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Abstract:  A rigorous semi-analytic approach to the modelling of coupling, 
guiding and propagation in complex microstructures embedded in two-
dimensional photonic crystals is presented.  The method, which is based on 
Bloch mode expansions and generalized Fresnel coefficients, is shown to be 
able to treat photonic crystal devices in ways which are analogous to those 
used in thin film optics with uniform media.  Asymptotic methods are 
developed and exemplified through the study of a serpentine waveguide, a 
potential slow wave device.    
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1. Introduction 

Photonic crystals (PC), which are arguably amongst the most exciting of optical structures, are 
at the forefront of theoretical and experimental research [1].  Their significance is based on 
properties which resemble those of semiconductors, and which enable them to tailor the 
propagation of light on the scale of optical wavelengths with minimal losses.  Their ability to 
guide light on the wavelength scale [2-4] and to control the radiation dynamics of embedded 
sources [5] make them ideally suited to the miniaturization of optical components and to the 
development of compact devices that incorporate a large number of elements.  Already 
demonstrated are the bending of light around corners [6], interconnections such as T- and Y-
junctions [1,7], channel-drop filters [8], superprisms [9] and Mach-Zehnder interferometers 
[10].  Attention is now being turned to the modeling and fabrication of ultra-compact optical 
devices (such as the coupler in Fig. 1) which comprise various elements connected through 
complex waveguide structures embedded in photonic crystals [11]. 

The exploitation of the technological potential of PC based structures requires a thorough 
understanding of the mechanisms by which light is coupled into, and guided through, these 
devices.  In order to understand the performance of such structures it is important to develop 
rigorous analytical techniques that can provide physical insight into the scattering and 
diffraction processes,  facilitating the conceptualization of the device using generalizations of 
familiar ideas derived from other areas of optics (e.g. thin film optics).  Until now, much of 
the modeling has been undertaken using finite difference time domain (FDTD) methods or 
other computational schemes.  Though these methods produce accurate results, they do not 
easily reveal insight since they neither exploit the underlying physics to any significant extent, 
nor take advantage of the structure of the problem or its geometry in order to accelerate 
calculations.  For a device such as that in Fig. 1, comprising a sequence of components and 
waveguides, there exists the real possibility that semi-analytic techniques, which exploit the 
geometry and the mode structure of the individual devices, can be superior to exclusively 
numerical simulations. 
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This paper outlines an approach based on Bloch mode expansions, which appears to be 
attracting increasing interest amongst the modeling community [12-15].  For these methods to 
be rigorous, all Bloch modes, propagating and evanescent, need to be included in the 
calculations.  In practice, of course, the field expansions are truncated, depending on the 
accuracy that is required.  However, often the physics is described by the propagating modes 
only, and a good asymptotic approximation can then be obtained by dropping all evanescent 
modes.  The resulting techniques are flexible and efficient and have been applied by us to the 
study of propagation in finite PC waveguides [13], the design of compact resonant filters [11], 
and apodisation [16].  The computational efficiency of the technique follows from the use of 
the natural Bloch basis which comes to the fore in modelling propagation in extended regions 
(i.e., regions with many identical layers) due to the dominant contribution made by the 
propagating modes (i.e., the modes which can carry energy to infinity).  In what follows, we 
outline the complete rigorous method in Section 2, focusing on Fabry-Perot style (FP) 
devices, and demonstrating how closely this formulation for PC devices mirrors the Airy 
formulae for FP interferometers.  This also includes the study of important modal 
conservation properties.  Then, in Section 3, we outline the asymptotics of the system, and 
demonstrate the utility of the approach in generating simple analytic expressions for 
reflectance and transmittance for a photonic crystal device 

2. Theoretical formulation 

We consider a two-dimensional (2D) structure, as in Fig. 1, that consists of three segments, 
M1, M2, and M3, each of which comprises a set of identical layers which may be 
conceptualized as diffraction gratings with a transverse period xD .  While this derivation is 
restricted to a three segment device, the approach extends naturally to -segment structures 
via recursion.  Because of the gratings’ periodicity, the functional elements of the structure are 
contained within a supercell (see Fig. 1), the dimension 

