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ABSTRACT 16 

Ethanol direct injection plus gasoline port injection (EDI+GPI) represents a more efficient and flexible way to 17 

utilize ethanol fuel in spark ignition engines. To exploit the potentials of EDI, the mixture formation 18 

characteristics need to be investigated. In this study, the spray and evaporation characteristics of ethanol and 19 

gasoline fuels injected from a multi-hole injector were investigated by high speed Shadowgraphy imaging 20 

technique in a constant volume chamber. The experiments covered a wide range of fuel temperature from 275 K 21 

(non-evaporating) to 400 K (flash-boiling) which corresponded to cold start and running conditions in an 22 

engine. The spray transition process from normal-23 evaporating to flash-boiling was investigated in 
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greater details than the existed studies. Results showed that ethanol and gasoline sprays demonstrated the same 24 

patterns in non-evaporating conditions. The sprays could be considered as non-evaporating when vapour 25 

pressure was lower than 30 kPa. Ethanol evaporated more slowly than gasoline did in low temperature 26 

environment, but they reached the similar evaporation rates when temperature was higher than 375 K. This 27 

suggested that EDI should only be applied in high temperature engine environment. For both ethanol and 28 

gasoline sprays, when the excess temperature was smaller than 4 K, the sprays behaved the same as the 29 

subcooled sprays did. The sprays collapsed when the excess temperature was 9 K. Flash-boiling did not occur 30 

until the excess temperature reached 14 K. The fuel temperature changed not only the spray evaporation modes 31 

but also the breakup mechanisms. 32 

1. INTRODUCTION 33 

Gasoline direct injection (GDI) has several advantages over port fuel injection, including improved fuel 34 

economy and transient response, more precise air-fuel ratio control, extended EGR tolerance limit, selective 35 

emissions advantages and enhanced potential for system optimization [1-3]. On the other hand, ethanol is a 36 

widely used alternative fuel to address the issue of sustainability. Compared with gasoline fuel, ethanol has 37 

greater enthalpy of vaporization, larger octane number, higher flame speed and smaller stoichiometric air/fuel 38 

ratio [4-6]. Recently, ethanol direct injection (EDI) has attracted much attention due to its great potential in 39 

taking the advantages of ethanol fuel to increase the compression ratio and thermal efficiency [7-10]. The 40 

engine knock propensity could be reduced by the higher octane number of ethanol fuel, and supplemented by 41 

the strong cooling effect enhanced by EDI. These advantages make it possible to increase the compression ratio 42 

and use turbocharging (engine downsizing technologies) for spark ignition (SI) engines while avoiding the 43 

knock issue, and consequently increase the thermal efficiency. 44 

To exploit the potentials of EDI, the spray and mixture formation characteristics should be investigated as they 45 

are the key factors that influence the combustion and emissions of the engine. Experimental results showed that 46 

the NOx emission decreased, and CO and HC emissions increased with EDI injection in a gasoline port 47 

injection engine [7]. The NOx emission was decreased 48 due to the cooling effect enhanced by EDI and CO 
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and HC emissions were increased due to poor mixing, local over-cooling and fuel impingement at high load 49 

conditions [11, 12]. However opposite experimental results were reported in [13]. NOx emission increased and 50 

CO and HC emissions decreased when EDI was applied. Furthermore, both HC and NOx emissions were 51 

reduced by EDI as reported in [8]. The above different results might be caused by the evaporation process of 52 

EDI spray in different engine conditions in different investigations. 53 

The fuel evaporation process strongly affects the consequent mixture formation, combustion and emission 54 

processes. This is because the droplets must vaporize before they can burn [14, 15]. However, little work has 55 

been done in this field.  A better vaporization of ethanol fuel was used to explain the experimental results of 56 

decreased spray tip penetration and increased spray angle with the increase of ethanol/gasoline fraction [16]. 57 

Some reported a slower vaporization of ethanol spray than gasoline’s because of the light components in 58 

gasoline fuel [17]. It was found that ethanol had a faster vaporization rate due to its higher vapour pressure in 59 

high temperature conditions in experiments [18]. Numerical studies showed that the evaporation rate of ethanol 60 

direct injection was lower than that of gasoline in naturally aspirated SI engines [4, 19]. However the simulated 61 

evaporation rate of ethanol was as high as that of gasoline in a turbocharged engine [20]. It was found that the 62 

fuel temperature played an important role in the evaporation process of ethanol spray. Ethanol evaporated more 63 

slowly than gasoline did in low temperature conditions, but faster when temperature was higher than 375 K [4]. 64 

