
erties of each grating layer are then computed rigorously
using a multipole method from which plane wave scatter-
ing matrices that characterize the action and interaction
of each grating layer are calculated [19]. The scattering
matrices of the individual grating layers are then coupled
using recurrence relations to yield the transmission (T)
and reflection (R) scattering matrices for a slab of Ny,
layers [19]. The elements of these matrices, for example
Tpq, express the amplitudes transmitted (and reflected)
into channel p given unit amplitude incidence in channel
q. Since the problem is formulated in terms of diffrac-
tion gratings with a common supercell period, the chan-
nels are represented by the set of diffracted orders which
comprise a finite number of propagating orders and an
infinite number of evanescent orders.

While any of the ¢;, a; and n; can be randomized, the
results here are for random n;, uniformly distributed in
[n—Q,7n 4+ Q]. We take N, = 21, which is sufficient
for supercell effects to be negligible. The structure is
irradiated with a normal incident plane wave, with the
electric field aligned with the cylinder axes (E polarized).

The dimensionless conductance of the sample is given
by the generalized two-terminal Landauer formula [20]
for multichannel propagation

9= |Tp|*=Tr TT! = Tr T'T. (1)
p q

Here, |T},4|? denotes the transmitted flux in channel p as-
sociated with unit flux in channel ¢, with the summation
in (1) being taken over all propagating plane waves.

The matrices R and T are infinite and must be trun-
cated in any numerical implementation, with the trunca-
tion order determined by convergence studies. We retain
plane wave orders [—Ny, Ny, ensuring that this set in-
cludes all propagating channels and as many evanescent
channels as required for convergence. The conductance is
computed by summing the square magnitudes |T},|? as-
sociated with all propagating input and output channels
(1).

To demonstrate the importance of the evanescent wave
coupling we show in Fig. 1 the conductance versus the
stack length Ny, for a single realization with the inclu-
sion of evanescent fields sufficient for convergence (solid
line), and without evanescent coupling, using only prop-
agating channels (dashed line). Throughout we model
a square lattice with lattice constant d, and cylinders of
fixed normalized radius a;/d = 0.3, and 7 = 3. The wave-
length is A = 2.21d, located in the pass band between the
first two gaps of the associated regular photonic crystal.
Fig. 1 shows that the evanescent field is important for
characterizing the conductance. Note that in the local-
ized regime (g < 1), transport is mainly determined by
the evanescent coupling.
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FIG. 1: Conductance g versus the number of layers Ny, for a
single realization and @ = 0.4. Solid line: evanescent coupling
included (N: = 50); dashed line: only propagating orders
included (V¢ = 9). The inset depicts the diffraction geometry
and displays a supercell of a random stack upon which is
incident a single plane wave field from above which gives rise
to reflected and diffracted plane wave orders.

The conductance g and its distribution p(g) can be
calculated from the transfer matrix 7 [2] which connects
the field on either side of the stack. It has the form

T-RT 'R RT!

7= ~T'R T ]

(2)

where R, T and R/, T’ are the amplitude reflection
and transmission matrices, respectively for incidence
from above and below (see the inset of Fig. 1), and in-
clude both propagating and evanescent components. The
evanescent terms substantially alter the properties of 7~
upon which the Pichard treatment of conductance relies.
¢From reciprocity [22], it follows that T'"' = o, To,,
R” = o,Ro, and R'7 = o,R’'0,. Here, the super-
scripted T indicates matrix transposition and oy, = o, "
denotes the first Pauli matrix of dimension 2/N; + 1, com-
prising unit elements on the secondary diagonal. These
relations, which hold analytically within the multipole
based formulation, are then sufficient to establish that

T'ST =7TST" =8, (3)
also holds analytically within the formulation. In (3)
. 0 o,
so [0 %] .

Thus, the transfer matrix for photons belongs to the class
of complex symplectic matrices Sp(2N, C) [4].

(From generalized energy conservation relations [19] it
follows that the transfer matrix satisfies the relation [22]

I, —iI I, —iI
T P € _ P e
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where I, and I. are matrices of size 2N; + 1, with all
elements set to zero except for those on the primary di-
agonal which are set to unity respectively for propagat-
ing and evanescent channels. This is the generalized en-
ergy conservation relation satisfied by the transfer matrix
for photons. Note that the scattering matrix connecting
the amplitudes in the incoming channels to the outgo-
ing channels, and which includes both propagating and
evanescent orders, is not unitary[19], in contrast to the
electronic case. Combining (3) and (5), we derive

T — [ileagC Lo, } T [ leo, 1,0, ] ! 6)
Lo, il.o, Lo, il.o, ’

a consequence of time reversal invariance. Here, the su-
perscripted asterisk denotes complex conjugation. The
distribution of p(g) and the conductance g itself depend
on these general properties of 7.