N

xD  of which is chosen large enough 
to ensure effective isolation from neighbouring supercells when operated within a band gap of 
the bulk crystal.  The periodicity imposed by the diffraction grating model means that 
individual layers are coupled together by plane wave diffraction orders, the directions of 
which are given by the grating equation.  Between each layer, the field can be represented in 
the plane wave basis, by an expansion over all plane wave orders.  The action of the 
individual gratings, all of which must have a common transverse period xD , is handled by 
plane wave scattering matrices (  and T ) that characterize the reflection and transmission of 
plane waves incident on a grating layer.  For example, the element 

R
pqR  specifies the reflected 

amplitude in order  due to unit amplitude incidence in order .  For simplicity here, we 
assume gratings are up-down symmetric and arranged in a square or rectangular lattice.   

p q

 

M1

M2

M3

δ r

c-

c+

t

Dx  
Fig. 1. A typical three segment photonic crystal device showing the component regions M1, M2 
and M3, three lateral supercells of the model and a constituent grating bounded by dashed lines.   
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The modelling of the composite device comprises two distinct elements: (a) Bloch mode 
propagation in a given region and (b) the scattering/diffraction of modes that occurs at 
interfaces, and which is modeled with generalized Fresnel (matrix) coefficients that satisfy 
various energy conservation, reciprocity and transitivity relations.   

Each of the structural regions may be homogeneous (e.g., free space or dielectric) or a 
periodically modulated structure such as a photonic crystal device (e.g., with waveguides as 
shown), with its Bloch modes generated via a transfer matrix technique [12] that is based on 
supercell methods and diffraction grating theories [17].  Between the grating layers (e.g., on 
the dashed lines of Fig. 1) in any given region, the modes are characterized by plane wave 
expansions represented by vectors of plane wave amplitudes −f  and +f  (which include entries 
for both propagating and evanescent waves), respectively denoting the downward and upward 
propagating plane wave field components.  The Bloch modes are represented by the solutions 
of the eigenvalue problem for the transfer matrix  that relates fields on either side of a 
grating layer according to 

T
1=2f T f  and which is derived from relations between outgoing 

and incoming fields expressed in terms of the reflection and transmission matrices R  and  
(e.g. [12]).  The eigenvalue equation to be solved follows from the imposition of the Bloch 
condition (with Bloch factor 

T

µ ), i.e., 1µ=2f f .  That is,  

  (1) 
1 1

1 1where , ,µ
− −

−
− −

+

⎛ ⎞− ⎛
= = ⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

fT RT R RT
fT R T

Tf f T f
⎞

=

where the complex eigenvalues, µ , corresponding to propagating Bloch modes have unit 
amplitude, and | | 1µ ≠  for non-propagating modes. The transfer matrix form in Eq. (1) is 
analogous to transfer matrices used in conventional thin-film optics.  We observe that while 
the eigenvalue problem is stated formally in terms of the transfer matrix, numerical 
instabilities require the use of alternative methods for solving the eigenvalue problem [18,19].   
While the scattering matrices can be computed in a variety of ways (e.g., differential methods, 
integral methods etc.), we use a multipole analysis [17].  The multipole formulation 
analytically preserves energy conservation and reciprocity within the scattering matrices [20] 
and leads to desirable corresponding properties within the Bloch mode analysis.   

It is important to ensure that each supercell is sufficiently isolated from its neighbours.  
To achieve this, an isolating barrier of between 7-10 cylinders of bulk crystal is needed 
between one defect and its nearest neighbour in an adjacent supercell.  In turn, this determines 
the period xD  of the grating supercells.   Once effective isolation is achieved, the calculations 
are independent of the lateral component of the Bloch vector, 0xk .  For analytic convenience 
in what follows, we set  and thus work with periodic boundary conditions. 0 0xk =

We next consider some formal properties of the transfer matrix, and use these to 
demonstrate reciprocity and energy conservation relations, implicit within the modal 
formulation, and also establish orthogonality properties of the modes.  From reciprocity 
considerations [22] of any layer or sequence of layers, we can show that the inner (scalar) 
product Tg Q f , defined in terms of the anti-symmetric matrix  of Eq. (2), must be 
independent of layer.  Here,  and 

T= -Q Q

[ T T T
− += f ff ] [ ]T T T

− += g gg  denote two arbitrary plane wave 
fields.  The anti-symmetric inner product is a generalization of the familiar cross, or outer, 
product and its independence of layer implies that 1 1 2

T T= 2g Q f g Q f , where the subscripts 
denote the two sides of the layer through which fields are related by the transfer matrix, e.g. 

