Kernel-Specific Gaussian Process for Predicting
Pipe Wall Thickness Maps

Lei Shi, Liye Sun, Teresa Vidal-Calleja, Jaime Valls Miro
Centre for Autonomous Systems,
Faculty of Engineering and Information Technology
University of Technology Sydney, Australia
{ Lei.Shi-1 | Teresa.VidalCalleja | Jaime.VallsMiro }@uts.edu.au, Liye.Sun@student.uts.edu.au

Abstract

Data organised in 2.5D such as elevation and
thickness maps has been extensively studied in
the fields of robotics and geostatistics. These
maps are typically a probabilistic 2D grid that
stores an estimated value (height or thickness)
for each cell. Modelling the spatial dependen-
cies and making inference on new grid locations
is a common task that has been addressed us-
ing Gaussian random fields. However, inference
faraway from the training areas results quite
uncertain, therefore not informative enough for
some applications. The objective of this re-
search is to model the status of a pipeline based
on limited and sparse local assessments, pre-
dicting the likely condition on pipes that have
not been inspected. A customised kernel for
Gaussian Processes (GP) is proposed to cap-
ture the spatial correlation of the pipe wall
thickness data. An estimate of the likely condi-
tion of non-inspected pipes is achieved by con-
cretising GP to a multivariate Gaussian distri-
bution and generating realisations from the dis-
tribution. The performance of this approach is
evaluated on various thickness maps from the
same pipeline, where data have been obtained
by measuring the actual remaining wall thick-
ness. The output of this work aims to serve as
the input of a structural analysis for failure risk
estimation.
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1 Introduction

The water industry usually owns and maintains a large
volume of buried assets such as pipelines. The prediction
of a pipe’s remaining life is important when developing
effective renewal programs and reducing the incidence
of catastrophic failures [Ulapane et al., 2014], [Miro et
al., 2013]. In order to achieve this objective, a better

understanding of the current condition of buried pipes
relying on Non-destructive testing (NDT) technologies
plays an influential role. Although there have been some
efforts investigating the complicated mechanism of corro-
sion in a temporal context considering the environmen-
tal factors, there is still an absence of an extensively
validated model |Petersen et al., 2014] |Bonds et al.,
2005]. A common practice in conducting NDT on buried
pipelines involves exposing one or several pipe segments,
assessing the condition of these samples, summarising
the extreme measurements such as pitting or minimum
remaining wall thickness, and extrapolating local inspec-
tion data into uninspected regions using Extreme Value
Analysis (EVA) [Schneider, 2009]. Further prediction on
the probability of future failure can be conducted on the
extrapolation results via statistical tools or structural re-
liability analysis [Schneider, 2009] [Rajeev et al., 2014]
ILi and Mahmoodian, 2013]. The extrapolation proce-
dure is a data-driven approach which does not require
full understanding of the corrosion behaviour.

The potential of condition assessment is not fully ex-
ploited by analysing only extreme values on the NDT
measurements. Local NDT inspections provide measure-
ments commonly in the form of 2.5-dimensional (2.5D)
data, where axial and circumferential locations are asso-
ciate to wall thickness of the pipe. Modelling the spatial
correlation in these local assessments can potentially im-
prove prediction by using the rich information contained
in the measurements. For example, realisations of an
uninspected area as wall thickness maps at the same res-
olution of the local inspection outcome are supposed to
be more suitable for consequent structural analysis us-
ing Monte Carlo simulation [Spanos and Zeldin, 1998] or
other conventional approaches.

Modelling spatial dependencies for 2.5D data has been
largely studied in the past. Mathematically the problem
can be described as a random field which is a collection
of random variables of the form {yx, x € R4}, where yx
is the quantity measured at the position x [Lord et al.,
2014). Random fields are also known as spatial processes
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that are defined for spatially arranged measurements and
patterns modelling for instance, univariate [Kroese and
Botev, 2013 or multivariate [Schlather et al., 2015] pro-
cesses. Random fields can be statistically specified by
its mean and covariance [Lord et al., 2014] [Kroese and
Botev, 2013]. When the mean is constant, depending on
the covariances there are stationary random fields whose
covariances are invariant under translations [Kroese and
Botev, 2013], isotropic stationary random fields whose
covariances are invariant under both translations and
rotations [Kroese and Botev, 2013|, and anisotropic sta-
tionary random fields whose covariances are direction-
ally dependent [Lord et al., 2014]. Furthermore, a more
specific type of random field being studied extensively
is Gaussian Random Fields [Davies and Bryant, 2013],
also known as Gaussian Spatial Processes [Kroese and
Botev, 2013] or Gaussian Process (GP) [Bishop, 2006]
IRasmussen and Williams, 2006]. In this case the ran-
dom variables of a random field jointly have a multivari-
ate normal distribution |[Kroese and Botev, 2013].