The starting point in determining g and its distribution
p(g) in Pichard’s treatment [2] is the polar decomposition
of the transfer matrix 7

T — uv1+ Aus uj \/Xu; (7)
wivVAu, WiV Aug |

where the u; are unitary matrices, and X is a real di-
agonal matrix. This parametrization derives from the
singular value decomposition of the respective block ma-
trices in (2). While this structure is valid for matrices
that include only propagating states, the substantial dif-
ferences in the structure of the time reversal invariance
equations (5) and (6) due to the evanescent terms rep-
resented by I., mean that the decomposition (7) is not
valid. In particular, the singular values are not the same
for the block matrices 711, 722 and 7712, 721. Hence, the
Pichard and DMPK formulations are not valid in their
present form when evanescent waves, needed for accurate
characterization of the photon conductance, are incorpo-
rated.

We now turn to the average conductance and its fluc-
tuations. In Fig. 2 we show the average conductance (g)
versus the number of layers Ny for three values of Q.
The maximum stack length is N = 81, so that, with
N, = 21, there are 1701 cylinders per sample. Averages
were taken over 4900 realizations which is sufficient for
the calculation ensemble means stable to 3 significant fig-
ures. Three wave propagation regimes, which are more
prominent for strong disorder (dotted line Fig. 2), are
found. The propagation and transition regimes occur re-
spectively for Ny, < 10 and 10 < Ni < 20 layers, while
for longer stacks (N 2 20) the linear behaviour points
to the onset of Anderson localization (Fig. 2). For strong
disorder (@ = 1.5), this transition requires fewer layers
than for weak disorder.

According to the Thouless estimate [21], localization
sets in when g < 1, while for g > 1, waves are delocal-
ized. In Fig. 2, we observe transitions to the linear regime
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FIG. 2: Conductance (g) versus size of the cluster N for
different degrees of disorder: @ = 0.2 (solid line), @ = 0.4
(dashed line), @ = 1.5 (dotted line)
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FIG. 3: Variance o2 versus cluster size Ny, for different de-
grees of disorder: Q = 0.2, 0.4, and 1.5 from top to bottom.

commencing at g ~ 2, 0.6 and 0.2, for Q = 0.2,0.4,1.5
respectively, consistent with the Thouless criterion [21].

It is also known [1] that for weak disorder the sample
exhibits universal conductance fluctuations according to

o® = (%) — (g)? ~ const, (8)

a result that depends neither on the degree of disorder
nor on the sample size. Fig. 3 shows the variation of
the variance o2 of the conductance with the number of
layers. For weak disorder, o2 does not depend on the
number of layers (top curve), while for stronger disorder
it appears that the variance decreases in the localization
regime. This is similar to the electronic case. In Fig. 4
we show the variance o2 versus the degree of disorder Q,
and note that o2 depends strongly on the disorder with
universal conductance fluctuations being observed only
in the range 0.15 < @ < 0.2.
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FIG. 4: Variance o2 versus @ for different samples sizes:
N = 25 (solid line), N = 15 (dashed line).
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FIG. 5: Conductance distribution p(g) at (g) = 0.98 and
(g) = 0.51.

Finally, in Fig. 5 we show the distribution p(g) for the
averaged conductances (g) = 0.98 and (g) = 0.51 respec-
tively. Despite reports [12] of non-analytic behavior of
p(g) in the crossover region (g =~ 1), we do not observe
such behavior; the incorporation of the evanescent terms
may have smoothed this transition.

In conclusion, we have calculated using an exact nu-
merical method the conductance of a disordered, two-
dimensional photonic crystal comprised of circular cylin-
ders. The results emphasize the importance of evanes-
cent coupling for photon conductance and indicate in the
localization regime the conductance is governed by this
evanescent coupling. The inclusion of this coupling neces-
sitates a reformulation of the Pichard formalism and the
DMPK equation which incorporate only to propagating
states. Universal conductance fluctuations for photons
are also explicitly demonstrated. We show that the vari-
ance of the conductance does not depend on the sample
size for weak disorder, similar to the electronic case, while
for fixed sample size it is a strong function of disorder, in
contrast to the electronic case. It is suggested that the in-

clusion of evanescent coupling smooths the conductance
distribution in the transition region.
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