The fuel temperature can change in a wide range from non-evaporating (cold start in winter) to flash-boiling 65 

sprays in real engine conditions. The effect of fuel temperature on gasoline spray injected by swirl-type 66 

injectors was investigated [21-24]. It was found that the spray collapsed with faster evaporation rate, longer 67 

penetration and smaller droplet size when the temperature was above the saturation temperature. Recently, the 68 

multi-hole injectors have attracted more attention for direct injection SI engines because of their advantages in 69 

stability of spray pattern and flexibility of spray plume targeting [25]. However the majority of work published 70 

to date on multi-hole injectors concerns diesel nozzles [26]. Aleiferis et al. conducted extensive experiments on 71 

the multi-hole injector spray behaviors of various fuels and ambient conditions [26-30]. The studies were 72 

focused on the spray shape transformation of flash-73 boiling sprays (or spray collapse: transition from 
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multi-jet spray to single-jet spray) either by increasing the fuel temperature or decreasing the ambient pressure. 74 

Zeng et al. investigated the transition process from non-flash boiling to flare flash boiling sprays using alcohol 75 

fuels [31]. It was reported that the spray flash boiling occurred at Pa/Ps=1 (ambient-to-saturation pressure ratio) 76 

and spray collapsed at Pa/Ps=0.3. However, recent study for ethanol spray from a multi-hole injector found that 77 

the spray flash boiling did not occur as soon as the liquid temperature was higher than the boiling point 78 

(Pa/Ps=1) [32]. 79 

The adequate performance of direct injection systems is the key factor to achieve the benefits of GDI and EDI. 80 

Since ethanol fuel has lower stoichiometric air/fuel ratio and heating value, more mass of ethanol should be 81 

injected into the cylinder in order to maintain the same output power and equivalence ratio. More injected fuel 82 

results in larger spray momentum and longer spray tip penetration, which may lead to fuel impingement on 83 

cylinder and piston walls. Besides, gasoline and ethanol sprays would show different breakup regimes (Bag 84 

Breakup, Stripping Breakup, or Catastrophic Breakup) or vaporisation patterns (flash or non-flash boiling 85 

sprays) due to their different physical properties [31, 33]. The spray flash-boiling may occur in engine 86 

conditions which would destroy the designed spray directions and mixture distributions [26, 31]. Therefore, 87 

investigating the spray and evaporation characteristics is of great importance for extending the use of ethanol 88 

fuel. 89 

In this study, the effect of fuel temperature on the ethanol and gasoline spray characteristics from a multi-hole 90 

injector has been studied in a constant volume chamber as part of investigation of a novel fuel system, ethanol 91 

direct injection plus gasoline port injection (EDI+GPI) [7]. The fuel temperature varied from 275 K (non-92 

evaporating) to 400 K (flash-boiling) which corresponded to cold-start and running conditions that the injector 93 

may have in real engines. The effect of fuel temperature on evaporation rates of ethanol and gasoline was 94 

investigated. The flash-boiling was observed by increasing fuel temperature in atmospheric pressure. 95 

Particularly, the spray transition process from normal-evaporating to flash-boiling was investigated in greater 96 

details than the existed studies. 97 
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2. EXPERIMENTAL SECTION 98 

2.1. Injector 99 

The injector used in this study was a 6-hole nozzle which was used in the experimental investigations of an 100 

EDI+GPI research engine [7]. The nozzle diameter measured using a microscope was 110 μm, as shown in Fig. 101 

1(a). The emanated spray bends to the direction of the injector solenoid valve, as illustrated in Fig. 1(b).  The 102 

six plumes are distributed in three groups. The first group contains only one plume whose axis is the same as 103 

that of the injector. The second group contains three plumes and the bend angle is 17° to the injector axis. The 104 

third group contains two plumes and the bend angle is 34°. 105 

2.2. Test Fuels 106 

The ethanol fuel investigated in this study was the absolute ethyl alcohol with a purity of 99.9%. The gasoline 107 

fuel tested was a commercial unleaded gasoline with an octane number of 97. Fig. 2 shows the fuel properties of 108 

ethanol and gasoline over the temperature range investigated in the present study. These thermo-chemistry 109 

properties were calculated using correlations from the Prausnitz’ and Yaws’ Handbooks and experimental data 110 