2 = 1f T f .  In this way, we can show that  is symplectic with respect to  [21], i.e.   T Q

 where    = .T ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

0 Q
Q 0

T Q T Q,     Q  (2) 
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In Eq. (2),  is the reversing permutation (derived by reversing the rows of the unit matrix) 
and arises through the reciprocity-based derivation [22].  The symplectic nature of  holds 
even in a system with loss, and ensures that the eigenstates are arranged into forward and 
backward propagating pairs, respectively associated with eigenvalues 

Q
T

µ  and 1/ µ .  For the 
structure in Fig. 1, in which each layer is up-down symmetric and the lattice is rectangular, the 
diagonalized form of  is then T

 ( )iwith    , , diag µ− +

+ −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

F F 0
F F 0 −1

Λ
Λ =

Λ
-1T = FLF F = L = . (3) 

In the matrix  of Eq. (3), the left and right partitions represent the forward and backward 
propagating modes, with the matrices  comprising the column vector components of the 
eigenvectors of .  In turn, the partitioned matrix  contains the eigenvalues for the 
forward and backward propagating states respectively in the diagonal matrices  and , 
where 

F
F∓

T L
Λ −1Λ

diag{ }jµ=Λ  and { }jµ  denotes the set of eigenvalues for the forward states.  The 
columns of the matrix  are then scaled so that physical properties such as reciprocity and 
energy conservation, and also modal orthogonality, are represented in a physically normalized 
form.  For completeness, we state these results without proof, referring the reader to Ref. [22] 
for their derivation.  Modal reciprocity, which follows from the symplectic nature of  is 
characterized by  

F

T

  (4) whereT ⎛
= ⎜−⎝ ⎠

0 I
I 0

F Q F = J J
⎞
⎟

⎟
⎟

while modal orthogonality is expressed by the relation  

  (5) 
_

_
m where and ,

m
mr eH

p p m
e r m

m

ii
i i

−⎛ ⎞−⎛ ⎞ ⎜= =⎜ ⎟ ⎜− − −⎝ ⎠ ⎝ ⎠

I II I
I I I I

F I F = I I I

arising as a consequence of the flux conservation relation H
p p=T I T I  that is satisfied by 

the transfer matrix [22], which in turn follows from the representation H
pf I f of the energy 

flux carried by a plane wave field  [20].  In Eq. (5),  and  are diagonal 
matrices with unit entries on the diagonal respectively for real (propagating) and evanescent 
plane waves.  Correspondingly,  and  are diagonal matrices with unit entries on the 

diagonal respectively for propagating and non-propagating Bloch modes. 

[ ]T T T
− += f ff rI eI

mI _
m

I

With the formal properties of the relevant matrices now stated, we turn now to the 
propagation of Bloch modes through photonic crystal structures formed from stacks of 
identical layers, as illustrated in Fig. 1.  In the following treatment, we introduce reflection 
and transmission scattering matrices expressed in the Bloch mode basis of the photonic crystal 
stack in which we are interested.  To differentiate between the Bloch mode and plane wave 
scattering matrices, from here on we express Bloch mode terms in a sans serif font.   The 
reflection and transmission problem, from medium 1M  to 3M , through the  layers of L 2M , 
is characterized by an incident field δ , a vector of forward propagating Bloch mode 
amplitudes in 1M , , a vector of backward propagating modal amplitudes in= δr R 1M , and 

, a vector of forward propagating modes in = δt T 3M .  At the interface between each stack 
(e.g. the  interface from ij iM  to jM ), the reflection and transmission of Bloch modes can be 
characterized by Fresnel matrices  and , which are expressed in terms of the Bloch ijR ijT
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modes of media iM  and jM .  These matrices are essentially generalizations of planar 
interface Fresnel coefficients.   The Fresnel matrices are derived by considering a Bloch mode 
expansion represented by the amplitude vector i

−c  incident onto the ij  interface, giving rise 
to reflected ( ) and transmitted (i ij

+ =c R ci
−

j ij i
− −=c T c ) Bloch modes, respectively in iM  and 

jM .  Field matching at the ij  interface then leads to 

 
( ) ( ) ( )
( ) ( ) ( )