In robotics, Gaussian Processes have been employed in
terrain and surface modelling [O’Callaghan and Ramos,
2012] [Smith et al., 2010] [Vasudevan et al., 2009 [Ker-
sting et al., 2007]. In all these works, the utilisation
varies with the properties of the applications, the struc-
ture of the model and usage of the correlation informa-
tion. The use of these probabilistic tools for thickness
mapping has recently been tackled by the authors for an
application on pipeline condition assessment [Sun et al.,
2015|[Vidal-Calleja et al., 2014]. In our previous study,
the spatial correlation of the profile is learnt by using a
Gaussian Process model to produce a prior map for the
fusion purposes. This model has been studied further
in this current work to incorporate pipe’s characteristics
into the knowledge of the covariance function. We also
propose the use of Gaussian Process realisations instead
of inference, as it results in a more suitable interpreta-
tion of the condition of the pipe in uninspected areas, in
particular, when these areas are faraway from the train-
ing data. Moreover, in the case that the global location
information of the target area is missing, inference be-
comes impossible and realisation would be the only way
of predicting the condition of the area of interest.

In summary, the contribution of this research work is
two-fold: 1) a design of the kernel for modelling spa-
tial correlation in pipes and 2) the use of realisations
as opposed to Gaussian Process inference to extrapolate
the conditions of the same pipe cohort together with
the analysis of the prediction performance using differ-
ent metrics. The rest of this paper is arranged as follows.
Section [2] discusses the underlying approach of modelling
the spatial data using Gaussian Processes and the design
of a composite covariance function considering the prop-
erties of the target to be modelled. The experimental

setup including data sets and evaluation metrics is de-
scribed in Section[3] Corresponding experimental results
are presented in Section [d] with analysis and discussion.
Section [f] concludes the paper. In the context of this pa-
per, we use the two terms kernel and covariance function
interchangeably.

2 Approach

This section provides the detailed methodology for mod-
elling spatially correlated data using Gaussian Processes
in the application of pipe wall thickness mapping, and
generating realisations from the learned model. GPs will
be introduced in the aspects of problem identification,
probabilistic modelling, parameter estimation, inference
and realisation. This is followed by a comprehensive and
application-specific discussion on kernel design.

2.1 Gaussian Processes

Gaussian Processes define the probability distribution
over functions, any finite number of which have consis-
tent joint Gaussian distribution.

Consider n  thickness-location pairs D =
{(y1,%1), (Y2, %2) 5 o, (Yn, Xn)}, where x; € X is
the position in R? from which the thickness measure-
ments y; € Y was taken. The data set D is assumed to
be drawn from a noisy process

yi = f(x;) + €;, where ¢; NN(O,U,QL) (1)

where noise ¢; follows independent, identically dis-
tributed zero-mean Gaussian with variance 2. Gaussian
Processes are used to learn the distribution p (f|X, D)
from D and have the capability of inferring p (f|X*, D)
for arbitrary location X*.

Having specified the mean and covariance functions
and identified the hyper-parameter set 8, parameter esti-
mation can be conducted through optimisation by max-
imizing the likelihood function as described in equation

logp(y | X) = —3 (y — m(X)) T K, (y ~ m(X)) o
—%log|Ky| - glogQW

where K, = K(X,X) + 021 denotes the joint prior
distribution covariance of the function at positions X.
The variance of the noise o2 is another parameter to
be learned together with 6. Standard gradient descent
can be used in parameter estimation |Rasmussen and
Williams, 2006].

Inference at a finite set of query locations X* can be
performed by calculating the predicted mean g and co-

variance P.
p=m(X")+ KX X)K(y -m(X)) (3)
P=K(X*X*)-KX*"X)K,'"K(X*,X)" (4



The matrix K(X*, X) is obtained from the covariance
function K and it indicates the cross correlation between
the function at the prediction points X* and the training
inputs X.