[34-36]. Specifically, the boiling point of ethanol fuel in atmospheric pressure is 351 K. Although gasoline fuel 111 

consists of organic compounds ranging from C2 to C14 and it does not have a uniform boiling point, a nominal 112 

boiling point for gasoline can be drawn based on the vapour pressure-temperature profile. In atmospheric 113 

pressure, the nominal boiling point of gasoline is 341 K (Fig. 2(d)). The temperatures 351 K and 341 K are the 114 

points where ethanol and gasoline sprays may present different patterns respectively. 115 

2.3. Experimental apparatus 116 

Fig. 3 is a schematic of the experimental apparatus including the constant volume chamber, the fuel injection 117 

system, the Schlieren/Shadowgraphy optical system and the vacuum system. The chamber has a shape of a cube 118 

with edge length of 136 mm. The diameter of the quartz window is 130 mm.  Silicon heating sheets were 119 

adhered to the outer surfaces of the chamber body. The chamber was covered by insulating layer. A digital 120 

temperature controller was used to regulate the temperature with the feedback from a platinum resistance 121 
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thermometer plugged into the chamber near the injector. Therefore the fuel temperature (injector temperature) 122 

and ambient gas temperature were the same as the chamber body temperature when the heating process reached 123 

a balance. The injector was mounted horizontally with its axis perpendicular to the light pathway. The light 124 

source was a GB/T14094-1993 tungsten halogen lamp. The voltage for the lamp was kept at 100 V to supply 125 

the same light source for each measurement. Two nitrogen cylinders were used to pressurize and control the 126 

injection pressure and ambient pressure respectively. The injection pulse width 2.0 ms was generated by a 127 

single-chip computer. Meanwhile, the pulse was sent to trigger the MotionPro Y4S1 high speed CCD camera 128 

simultaneously. Shadowgraphy and Schlieren techniques are two of the most effective techniques used to 129 

visualize the time-resolved non-homogeneous transparent flow fields, such as the evaporating sprays and 130 

reacting spray flames. The only difference in these two methods is that a knife edge (item 16 in Fig. 3) is used 131 

in front of the camera in Schlieren technique but not in Shadowgraphy technique. Schlieren technique uses the 132 

knife edge to enhance the contrast but may lose some information [37, 38]. The knife edge was not used and 133 

only the Shadowgraphy measurements were performed because the gas turbulence was weak and light 134 

attenuation through the air was low enough to highlight the spray area for the quiescent ambient conditions in 135 

the present study. 136 

2.4. Experimental conditions 137 

The fuel injection pressure of 6 MPa was achieved using compressed nitrogen. 6 MPa was the direct injection 138 

pressure of the ethanol fuel applied in the experiments on the EDI+GPI research engine [7]. The ambient 139 

pressure was kept at 1 bar which represented the cylinder pressure during early EDI injection [4]. The tested 140 

fuel temperature varied from 275 K (non-evaporating spray) to 400 K (flash-boiling spray) with an increment of 141 

25 K. However the temperature increment was reduced to 5 K during the spray transition process from normal-142 

evaporating to flash-boiling. The injection pulse width was 2 ms.  The speed of the imaging was 20000 fps @ 143 

608 × 288 pixels. The spatial resolution of the images was 0.203 mm/pixel. Each spray temperature condition 144 

was repeated for five times. To measure the fuel mass per injection pulse, the fuel injected of 300 consecutive 145 

sprays was collected and measured on a mass balance with an accuracy of 1 mg (1 mg over about 3000 mg). 146 
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The measured fuel mass per injection was 10.84 mg and 9.02 mg @ 6 MPa × 2 ms for EDI and GDI 147 

respectively. The uncertainty of the fuel mass measurement was within 2% (standard deviation of five 148 

measurements). 149 

2.5. Image Processing 150 

The captured images were 8-bit grey scale images. The images were processed using a Matlab code. Fig. 4 151 

demonstrates the procedure of the spray image processing code. Firstly, the spray image (Fig. 4(b)) was 152 

background corrected using a frame prior to the fuel injection (Fig. 4(a)). This step eliminated the uncertainty of 153 