1 1

1 1 2

,

,

ij i j i j i i

ij j i j i i

− −− −

− −− −

= − −

= − −

F I R R R R F

F I R R I R F

%R

T
 (6) 

where  denotes the plane wave reflection scattering matrix of a semi-infinite 
region of material , with incidence from free space.  With the modes suitably normalized, 
these coefficients satisfy reciprocity relations which take the form  and , and 

energy conservation relations which take the form 

( ) 1

i i i

−+ −=R F F
i

T
ij ji=T T T

ij ij=R R
H H
ij ij ij ij+ = IR R T T —a simplified form with 

 and  trimmed to contain only the propagating states.   ijR ijT
We can now formulate the propagation problem of the structure in Fig. 1, expanding the 

field in 2M in terms of Bloch modes of amplitudes −c  and +c , with phase origins respectively 
located at the upper and lower boundaries of M2.  The mode matching equations are then 

   12 21 ,+cL= +δ Λr R T 12 21 ,L
− += +δ Λc T R c  (7) 

     23 ,L
+ −= Λc R c 23 .L

−= Λt T c  (8) 
Eqs. (7) and (8) respectively derive from field matching at the upper and lower interfaces of 

2M  and express the reflection and transmission of the Bloch modes at these interfaces.  The 
LΛ  terms in Eqs. (7) and (8) correspond to mode propagation through the  layers between 

the upper and lower interfaces of medium 
L

2M . Solving Eqs. (7) and (8), we derive the 
reflection (R ) and transmission ( T ) scattering matrices of Eq. (9) and see that these are 
generalizations of the Airy formulation for a Fabry-Perot (FP) interferometer [23] 

 
( )

( )

1

13 12 21 23 21 23 12

1

13 23 21 23 12

,

.

L L L L

L L L

−

−

= = + −

= = −

Λ Λ I Λ Λ

Λ I Λ Λ

R R R T R R R T

T T T R R T
 (9) 

The form of the reflection matrix in Eq. (9) can be simplified further with the introduction 
of transitivity relations which are implicit in this formulation.  These relations evolve from (9) 
by setting the width of 2M  to 0L = .  In doing so, we derive a pair of relations that are 
analytically satisfied by the Fresnel matrices of Eq. (6).  We now consider the special case 
when the media 1M  and 3M  are identical, for which 11 =T I 0 and , and the 
corresponding problem of the transition from 

11 =R

2M  to 2M  via a 0L =  length layer of 1M .  
From these we derive the four transitivity relations that are summarized in the notable result 

  (10) 12 21
12

12 21

, where
⎛

= = ⎜
⎝ ⎠

2
12S S

R T
I

T R
⎞
⎟

2denotes the Bloch mode S-matrix for the 1M M−  interface.  With these relations, which are 
independent of the energy and reciprocity relations, we arrive at a simplified form for R ,  
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( )( )
( ) (

11
13 12 21 23 21 23 12

11
21 23 21 21 23 21

,

.

L L L L

L L L L

−−

−−

= − + −

= − − +

Λ Λ I Λ Λ

I Λ Λ Λ Λ

R T R R R R T

T R R R R )T

⎞
⎟
⎠

 (11) 

With the modes in their normalized form (i.e. satisfying Eqs. (4) and (5)), the reflected 
and transmitted fluxes may be computed directly by taking the square magnitude of the 
relevant elements in the reflection and transmission scattering matrices.  In fact, the 
generalized form of the energy conservation relations [22] are best expressed in terms of the 

 matrix.  In the case of the propagating modes, we may trim the Bloch mode scattering 
matrices so they contain only entries for the propagating states and show, using an approach 
analogous to that in Ref. [20], that 

S

  (12) 13 31 1
13 13 13 13 13

13 31 3

, where , ,H ⎛ ⎞ ⎛
= = =⎜ ⎟ ⎜

⎝ ⎠ ⎝

0
I

0
S S S

R T I
I

T R I
where  and  are identity matrices, the dimensions of which are given by the number of 
propagating states in each of regions 

1I 3I

1M  and 3M  respectively.  When Eq. (12) is expanded, 
the diagonal partitions contain the energy conservation relations (e.g. ), 
while the off-diagonal partitions contain a host of phase relationships (e.g. 

), the origins of which lie in the application of time reversibility for 
lossless systems.  The generalization of Eq. (12) to include both propagating and evanescent 
modes is given in Ref. [22].   