2.2 Realisations of Gaussian Processes

As the test data itself at query locations X*
follows the Multivariate Gaussian Distribution
N(m (X*),K (X*,X*) + 02I), wherever inference
cannot be done the learned model can still be simulated.
There are various methods of generating realisations of
a Gaussian Process, which is also known as simulation
or sampling. Cholesky decomposition is one of the
conventional approaches although it has its limitation
on large scale implementation [Kroese and Botev, 2013]
[Schlather et al., 2015]. Circular embedding is an
alternative technique to efficiently simulate a Gaussian
Process [Schlather et al., 2015] |Davies and Bryant,
2013|. In our application, the maximum scale of data
we are currently dealing with is about 103 x 103, which
is possible for Cholesky decomposition to handle. For
future work of processing higher resolution data or
longer pipe segments we may need to turn to Circular
embedding or some other algorithms.

2.3 Kernel Design

Gaussian Processes are completely specified by the mean
function m and covariance function K. The mean func-
tion is usually set to be zero via normalization or can
also be chosen explicitly. The covariance function con-
trols the smoothness property of the processes, and the
parameters of covariance function govern the effective
range of correlation and the variability of the process.
In this application we consider const-mean process, all
that is needed to characterise the Gaussian Processes is
the covariance function.

In our previous work targeting at data fusion, we have
gone through an extensive model selection on most com-
mon covariance functions and chosen an isotropic Matérn
family covariance function as shown in equation [5| [Ras-
mussen and Nickisch, 2010], because the fusion outcomes
showed best results with it.

2 2
K(X,X*)=o0} (1 + 3(d“+dc)>
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3 (dg +d2)
exp [ — — 7
1

where d, and d. are absolute values of the axial and cir-
cumferential distances respectively. The length-scale [
and the variance o constitute the hyper-parameter set
6. Despite of its simplicity, the fact that this covariance
function does not consider the 2m-periodic property in

(5)

the circumferential direction becomes a theoretical weak-
ness in this particular application.

There is no single covariance function that fits all
modelling tasks. Depending on the purpose at hand,
modified or composite covariance functions allow more
flexibility in the model. The usage of prior knowledge
in choosing appropriate covariance functions is also en-
couraged [Tesch et al., 2011]. The effectiveness of us-
ing periodic covariance function in the study of seasonal
variation and physical phenomena has been discussed in
literature [Rasmussen and Williams, 2006 [Tartakovsky
and Xiu, 2006/. In modelling the wall thickness of buried
pipes we first of all consider the anisotropic properties.
Different circumferential locations on a buried pipe usu-
ally imply different depth underground, while different
axial locations generally stay at the save depth. There-
fore the pipe surface condition can be considered as
anisotropic. Furthermore, given the cylinder shape of
pipes, the distance in the circumferential direction is
known to be 2m-periodic. The last assumption is that
the influence in either direction conjunctionally affects
the other direction. Therefore the covariance functions
for each direction needs to be multiplied. Under these
facts and assumptions we propose a basic covariance
function composition as the product of a periodical co-
variance function for the circumferential direction and
a non-periodical covariance function for the axial direc-
tion. To take this one step further, we believe that differ-
ent basic covariance function compositions have different
manners of capturing the spatial correlation patterns so
a linear combination of multiple basic compositions will
have more flexibility and advantages. In the meantime
the number of free parameters in the covariance function
should be restricted to avoid overfitting.

The propose anisotropic composite covariance func-
tion, mathematically described in equation [0} is a lin-
ear combination of two basic compositions. The first
one is the product of a periodic covariance function and
a Matérn family covariance function for circumferential
and axial distances respectively, the second one is the
product of a periodic covariance function and a rational
quadratic covariance function for circumferential and ax-
ial distances respectively. There are seven free param-
eters is the proposed covariance function. Please note
that it has been theoretically proved that the sum of
two kernels is a kernel and the product of two kernels
is also a kernel [Rasmussen and Williams, 2006]. There-
fore the proposed covariance function is guaranteed to
be positive semidefinite.

2
K(X,X*) = 0?02 exp (_l2 sin? (W;jc) — d“)
1
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Figure 1: Covariance matrices generated from a) the
isotropic Matern family covariance function, b) the pro-
posed composite anisotropic covariance function

where d, and d. are absolute values of axial and circum-
ferential distances respectively. o9 and o4 are clamped
to one as a measure to avoid equivalent solutions. p is
clamped to a constant according to the target pipe di-
ameter and sensor resolution so that the distance in the
circumferential direction is guaranteed to be 2m-periodic.

A visual comparison of covariance matrices generated
from the above two covariance functions is presented
in Figure It can be visually verified that the co-
variance matrix generated from the proposed compos-
ite anisotropic covariance function has more expanded
correlation.