the back lighting and background noise caused by the gas flows in the chamber. Then, a threshold of 5% was 154 

used to convert the background corrected image (Fig. 4(c)) to a binary image (Fig 4(d)). The sensitivity of the 155 

threshold value has been tested in a previous study [32]. Finally the boundary of spray area (Fig. 4(e)) can be 156 

determined based on the binary image (Fig. 4 (d)). The macroscopic spray characteristics were calculated based 157 

on the spray boundary. As shown in Fig. 4(f), the spray tip penetration was defined as the longest distance that 158 

the spray travelled. The spray projected area was the area within the spray boundary. The spray angle was 159 

defined according to the SAE J2715 Standard [39]. Four points have been located on the spray boundary: two 160 

near points have a horizontal distance of 5 mm to the injector tip, and the distance for the two farther points is 161 

15 mm. These four points were used to define two lines on each side of the spray boundary. The angle of the 162 

two lines was defined as the spray angle. The averaged image pixel intensity values were calculated based on 163 

the images without the background noise (background corrected image Fig. 4(c)). The spray tip penetration, 164 

angle, projected area and averaged image pixel intensity reported in the following sections were the averaged 165 

values of five repeated experiments. Error bars (±1 standard deviation) were used to show the statistical 166 

uncertainty of each data point in Figs. 7 and 8. 167 

3. RESULTS AND DISCUSSION 168 

3.1. Macroscopic characteristics of non-evaporating, normal-evaporating and flash-boiling sprays 169 

Fig. 5 shows the ethanol spray patterns at fuel temperature varying from 275 K to 400 K with an increment of 170 

25 K. As shown in Fig. 5, the three ethanol plumes are 171 narrow and the plume boundary is smooth when the 
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fuel temperature is 275 K (non-evaporating spray). When the temperature is increased from 275 K to 325 K, the 172 

plumes become wider and a swirl forms at the tip of the third spray plume, indicating a stronger interaction 173 

between the droplets and ambient gas. However, at temperatures of 275, 300 and 325 K, the spray plumes are 174 

narrow and can be clearly identified. When the fuel temperature is further increased from 325 K to 350 K which 175 

is close to ethanol’s boiling point 351 K, the plumes become wider and difficult to be distinguished at 0.5 ms 176 

after the start of injection (ASOI), but can be identified after 1.0 ms ASOI. At 350 K, the plume-plume and 177 

plume-air interactions are more significant. The first and third plume groups move towards the middle one. At 178 

the same time, a big swirl is formed at the tip of the third plume. The spray droplets lose their penetration 179 

momentum more quickly, resulting in a shorter penetration. Significant changes occur to the ethanol spray when 180 

the temperature is higher than the boiling point (351 K). Fig. 5 shows that, at temperatures lower than 350 K, 181 

the dark color in the ethanol spray tip at 0.10 ms ASOI shows clear edge of the plume. However, at 375 and 400 182 

K, the droplet explosion process can be observed at the injector tip when the first droplets are emanated into the 183 

air at 0.1 ms ASOI, as indicated by the arrows. A small dark spray area is surrounded by a light area. The light 184 

area is again surrounded by a dark area. This is because the droplet is superheated when it is injected into the 185 

low pressure ambient gas. Vapour bubbles may form inside the droplet and burst the droplet into smaller ones, 186 

resulting in the dark and light areas observed. The explosion process makes the plume-air and plume-plume 187 

interactions much stronger. The plume boundaries of flash-boiling sprays become more turbulent and the three 188 

plumes integrate into a single one and become totally unrecognizable. 189 

Fig. 6 shows gasoline spray patterns at different fuel temperatures. Compared with ethanol spray, the effect of 190 

fuel temperature on gasoline spray is more significant. At 275 K, the gasoline spray patterns are the same to that 191 

of ethanol spray whose plumes are narrow and have smooth boundaries. However, when the fuel temperature is 192 

increased from 275 K to 325 K, the gasoline spray behaves like the ethanol spray at 350 K. A big swirl is 193 

formed at the tip of the third gasoline spray plume, which reduces the spray tip penetration. Meanwhile, the two 194 

side plumes move towards the middle one. Finally when the temperature reaches 350 K, the gasoline spray 195 

collapses while the ethanol spray can still maintain its shape at the same temperature, indicating that gasoline 196 



 