13 13 13 13
H H+ =R R T T I

13 31 13 31
H H+ =R T T R 0

We stress that the energy conservation relations Eq. (12), the transitivity relations 
Eq. (10), and the reciprocity relations which correspond to the symmetry of the  matrix all 
hold analytically within the multipole formulation and are verified numerically to within 
effectively machine procession (14 significant figures), a consequence of the use of the 
multipole formulation for the computation of the scattering matrices.  This therefore rules out 
the use of energy conservation and reciprocity as valid physical tests of the accuracy of the 
Bloch mode formulation in the case of an implementation in which the grating scattering 
matrices already preserve these properties analytically.  In the case of the multipole 
formulation that we use, such test are merely tests of the efficacy of the coding of the 
algorithm.  We note, however, that for alternative implementations, in which the grating 
scattering matrices are not imbued with these analytic properties, energy conservation and 
reciprocity are indeed valid physical tests of the scattering matrix calculation and have flow-
on effects in the Bloch mode method.  In our treatment, however, convergence of the method, 
which is dependent on the truncation dimensions of plane wave and modal fields (i.e. the 
number of evanescent terms included), is the only real means of validating results and 
comparing them against those obtained by entirely different means.  We have confirmed the 
accuracy of this method using results obtained from a recently developed Wannier function 
method [24], demonstrating agreement of results to better than 1 part in 1000.  

S

Finally, we observe that the forms in Eqs. (9) and (11) are precise generalizations of the 
Airy formulae for a Fabry-Perot interferometer [23], with the Bloch mode theory having 
enabled the formulation of the propagation problem in a stratified photonic crystal device to 
be cast into a form that is structurally identical to that of thin film optics in uniform media.   

3. Applications  

3.1 Asymptotic expansions and the folded directional coupler 

Recently, we reported upon the design of the folded directional coupler (FDC) [11], a novel 
compact resonant filter which combines the characteristics of both a directional coupler and a 
Fabry-Perot interferometer, and which is the basis of a high-Q notch rejection filter.  This 
device (Fig. 1) is simply two semi-infinite waveguides with a common coupling region of 
length  where the guides run parallel to each other, separated by  columns of cylinders.  L cN
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As is discussed in Ref. [11], the properties of the FDC are governed by only the propagating 
modes, since the coupling region is sufficiently long to ensure substantial decay of the 
evanescent states.  The behaviour of the coupler is thus described by its two propagating 
Bloch modes—the supermodes which, for well separated guides, are well approximated by 
the symmetric and anti-symmetric superpositions of the modes of a single guide.  We now 
form asymptotic approximations of the reflection and transmission matrices  and  in 
these limits.  First, we introduce notation that will enable us to take projections that extract the 
relevant rows and columns of matrices.  The projection matrices comprise columns of the 
identity matrix, the number of which is identical to the number of propagating modes in the 
given region.  In the case of the FDC, we have  

13R 13T

 [ ]1 3 2

1 0 ... 0 0
1 0 ... 0 0 , .

0 1 ... 0 0
T T T ⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
w w w  (13) 

Here, and , are used to handle projections in regions 1w 3w 1M  and 3M  in which there is only 
a single propagating mode, while  is used in the coupler (region 2w 2M ) which has two 

propagating modes.  We then observe that for  sufficiently large, L 2 2
L L T≈w w

∼

Λ Λ , where  
is a  diagonal matrix containing the eigenvalues of the two supermodes of the coupler.  
Some manipulation of Eq. (9) then reveals  

∼

Λ
2 2×

  (14) 
1

~ ~ ~ ~ ~ ~ ~ ~

13 23 21 23 12 ,
L L L −
⎛ ⎞

= −⎜
⎝ ⎠

Λ I Λ ΛT T R R T⎟

where  and , together with an analogous expression for .  The 
derivation of these follows from the Woodbury formula [25] for the inversion of a rank-p 

matrix perturbation.  In the case of the FDC, both  and  are scalars, the value of which 
can be obtained in a variety of ways including direct computation.  In our earlier paper [11], 
we derived, in a heuristic manner, 

~
T

ij j ij iw w=T T
~

T
ij i ij iw w=R R

~

13R

~

13R
~

13T

_ _
2

13 13_ _
2 2

cos ( ) exp(2 ) exp( )sin ( ) (1 exp(2 )), ,
1 sin ( )exp(2 ) 1 sin ( )exp(2 )

f f
L i L i i L L i L

L i L L i L

β β β β βρ τ
β β β β

∆ ∆
= = = =

+ ∆ + ∆
R T

_

+  (15) 

where , ( )
_

1 2 / 2β β β= + ( )1 2 / 2β β β∆ = − , with jβ  denoting the modal propagation 
constants of the propagating supermodes in 2M , for which exp( )j i jµ β= .  However, these 
results Eq. (15) may also be derived [22] as a limiting case of the general theory by assigning 

particular, idealized values to the Fresnel matrices  and  in Eq. (14) and its reflection 
matrix equivalent.   

