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Phoronic crystals"~ (PCsj are thought to be key
building blocks for future micro-optical technology in
that they provide a versatile means to control light.
Waveguides based on pes, with their capacity to guide
light without diffraction losses, are likely to become
integral components in all-optical processors. Mekis
et al.3 showed theoretically that it is possible to bend
light by 90° without significant loss, a result that was
later confirmed experimentally." Interconnections
such as Y junctions," T junctions," and channel-drop
filters) have also been proposed, It is thus vital to
understand the mechanism of guiding and coupling
for such devices,

The coupling problem is challenging? and general,
involving the interfacing of one guide to another (e.g.
at a bend or junction) or to an external medium.
Previous treatments) considered coupling in and
out separately. Here, we address the full circuit
problem-coupling in" propagation, and coupling
out-the solution of which, until now, has relied
almost exclusively on computational techniques,
Although these methods are accurate, they are compu-
tationally intensive and exploit little of the underlying
physics, Here, we present a semianalytic method to
calculate the field profiles and the transmission of
straight PC waveguides based on Bloch modes and
their reflection and transmission at interfaces by use
of generalized Fresnel coefficients.

~lotivating this work is a desire for a simple
method of calculating the properties of a straight
PC waveguide formed in a two-dimensional finite
PC. Figure Ha) shows the TM field intensity in a
cluster comprising a square symmetric lattice (spacing
d.i of cylinders and a channel of width d, generated
by a point source near the waveguide entrance. The
results, computed WIth a multipole method," exhibit
resonant behavior associated with a superposition of
forward- and backward-propagating fields, similar to
the resonances of a Fabry-Perot (FP) interferometer.
These resonances can also be dearly seen in the
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transmission spectrum (dashed. curve) in Fig, 2(a),
up to the modal cutoff at Aid = 3.496, Using the
FP analogy, we describe the propagation constants
and characterize the transmissivity with an exact
generalization of the Airy formulation" for a FP inter-
ferometer, leading to a simple two-parameter model
for a single-mode guide.

The key step in generalizing the Airy formulas is the
computation of the relevant Bloch modes. The struc-
ture is modeled hy a finite stack [see Fig. Hb)] of L
grating layers, each of thickness d and with a periodic
defect (width d) that is due to the removal of a cylin-
der, generating a lattice with a single channel per su-
percell. Numerical investigations using the multipole
method have shown that coupling between the guides
is negligible for separations exceeding lOd,and thus
we model the waveguide array [Fig. HajJ, using super"
cell period D = lld.

The diffraction properties of each grating' are
described by plane-wave reflection and transmission

Fig. 1. (a) Field intensity (decimal log scale) in a finite
cluster due to a point source (black dot). The waveguide
correspondsto the removal of a line of cylinders of radius
aid = 0,3, refractive index 11< = 3 (in air Vb = 1), and wave-
length Aid = 3.19. (b) Supercell model approximating
geometry (a), with guides spaced by D= lId.
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Fig. 2. (a) Transmission spectrum calculated with multi-
pole (dashed curve) and asymptotic (solid curve) models.
(b.' !p! (solid curve), arg p (short-dashed curve', and arg fl
dong-dashed curve) versus wavelength. The left. (right)
axis displays the magnitude (argument).

scattering tnatriees." Between consecutive grat-
ing layers the modes ate described by plane-wave
expansions comprising forward- (upward in Fig. 1)
and backward- (downward-) propagating components,
respectively represented by vectors of coefficients
f+ and L, 'where the entries correspond to the am-
plitudes in the various orders. The Bloch modes
f = [f', TL 1Y m-e then computed with a transfer
matrix method, 1 1 in which the eigenvalue problem
'1f = I.d for the interlayer .translation operator '1
is solved to yield the modes f. The set of all modes,
derived from the solution of an eigenvalue problem,
can be partitioned into forward- and backward-
propagating states." For a rectangular lattice, it can
be shown that if p..= exp(i{3od) is an eigenvalue of
the forward state (f+, L), in which {3o is the Bloch
constant corresponding here to the mode's propa-
gation COnstant in the guide. the paired backward
state has eigenvalue p,-l and eigenvector (L, f+).
Collecting all forward and backward eigenstates,
we form matrices FCc from the column vectors f;;
and a diagonal matrix A from. the eigenvalues !-{,
Modes are sequenced with propagating states listed
first,

Within medium 1\12 of the structure [Fig. l(b)], the
fields are expanded in the Bloch basis of forward
{:\. (F+, F_)}and backward {.'\-1, (F_.F +)} states, In
free space, media M1 and lVI3of Fig. l(b\ we expand
fields in the plane-wave basis. In 1\-11, there is a
forward-incident field 0 and a backward-reflected
field r , whereas in M3 there is only a forward-
transmitted field t, The components of these vectors
correspond again to the plane-wave orders of the field
expansion. The incident field launches forward Bloch
wc~vesthat are reflected from the rear (23) interface to
generate backward modes, The matching offorward
and back-yard components at the two interfaces of
the L-Iayer crystal leads to the solution of the field
problem.
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In this formulation it is convenient and intuitive to
separate the propagation of Bloch waves from their
scattering at the interfaces; the latter is characterized
by generalized Fresnel reflection and transmission co-
efficients. This separation treatment leads to the vec-
tor oftransmitted field amplitudes given by t = TS.
where T is the matrix