The correlation coefficient plots in Figure par-
tially demonstrate the correctness of the assumptions
for the proposed composite anisotropic covariance func-
tion. Statistics on the ground-truth data shows that for
any given spot on the pipe, the thickness correlation is
anisotropic. The proposed covariance function is able to
effectively capture the actual correlation, especially the
significant region of the correlation.

3 Experimental Setup
3.1 Data Set

The evaluation is performed on 12 pipe segments of
about 1 meter long each. These samples are taken from
a decommissioned 1.5 km long section of 600mm diam-
eter cement lined cast iron pipe at Strathfield, Sydney
[Miro et al., 2013]. Pipe wall thickness profiles at sub-
millimeter spatial resolution are produced through high-
resolution geometric 3D laser scans of both outer and
inner surfaces of the exhumed and grit-blasted pipes to-
gether with algorithms to extract the thickness informa-
tion out of the 3D geometric models [Miro et al., 2013]
[Skinner et al., 2014]. Each of the 12 pipe segments is
assigned an ID from S1 to S12 which does not neces-
sarily imply a spatial order. An illustrative example of
the pipe wall thickness map production procedure can
be found in Figure [3]
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Figure 2: Typical correlation coefficient plot(s) for re-
maining wall thickness w.r.t the spot at the centre of
the plot(s), generated from a) the ground-truth data, b)
the proposed composite anisotropic covariance function

In order to reflect the real-world situation the ground-
truth data is averaged out at the spatial resolution of
5 cm by 5 cm to mimic the output of an external NDT
sensor |Ulapane et al., 2014]. Local inspections with this
tool are performed on external pipe surface only and
generally does not require any graphitisation removal via
grit-blasting.
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Figure 3: a) a grit-blasted pipe segment, b) the full 3D
profile of a pipe section of about 5 meters long, ¢) The re-
maining wall thickness map of a pipe segment generated
by processing 3D laser scanner data

3.2 Evaluation Metrics

To evaluate the performance of a model, an objective ap-
proach is to compare the prediction results against the



ground-truth using explicit numerical criteria [Hore and
Ziou, 2010]. In our previous studies, given a reference

thickness map firxny and a candidate thickness map
gMmxnN, Root-Mean-Square Error (RMSE) as defined in
equation 7| has been employed to evaluate the goodness
of prediction. One of the benefits of RMSE lies in that
it has the same unit as the quantity being measured. A
smaller RMSE indicates smaller point-to-point discrep-
ancy in average. The RMSE between two identical pipe
wall thickness maps is zero. Another metrics adopted
in this work is the Structural Similarity Index (SSIM),
as shown in equation SSIM is originally developed
for quality assessment of gray-scale images
2004]. Comparing to RMSE, SSIM also takes structural
information into consideration. For SSIM value of zero
means no correlation between the reference and the can-
didate, and SSIM value of one means a perfect match
[Hore and Ziou, 2010]. The motivation of introducing
multiple metrics is to provide complementary informa-
tion for evaluating the performance of the model.

| M N

RMSE(f,g) = UN ZZ (fiz— 90> (7)
i=1 j=1

SSIM(f,9) = U(f,9)e(f,9)s(f,9) (®)

where [,c,s, are functions comparing luminance, contrast
and structure information of the reference and the can-
didate. More details on SSIM can be found in literature
[Hore and Ziou, 2010] [Wang et al., 2004].

4 Results
4.1 Inference Results

Gaussian Processes inference results from two pipe seg-
ments S11 and S5 are presented in Figure [ and Figure
in the form of test output mean. The associated variance
on each point is also available. It is shown in Figure []
that in the presence of spatially close training data, the
inference result is somehow visually meaningful. The
associate variances, which is not visualised here, are rel-
atively low. However, without local training data the
inference result can be much less visually meaningful as
shown in the case of pipe segment S5 in Figure[5} In this
experiment, Gaussian Processes modelling and inference
with either covariance function gives a flat surface as-
sociate with large variance values. Even worse, in some
scenarios the global location information as the input
to the Gaussian Processes are not available which makes
inference infeasible. Therefore instead of providing prob-
abilistic inference results, in these situations generating
realisations of a Gaussian Process model makes a better
interpretation plus it also serves as an input to Monte
Carlo simulation if required.

©)

Figure 4: A comparison of inference results on pipe seg-
ment S11. (a) the ground-truth of pipe segment S10,
S11 (middle) and S12. The horizontal blank spaces be-
tween thickness maps are left purposely and have the
same scale as the maps to reflect the actual distances be-
tween them, and GP inference result of S11 using (b) the
Matern covariance function and (c) the proposed com-
posite covariance function

4.2 Realisation Results

Realisation results are evaluated with leave-one-out cross
validation. Each time one pipe segment is kept for test
and the rest eleven pipe segments are utilised in training.
Then the model described by mean and covariance func-
tions is simulated according to the dimension of the test
data to generate certain number of realisations which are
then compared against the ground-truth of the test data.