~

ijR
~

ijT

3.2 Serpentine waveguide 

We now build upon the treatment of the previous section to investigate the serpentine 
waveguide, a coupled waveguide device formed by cascading multiple FDC structures to form 
the linear periodic array of resonant waveguides shown in Fig. 2.  While coupled resonators 
such as coupled cavity waveguides [26] and coupled ring resonators [27] have been studied 
previously, this serpentine structure is of interest because of its potential as a slow-wave 
photonic crystal structure [28].  

The unit cell of the serpentine waveguide is a pair of coupled FDC devices joined input-
to-output by a single waveguide of length  as shown in Fig 2(a).  Each of the individual 2L
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components of this structure is essentially the same as those of the isolated FDC device.  In 
the sections where there are two parallel waveguides (length ), a pair of propagating modes 
is supported, and light is coupled from one guide to the other.  The sections of single guide (of 
length ) act as the input/output guides to the next/previous coupling region.  If L

1L

2L 2 is 
sufficiently long that evanescent tunnelling between the blocked waveguide ends is negligible, 
the only connection between the coupling regions is via the single (even-symmetry) mode of 
the single guide.  In this limit, the structures shown in Figs. 2(a) and 2(b) are equivalent.  This 
property means that a single FDC, rather than a complete unit cell, is the minimum segment of 
the serpentine required to determine the band structure. 

Dy

L2

L1

L2

L1

(a) (b)

 
Fig. 2. Two equivalent serpentine waveguide geometries (assuming no tunneling through the 
guide ends).  Both are characterized by the period  and the double and single guide 

lengths,  and . 

yD

1L 2L
We now proceed to analyze the structure using the monomodal approximations 

developed in Section 3.1 for the FDC, valid when  provides a few lattice periods of 
separation between each cavity region.  The complex Fresnel reflection and transmission 
coefficients, 

2L

fρ  and fτ  of Eq. (15), for the single propagating mode through the double guide 
cavity of the FDC, are calculated using either the full Bloch method or the approximate 
analytic form given in Eq. (15).  Since fρ  and fτ  are the reflection and transmission 
amplitudes of the cavity itself, they must be padded to provide for propagation through the 
input and output guides to give the properties of the minimum serpentine segment.  Padding is 
included as an extra phase term due to propagation through the single guide, 2exp(i )Lβ , 
where β  is the modal propagation constant in the single mode guide that connects the coupler 
regions of length . 2L

Analysis of the periodic structure begins with the transfer matrix sT  through a complete 
period of the serpentine 

 
2 / /

,
/ 1/

s s s s s
s

s s s

τ ρ τ ρ τ
ρ τ τ

⎛ ⎞−
= ⎜

−⎝ ⎠
T ⎟  (16) 
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where sρ  and sτ  are the appropriately padded Fresnel coefficients for a full period, double 
FDC structure of length .  As observed above, the minimum segment of the 
serpentine is the single FDC, which leads to 

1 22( )yD L L= +

 
' ' 2 ' ' '

2
' ' '

/ /
where

/ 1/
f f f f f

s f f
f f f

τ ρ τ ρ τ
ρ τ τ

⎛ ⎞−
= = ⎜⎜ −⎝ ⎠

T T , T ⎟⎟  (17) 

is the transfer matrix through a single FDC with input and output guides of length , and 
the superscripted prime denotes the padded Fresnel coefficients described above. 

2 / 2L

The dispersion relation for the periodic serpentine structure is then obtained by solving 
the eigenvalue problem s µ=T f f  where the eigenvalues are exp( )yi q Dµ =  and is the 

Bloch factor in the longitudinal direction of the serpentine.  Since 

q
2

s f=T T , a consequence of 
the serpentine period being regarded as a pair of FDC devices in series, the eigenvalue 
equation can be written as , the solution of which leads to the dispersion 
relation 

1/ 2
f µ= ±T f f

 ( )
' 2 '2

1/ 2 '

11 , i.e. cos / 2 ,f f
y

f f

qD
τ ρµ

τµ τ

⎛ ⎞− ++
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∓

∓
1

= ℜ

1

 (18) 

where the simplification exploits the energy conservation properties satisfied by the Fresnel 
coefficients Eq. (12), guaranteeing that ' 2 ' 2| | | |f fρ τ+ =  and ( ) ( )' 'arg arg / 2f fτ ρ π− =± .   