9 

spray structure is more sensitive to the fuel temperature and has a lower spray collapse temperature than ethanol 197 

does. This is because typical gasoline contains about 35–40% C5 or lower hydrocarbon chains, and similar 198 

levels of C6–C8 [26, 31]. The boiling point of n-hexane (C6H14) is 342 K [34]. This indicates that about 50% 199 

of the gasoline compositions have lower boiling points than ethanol does. In fact, the nominal boiling point of 200 

gasoline is 341 K in atmospheric pressure. The light components in gasoline evaporate readily and have 201 

significant effect on the spray characteristics. The droplet explosion effect is more obvious in gasoline sprays 202 

than that in ethanol sprays when fuel temperatures are 375 K and 400 K, as shown by the bigger bright area 203 

(indicated by arrows) in the gasoline spray tip at 0.1 ms ASOI in Fig. 6. 204 

Fig. 7 shows the effect of fuel temperature on spray tip penetration, spray angle and spray projected area of 205 

ethanol and gasoline fuels. In real fuel injection systems, no two injections can be identical and shot-to-shot 206 

variability is inevitable due to the high turbulence of high pressure liquid jets [40]. The error bars (standard 207 

deviation) represents the uncertainty of the measurements. As the temperature increases, the uncertainty 208 

becomes larger, showing by the bigger error bars of spray projected area and angle in Fig. 7. This is due to the 209 

increased plume-air and plume-plume interactions (increased turbulence level) in high temperature conditions. 210 

Nevertheless, the effect of fuel temperature on the macroscopic spray characteristics is still clearly shown by 211 

Fig. 7. As shown in Figs. 7(a) and 7(b), ethanol and gasoline have very similar penetrations in low temperature 212 

environments (<325K for ethanol and <300K for gasoline). Same conclusions were reported in previous studies 213 

with different fuels or injectors. Ref. [26] investigated the spray development of iso-octane, n-pentane, gasoline, 214 

ethanol and n-butanol with a multi-hole injector. Ref. [41] investigated spray characteristics of gasoline-ethanol 215 

blends with a multi-hole port fuel injector. Ref. [42] investigated the sprays of bioethanol and bioethanol 216 

blended gasoline with a high pressure swirl injector. Ref. [17] investigated the spray characterization of 217 

gasoline (E0), E50 and ethanol (E100) fuels with multi-hole gasoline direct injectors. Supporting the 218 

conclusions in previous studies, a same conclusion was drawn that ethanol and gasoline fuels showed 219 

similar/identical spray penetrations in low temperature conditions. However the penetration decreases in higher 220 

temperatures (325-350 K for ethanol and 300-350 K for gasoline) because of the increased evaporation rates. 221 
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When further increasing the temperature into flash-boiling region (375-400 K), the penetration lengths are 222 

shorter than that of 350K spray’s in early spray stages (<2.0 ms ASOI for ethanol and <1.0 ms ASOI for 223 

gasoline), but longer after that. This is because the collapsed spray plumes focus all their momentum into a 224 

single direction and thus enhance the penetration. The longer penetrations of flash-boiling sprays were also 225 

observed in [17, 31, 43]. Figs. 7(c) and 7(d) show projected areas of ethanol and gasoline sprays. Generally, 226 

gasoline has a smaller projected area than ethanol does at the same temperature because of gasoline’s faster 227 

evaporation rate than ethanol’s. The spray projected areas increase slightly with the increase of fuel temperature 228 

within 275-325 K for ethanol and 275-300 K for gasoline, but decrease when the temperature is further 229 

increased because of the significantly increased spray evaporation. This will be further discussed in section 3.2. 230 

The spray areas decrease more significantly in the flash-boiling region. When the temperature reaches 400 K, 231 

the projected areas of ethanol at 7.0 ms ASOI and gasoline at 5.5 ms ASOI reduce to a value of approximately 232 

zero which means the liquid fuel is fully evaporated. Regarding the spray angle, as shown in Figs. 7(e) and 7(f), 233 

the effect of fuel temperature on spray angle is not obvious when the temperature is lower than 350 K. However 234 

when the fuel temperature is higher than 350 K, the spray angles become much smaller because of the spray 235 

collapse. Moreover, the spray angles show decreasing trend at 375 K but increasing trend at 400 K for both 236 

ethanol and gasoline sprays. 237 

3.2. Evaporation characteristics and implications for engine emissions 238 

The effect of the fuel temperature on the spray evaporation rate is visible in Figs. 5 and 6 with the images at 8 239 

ms ASOI. The time 8 ms is about the evaporation time (9.5 ms) allowed for early EDI timing started at 300° 240 

