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Abstract 

Abstract 

Hypoglycemia is the medical term for a state produced by lower levels of blood glucose. 

It represents a significant hazard in patients with Type 1 diabetes mellitus (TlD:M) 

which is a chronic medical condition that occurs when the pancreas produces very 

little or no insulin. The imperfect insulin replacement places patients with TlDM 

at increased risk for frequent hypoglycemia. Deficient glucose counter-regulation in 

TlDM patients may even lead to severe hypoglycaemia even with modest insulin 

elevations. It is very dangerous and can even lead to neurological damage or death. 

Thus, continuous monitoring of hypoglycemic episodes is important in order to avoid 

major health complications. 

Conventionally, the detection of hypoglycemia is performed by puncturing the fin­

gertip of patients and estimate the blood glucose level (BGL) as well as the stage of 

hypoglycemia. However, the direct monitoring of BGL by extracting blood sample is 

inconvenient and uncomfortable, a more appealing preposition for preventing hypo­

glycemia is to monitor changes in relevant physiological parameters. Findings from 

xi 



Abstract 

numerous studies indicate that sudden nocturnal death in type 1 diabetes is thought 

to be due to ECG QT prolongation with subsequent ventricular tachyarrhythmia 

in response to nocturnal hypoglycaemia. Though several parameters can be moni­

tored, the most common physiological parameters to be effected from a hypoglycemic 

reaction are heart rate (HR) and corrected QT interval (QTc) of the ECG signal. 

Considering the real-time physiological parameters (HR and QTc) changes during 

hypoglycemia, a non-invasive monitoring of glycemic level is predicted for the hypo­

glycemia. 

The topic of this thesis is covered by novel methodologies for the non-invasive hy­

poglycemia detection system by analyzing the behavioral changes of physiological 

parameters such as HR and QTc. These algorithms are comprised of three different 

classification techniques, i) variable translation wavelet neural network (VTWNN), 

ii) multiple regression-based combinational neural logic network (MR-NLN) and iii) 

rough-block-based neural network (R-BBNN). By taking the advantages of these pro­

posed network structures, the performance in terms of sensitivity and specificity of 

non-invasive hypoglycemia monitoring system is improved. 

The first proposed algorithm is VTWNN in which the wavelets are used as transfer 

functions in the hidden layer of the network. The network parameters, such as the 

translation parameters of the wavelets are variable depending on the network inputs. 

Due to the variable translation parameters, the proposed VTWKN has the ability 
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Abstract 

to model the inputoutput function with input-dependent network parameters. Ef­

fectively, it is an adaptive network capable of handling different input patterns and 

exhibits a better performance. With the adaptive nature, the network provides a bet­

ter performance and increases the learning ability. For conventional wavelet neural 

network, a fixed set of weight is offered after the training process and fail to cap­

ture nonstationary nature of ECG signal. To overcome with this problem, VTWNN 

with multiscale wavelet function is firstly introduced in this thesis. With the variable 

translation parameter, the proposed VTWNN gives faster learning ability with better 

generalization. 

The second algorithm, MR-NLN is systematically designed which is based on the 

characteristics of application. Its design is based on the binary logic gates (AND, 

OR and NOT) in which the truth table and K-map are constructed and it depends 

on the knowledge of application. Because the logic theory are used in the network 

design, the structure becomes systematic and simpler compared to other conventional 

neural networks (NNs) and enhance the training performance. Traditionally, the con­

ventional NN s with the same structure are applied to handle different applications. 

The optimal performance may not always guaranteed due to different characteristics 

of applications. In real-world applications, the knowledge based-neural network that 

understands all the characteristics of practical applications are preferred for optimal 

performance. In conventional NNs, the redundant connections and weights of conven­

tional neural networks make the number of network parameters unnecessarily large 
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Abstract 

and downgrades the training performance. But for neural logic network (NLN), the 

structure becomes simpler. 

The third algorithm focuses on the hybridization technology using rough sets con­

cepts and neural computing for decision and classification purposes. Based on the 

rough set properties, the input signal is partitioned to a predictable (certain) part 

and random (uncertain) part. In this way, the selected block-based neural network 

(BBNN) is designed to deal only with the boundary region which mainly consists of a 

random part of applied input signal and caused inaccurate modeling of data set. Due 

to the rough set properties and the adaptability of BBNN's flexible structures in dy­

namic environments, the classification performance is improved. Owing to different 

characteristics of neural network (NN) applications, a conventional neural network 

with a common structure may not be able to handle every applications. Based on the 

knowledge of application, BBNN is selected as a suitable classifier due to its modular 

characteristics and ability in evolving the size and structure of the network. 

To obtain the optimal set of proposed network parameters, a global learning opti­

mization algorithm called hybrid particle swarm optimization with wavelet mutation 

(HPSOWM) is introduced in this thesis. Compared to other stochastic optimization 

methods, the hybrid HPSO\VM has comparable or even superior search performance 

for some hard optimization problems with faster and more stable convergence rates. 

During the training process, a fitness function which is characterized by the proposed 

network design parameters is optimized by reproducing a better fitness value. 
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Abstract 

The proposed systems is validated using clinical trial conducted at the Princess Mar­

garet Hospital for Children in Perth, Western Australia, Australia. A total of 15 

children with 529 data points (ages between 14.6 to 16.6 years) with Type 1 dia­

betes volunteered for the 10-hour overnight for natural occurrence of nocturnal hy­

poglycemia. Prior to the application of the algorithms, the correlation between the 

measured physiological parameters, HR and QTc and the actual BGL for each subject 

were analyzed. The feature extracted ECG parameters, HR and QTc significantly 

increased under hypoglycemic conditions (BGL :::; 3.3mmol/l) according to their re­

spective p values, HR (p < 0.06) and QTc (p < 0.001). The observation on these 

changes within the physiological parameters have provided the groundwork for model 

classification algorithms. 
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