The right hand side of Eq. (18) can be calculated using the full Bloch mode method, or 
alternatively, from the analytic expressions Eq. (15) obtained above, with the appropriate 
padding terms included.  The latter method results in an analytic form of the right hand side, 
which can provide a better understanding of the serpentine waveguide properties.  With 

, we can express Eq. (18) in the form '
2exp( )f f i Lτ τ β=

 ( ) ( )
( )

( )

_
2

1 1_

1 1 2 _

1 1

cos sin 2
cos / 2 sin sin .

2sin cos

L L
qD L L L

L L

β β β
β β β

β β

⎛ ⎞∆ +⎜ ⎟⎛ ⎞ ⎝= ∆ + +⎜ ⎟ ⎛ ⎞⎝ ⎠ ∆ ⎜ ⎟
⎝ ⎠

2L
⎠  (19) 

Transmission bands exist for frequencies where the right hand side of Eq. (19), ( )'1/
f

τℜ , 

has magnitude less than unity.  Correspondingly, band gaps, which lie between the 
transmission bands, occur when ( )'| 1/ | 1

f
τℜ > .  There are three distinct types of band gap, 

each originating through a distinct physical effect.  Following Eq. (19), or from the analysis of 
a single FDC, there are two conditions for which fτ  may vanish.  The first occurs when 

1sin( )=0Lβ∆ , i.e., for cavity lengths 1 / 2  /(2 )BL n L n π β= = ∆ , for an odd integer , where n

BL  is the beat length of the double waveguide.  The second condition occurs 

when , or 
_

1cos( ) 0Lβ =
_

1 /(2 )L nπ β= , also for odd .  When either of these conditions is 
satisfied, the right hand side of Eq. (19) diverges, and a resonator band gap [27] appears in the 
serpentine band diagram.  We label these two types of resonator band gap RG1 and RG2 
respectively.  The third class of band gap that appears in the serpentine band diagram is a 
Bragg gap [27] that occurs as a result of the overall periodicity of the serpentine structure, 
rather than a single feature of the FDC. 

n
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Fig. 3. (a) Band diagram for a serpentine waveguide with 1 2 5L L d= = , where  is the Bloch 

coefficient along the waveguide, and 

q
1y 2D L L= + .   (b) Transmission through an FDC with 

same parameters (dashed), one period of the serpentine waveguide (dotted) and two periods 
(solid).  Note that for frequencies below d/(2 c)=0.3064ω π , the double guide cavity only 
supports a single, odd mode, and thus the analytic result of (19) does not apply. 

Figure 3(a) shows the band diagram of a serpentine waveguide with 1 2 5L L d= = , formed in 
a square symmetric photonic crystal, with cylinders of normalized radius 0.3d and refractive 
index 3.0, operated in TM polarized light with 1cN = .  The FDC structures making up this 
device have the same parameters as those in Ref. [11], and indeed, the very narrow RG2-type 
band gap at /(2 ) 0.33107d cω π =  corresponds to the sharp resonance of the FDC filter.  In 
Fig. 3(b), the calculated intensity transmission is shown for the single FDC (half a period), a 
single whole period and two whole periods of the serpentine waveguide. The band diagram 
was calculated using fτ  obtained from the full Bloch mode method and the transmission 
spectra were also calculated using the full numerical approach.  Results for the approximation 
Eq. (19) do not agree exactly because of the choice of  and the phase change on reflection 
from the guide ends, which is not included in the FDC model.  Counting from the top of Fig 
3(a), we see that top two resonator gaps are both of type RG2.  Given the resonance 

conditions for RG1 and RG2, and since

L

_

>β β∆ , it is apparent that resonator gaps of type RG1 
occur less frequently than RG2-type gaps.   