Table [1] shows the evaluation results using RMSE
as the evaluation metric, based on the average RMSE
results on ten thousand realisations in each training-
realisation-comparison cycle. In 11 out of 12 cases, mod-
elling with the proposed composite covariance function
outperform the results with the Matérn covariance func-
tion. Regarding the exception, the performance gap in
terms of the reported RMSM value is trivial.

Similarly, Table [2| shows the evaluation results us-
ing SSIM as the evaluation metric, based on the aver-
age SSIM results of ten thousand realisations in each
training-realisation-comparison cycle. In all 12 cases
modelling with the proposed composite covariance func-
tion outperform the results with the Matérn covariance
function.

As typical examples, a visualisation of closest realisa-
tions on S2 and S9 is presented in Figure [f] In each
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Figure 5: A comparison of inference results on pipe seg-
ment S5. (a) the ground-truth of pipe segment S5 (left),
S1 and S10 and the indicated actual distances between
them, and GP inference result of S5 using (b) the Matern
covariance function and (c¢) the proposed composite co-
variance function

scenario the closest realisation to the test ground-truth
is selected from the corresponding ten thousand reali-
sations. According to the results in Table [l in terms
of RMSE S2 gives the only result that is in favour of
using the Matérn covariance function. This can be par-
tially confirmed in the visualisation result. Closest real-
isation in SSIM using the proposed covariance function
suggests that SSIM relies more on the structural similar-
ity than point-to-point difference. On S9, closest realisa-
tions generated using the simple covariance function are
identical, which means RMSE and SSIM are somehow
dependent. It can also be visually justified that closest
realisations generated using the proposed composite co-
variance function outperform their peers, which agrees
with the results reported in Table [I] and Table [2]

In the real-world scenario the ground-truth data is
rarely accessible, so that the closest realisation will not
be able to be picked up. Therefore without a specific se-
lection criteria all realisations will be provided for further
analysis. However, if certain indication like the stan-
dard deviation or the minimum value of the thickness
measurements in a realisation is set to reflect the quality
of that pipe segment, best-case and worst-case scenarios
can be selected from the realisation set.

F—
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Figure 6: Comparison of the closest realisations from
different covariance functions against different metrics

Table 1: Cross-validation results measured in RMSE

Test Map ID  Customised Cov Matérn Cov
Avg. RMSE (mm) Avg. RMSE (mm)
S1 2.82 3.13
S2 5.32 5.36
S3 3.26 3.04
S4 3.14 3.33
S5 2.96 3.10
S6 3.77 3.83
S7 4.07 4.48
S8 3.43 3.59
S9 4.18 4.81
S10 3.42 3.75
S11 3.54 3.89
S12 3.05 3.26
Avg. 3.58 3.80

5 Conclusion

This paper presents an application of Gaussian Processes
to capture the spatial correlation of 2.5D pipe thickness
data from local inspection outcomes, and to sample the
learned model to produce predictions of the condition
of the pipe in unobserved areas. Using condition assess-
ment of buried water pipes as the specific application, we
incorporate pipe properties-specific in the design of the
covariance function. The proposed covariance function is
an anisotropic composite kernel that models the spatial
correlation of pipe wall thickness measurements. Based
on the learned model, we proposed to use Gaussian Pro-
cess realisations, as opposed to inference, to extrapolate
the conditions of the same pipe cohort. The prediction
performance is then evaluated using two different met-



Table 2: Cross-validation results measured in SSIM

Test Map ID Customised Cov Matérn Cov

Avg. SSIM Avg. SSIM
S1 0.19 0.12
S2 0.17 0.14
S3 0.15 0.12
S4 0.19 0.13
S5 0.20 0.14
S6 0.15 0.12
S7 0.23 0.16
S8 0.23 0.19
S9 0.22 0.13
S10 0.17 0.11
S11 0.18 0.12
S12 0.19 0.13
Avg. 0.19 0.13

rics. Experimental results show that the proposed com-
posite covariance function is capable of building a spatial
correlation model for pipe wall thickness map and real-
isations of this model have the potential of being fed to
Monte Carlo simulation for failure risk related structural
analysis. Future work considers the analysis on the re-
alisations to decide what is the most useful sample for
predicting the pipe failure.
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