BTDC, ignition timing of 15° BTDC and engine speed of 5000 rpm in the engine experiments [7]. It can be 241 

seen that the color of the spray area become brighter with the increase of the fuel temperature, which indicates a 242 

faster evaporation rate. To quantify it, the averaged pixel intensity value of the spray area is shown in Fig. 8. A 243 

larger value means higher concentration of the spray droplets and thus lower evaporation rate. As shown in Fig. 244 

8, the pixel intensity of 275 K ethanol spray at 8 ms ASOI is 10.6. It only reduces slightly to 10.5 at 300 K and 245 

10.2 at 325 K. Further increase of fuel temperature results in significant decrease of the pixel intensity. 246 
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Therefore, the evaporation of ethanol fuel only increases slightly when the fuel temperature is increased from 247 

275 K to 325 K, but significantly from 325 K to 400 K. On the other hand, gasoline shows faster evaporation 248 

than ethanol does over the temperature range investigated. Moreover, the temperature, over which the spray 249 

evaporates quickly, of gasoline (300 K) is lower than that of ethanol (325 K). The evaporation rate is greatly 250 

increased when flash-boiling occurs. As shown in Fig. 8, the pixel intensity value of ethanol spray decreases 251 

from 8.5 at 350 K to 5.0 at 375 K and further to 2.1 at 400 K. However, gasoline spray only decreases from 5.8 252 

at 350 K to 3.8 at 375 K and to 1.9 at 400 K. This indicates that the evaporation rate of ethanol is increased 253 

more than gasoline does in high temperature conditions. This is because the heavy components in gasoline fuel 254 

evaporate slowly. By 400 K, ethanol spray reaches a similar evaporation completeness (2.1) as that of gasoline 255 

spray (1.9). 256 

Saturation vapour pressure is an important factor to indicate the liquid’s volatility and the driving force for the 257 

fuel evaporation. Table 1 lists the vapour pressures of ethanol and gasoline fuels at the temperatures 258 

investigated. It will be used to assist the discussion of results in Fig. 8. Fig. 8 shows that the evaporation rates of 259 

ethanol at temperatures lower than 325 K and gasoline at temperatures lower than 300 K are low and similar. 260 

This indicates that the spray can be considered as non-evaporating when the vapour pressure is lower than 30 261 

kPa (325 K for ethanol and 300 K for gasoline). In the normal-evaporating region (325-350 K), gasoline spray 262 

evaporates much faster than ethanol spray does, but they reach the same evaporation rate when the temperature 263 

is higher than 375 K. The tendency revealed in this study is consistent with the results in the previous numerical 264 

study which reported that the ethanol fuel evaporated more slowly than gasoline did in low temperature 265 

environment (<375 K), but faster in high temperature environment (>375 K) [4]. Experiments in a constant 266 

volume chamber showed that ethanol evaporated more slowly than gasoline did in a low temperature 267 

environment of 333 K [17]. Experiments in an optical engine operated in partial load and 20 or 80 ℃ coolant 268 

temperature found that fuels with high ethanol proportions evaporated more slowly than that with low ethanol 269 

proportions did [44]. However experiments in high temperature environment (500 K) found that ethanol 270 

evaporated faster than gasoline did [45].  Same result was reported in [18] with gasoline and ethanol fuels at 271 
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temperature of 450 K. 272 

As the evaporation process affects the consequent combustion and emission generation significantly, the slow 273 

evaporation rate of ethanol fuel in low temperature environment must be taken into account in developing the 274 

EDI+GPI engine. Experimental results on an EDI+GPI engine showed that the CO and HC emissions increased 275 

when EDI was applied [7]. The low compression ratio 9.8 and high engine speed 3500-5000 rpm indicate low 276 

temperature environment and short time for fuel evaporation. However experiments on a same dual-injection 277 

fuel system reported the decrease in CO and HC emissions with EDI, in which the engine had a higher 278 

compression ratio of 11.5 and lower engine speed of 1500 rpm [8, 13]. The injection timing was 300° BTDC in 279 