Another feature of both types of resonator band gap is the positioning of the bands above 
and below the gaps.  Recall that in a one-dimensional Kronig-Penney model [28], the right 
hand side (RHS) of the dispersion relation is continuous, and hence only direct gaps exist, the 
RHS of the relation being unable to change sign without passing through zero.  In the case of 
the resonator gaps however, the RHS of the dispersion relation (19) diverges when either of 
the resonance conditions is satisfied.  When this happens, the RHS can change sign without 
passing back through zero, thus resulting in an indirect band gap.  Although band gaps with 
this property occur commonly in two-dimensional photonic crystals, such features have only 
recently been observed in other coupled resonator waveguides [27] consisting of a linear 
periodic array of resonant elements. 

A number of interesting band structures can be created with appropriate choices of the 
lengths and  and waveguide separation .  In Ref. [11] it was shown that the width of a 

resonance of type RG2 is largely a function of 

1L 2L cN

β∆ , being only weakly dependent on 
_

β .  As 
can be seen in Fig. 3(a), very flat bands with low group velocities occur for sharp resonances, 
and hence there is the potential to tune the group velocity and group delay with β∆ , by 
changing either the guide separation or the properties of the cylinders between the guides.  
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Another band structure of interest occurs when two or more consecutive band gaps are 
resonator gaps.   
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Fig. 4. (a) Band diagram for a serpentine waveguide with 1 2 7L L= = d . The solid curve is 
calculated with the full numerical simulation while the dashed curve is calculated using the 
approximation (19) 1 27.5 , 6.7L d L d= =    (b) Transmission through a FDC with 7L d=  
(dashed), 2 periods of the serpentine guide (dotted) and 3 periods of the serpentine guide. 

 
In Fig. 4(a), the band structure is shown for a serpentine waveguide with .  

The constituent waveguides are identical to those used previously.  The band gaps at centre 
frequencies 

1 2 7L L d= =

d/(2 c) =0.3135ω π  and d/(2 c) =0.3183ω π  are resonator gaps of type RG1 and 
RG2 respectively.  Since these are consecutive gaps, and each is indirect, the three bands 
above, below and between the gaps are almost parallel to one other and all have a positive 
slope.  With careful optimization, it may be possible to design a band structure with several 
equally-spaced bands.  Fig. 4(b) shows the transmission spectrum of a single FDC with 

 and a 2-period long serpentine waveguide with7L d= 1 2 7L L d= = .  Observe that, for these 
parameters, the resonator gaps are relatively strong even for such a small number of periods, 
whereas the Bragg gaps only appear as very weak perturbations in the transmission spectrum 
for two periods. 

4. Conclusions 

This paper has provided an overview to the development and application of Bloch mode 
methods for modelling extended photonic crystal devices.  The method reveals itself to be 
intuitive, analytically tractable and computationally easy.  Indeed, our implementation is built 
in a combination of both Mathematica [29] and Fortran—with the applications suite being 
implemented in the former, exploiting the convenient programming language and numerical 
linear algebra library, and the grating scattering matrices implemented in the latter, with the 
two linked together using the MathLink toolkit.  The method demonstrates computational 
advantages when handling extended structures which have components with many identical 
gratings, thus allowing the propagation problem in a long segment to be handled by a single 
set of modes.  However, there is no performance advantage when dealing with varying 
structures such as tapers, in which each layer can differ from its neighbours.    

The choice of the diffraction grating paradigm naturally imposes a supercell on the 
structure, thus modelling the behaviour of not a single device, but of an infinite parallel array 
of devices.  The utility of the method is thus limited to gap frequencies, which, of course, is 
where photonic crystals are at their most useful.  That aside, the key to the successful 
implementation of the method is a computationally accurate and efficient method of 
calculating the grating scattering matrices.  While these can be generated in a variety of ways, 
we have found the multipole method to be particularly effective as it analytically encapsulates 
within the implementation key physical properties, including reciprocity and energy 
conservation.  All of these properties are inherited by the modal analysis, in turn making the 
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method delightfully tractable from an analytic viewpoint and very easy to validate.  The 
essential highlight of the method, however, is its ability to provide physical and theoretical 
insight into coupling and propagation problems for photonic crystal devices.  The method 
achieves this through the use of the natural (Bloch) modal bases of the system and generates a 
solution in a form which maps naturally onto concepts of conventional optics—in this case, 
thin film optics in uniform media.  This suggests that it may be possible to import aspects of 
the elegant theory and successful designs of thin film optics into the new context of photonic 
crystals—an exciting possibility which merits investigation. 
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