One can understand the structure of Eq, (1). the ma-
trix analog of the scalar Airy transmission formula,"
by reading from right to left with the field transmitted
(T12) from Ml to M2,propagated (;\.1..) through M2,
and transmitted ('1'2:,) from r.12 to 1\'13, with resonant
propagation and reflection between the front and rear
boundaries represented by (I - R21ALR2:iAI~)-1. Ex-
plicit expressionsfor the reflection (Ed and transmis-
sion (Ti) coefficients are found by expression of fields
as linear combinations of forward- and backward-
propagating Bloch modes and plane waves (in the
crystal and free space) and matching their forward
and backward plane-wave components at their com-
mon interface. In this way we show that R21 and
R23, the crystal-air reflection coefficients, are given
by R21= Rn '= - (h with Po< .= F+ -1 F_ ,13 The
matrix T2:1 = F,-{I - p,,2) denotes the crystal-air
transmission coefficient and is derived from the sum
(I<\ - l<".-p,,) of two terms. the forward components of
the forward modes (F",,), and the forward components
of the backward modes (F-) that are generated by a
reflection (- poel at the rear interface, The calculation
of the air-crystal transmission coefficient '1'12 involves
only forward-propagating modes and yields the sim-
pler form T12 = F+ -1, which is merely a change of
basis from plane waves to Bloch modes. Substituting
the Fresnel coefficients into Ell. (I) then yields the
matrix form of the Airy transmission formula" for a
symmetric FP interferometer:

T = F+(I - p"z)AhI - p7ALp",/\L)-IF+ -1. (2)

Equation (2) is exact, in that including all modes
yields a result identical to that generated by the recur-
sive computation of T from the scattering matrices of
the individual gratings." However. a major simplifi-
cation is possible for suitably long guides. 'I'he Bloch
basis, used to expand the fields, includes rapidly decay-
ing evanescent terms. Although for an infinitely long
guide the energy carried by these modes is precisely
zero, this is not true for finite guides. However, for
guides longer than a few layers, the evanescent field
decay lets us ignore their contr ibution.vand only the
propagating Bloch modes need be considered. 1<'01' a
single-mode guide, Eq, (2) may be simplified by use of
the Sherman-Morrison formula" for the inversion ofa
matrix with a rank one perturbation caused by Ai.. as
L .....ca, Together with modal orthogonality relations
this formula greatly simplifies the expression for the
transmitted flux to yield

E~ =, (3)
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Fig. 3. Comparison of the field intensity [Fig. l(a)] along
the waveguide axis, calculated "lith the multipole method
(dashed curve) and the asymptotic model (solidcurve).

Here, g is the eigenvalue of the single propagating
mode, and p, the (1,1) element of P'" is its complex
Fresnel reflection coefficient. The denominator of
Eq. (3) characterizes the resonance, and the numera-
tor (I ~ Ip 12) expresses the net energy propagation of
a forward mode of unit flux and a backward mode of
flux IpI2 generated by reflection at the rear surface.
The coupling of the incident field into the primary
Bloch mode is given by an overlapintegral v...1>, where
v... denotes row 1 of F...-I. Figure2(b) shows Ipl,
arg(p), and arg(g) = f30d over wavelengths between
the band edge of the bulk crystal and the guide
cutoff, where p -> 1 and g -> 1. Modal cutoff corre-
sponds to the edge of a full bandgap of the composite
guide-crystal, at which the structure behaves as a
perfect reflector (ip I = 1).

In Fig. 2(a), the approximate result (3), indicated
by the solid curve, is compared with the full multi pole
calculation for the finite guide of Fig. 1(a). The
multipole results were obtained by integration of
the total flux across the rear of the crystal. Even
though Eq. (3) is for a periodic array of waveguides
and neglects evanescent fields, it predicts accurately
the positions of the transmission peaks and provides
good agreement with the transmittance at longer
wavelengths. The interference extrema are deter-
mined almost exclusively by parameters u. and p ,
and the magnitude of the transmittance is scaled by
the coupling coefficient [v, 012• The source of the
discrepancy between the model and the multi pole
calculation arises from the difficulty in estimating the
transmittance in a finite structure by evaluating the
flux integral over a finite surface.

The utility and accuracy of the two-parameter (g, p)
model are further illustrated by the midchannel in-
tensity plot of Fig. 3. The dashed curve is from the
multipole calculation for a guide of length L = lld,
whose geometry is identical to that used for Fig. 1(a),
and the solid CUTVeis for the asymptotic model, the
spatial dependence of which can be shown to be pro-
portional to 1/_(n ~ p g 2L-nl2 at the interface to layer n,
There is good agreement in both the fringe location and

the fringe visibility, V = 21p 1/(1 +- Ip 12), with devia-
tions arising only at the front surface, where evanes-
cent modes are required for full characterization of the
field.

In conclusion, we have developed an elegant treat-
ment for •PC waveguides through a generalization
of the Fresnel reflection and transmission coeffi-
cients. For single-mode propagation, the guide can be
characterized fully by only two parameters, providing
accurate predictions oftransmittance and fields within
the guide. The ideas here can be generalized to more-
complex coupling problems such as propagation at
bends and joints and will lead to new tools to aid in
the design of PCs.
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