[7] and 280° BTDC in [8, 13]. The unfavourable conditions (short time and low temperature) for EDI 280 

evaporation in [7] would have caused the increased CO and HC emissions.  Numerical studies showed that the 281 

evaporation rate of EDI was lower than that of gasoline in naturally aspirated spark ignition engines [4, 19]. 282 

However the simulated evaporation rate of ethanol was as high as that of gasoline in a turbocharged engine 283 

[20]. These results suggest that EDI should only be applied in high temperature environments, such as high 284 

compression ratio, full-load or turbocharged engines, to improve the fuel evaporation and mixture preparation 285 

processes and consequently avoid the increased CO and HC emissions. 286 

3.3. Spray Transition Process 287 

Fig. 9 shows the transition process from normal-evaporating spray to flash-boiling spray of ethanol and gasoline 288 

fuels. The spray excess temperature ΔT is used to quantify the superheat degrees. Fig. 9 shows that flash-boiling 289 

does not occur as soon as the fuel temperature is higher than the boiling temperature. There is no significant 290 

difference in the patterns between the sprays at ΔT=4 K and that at subcooled temperatures (350 K for ethanol 291 

and 340 K for gasoline). Compared with subcooled sprays, the swirl at the spray tip becomes larger and the first 292 

and third plumes move more closely to the middle one when the spray is slightly superheated (ΔT=4 K). 293 

However the three plumes can still be recognised at 1.0 ms ASOI for ΔT=4 K sprays. When ΔT reaches 9 K, 294 

the sprays collapse completely for both ethanol and gasoline fuels. The three plumes join together and become 295 

unidentifiable. Therefore, the transition temperatures of 296 spray collapse at atmospheric pressure are 360 K 
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and 350 K for ethanol and gasoline fuels respectively. The spray droplet explosion does not occur until ΔT 297 

reaches 14 K, as indicated by the arrows at 0.1 ms ASOI. When ΔTs are 14 K and 19 K, spray clouds in much 298 

lighter colour start to appear at the spray tip. This is because the spray droplets start to evaporate and boil 299 

internally. The droplet explosion accelerates the breakup and evaporation greatly. Moreover, for multi-300 

component fuels such as gasoline, the light components may flash boil before the fuel reaches the nominal 301 

boiling point. As shown in the images in Fig. 9(b) at 0.5 ms ASOI, some bright bubbles can be seen in the first 302 

plume of gasoline sprays, but not in ethanol sprays. 303 

The results shown in Fig. 9 are consistent with that of experiments for superheated water droplets [46]. As 304 

reported in [46], when ΔT was below 5 K, the evaporation was on the surface. The droplets started to boil 305 

internally when the ΔT was between 5 K and 18 K, but they did not flash and disintegrate until ΔT was above 306 

18 K. Zeng et al. investigated the spray transformation process of n-hexane, methanol and ethanol fuels [31]. 307 

They used the ambient-to-saturation pressure ratio (Pa/Ps) to quantify the spray superheat degrees and 308 

concluded that flash-boiling occurred at Pa/Ps=1.0 and plume collapse occurred at Pa/Ps=0.3. However, 309 

experiments in this study found that neither flash-boiling nor plume collapse occurred as soon as the fuel 310 

temperature was higher than the boiling point (Pa/Ps=1). Instead, the spray maintained its structure when the 311 

spray was slightly superheated (ΔT < 4 K) and flash boiled when spray was further superheated (ΔT > 14 K). 312 

Recent study in an optical engine showed that spray did not collapse when the Pa/Ps was 0.85, but collapsed 313 

when Pa/Ps reached 0.63 [47]. The spray flash boiled before it collapsed in Zeng’s experiments was mainly 314 

because the injector had a relatively big angle of 60° between the plume axis, while the spray angle of the 315 

injector used in the present study was only 17°. This implies that the temperature of spray collapse is dependent 316 

on the spray angle of the injector, so that injectors with larger spray angles have higher spray collapse 317 

temperatures. 318 

As the fuel temperature increases from the normal-evaporating region to the flash-boiling region, the droplet 319 

breakup mechanism changes as well. Based on the breakup mechanism which depends on the Weber number 320 
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( ), droplet breakup can be classified into bag breakup (12<We<80), stripping breakup 321 

(80<We<350) and catastrophic breakup (We>350) [48]. Where  is the density of the gas,  is the relative 322 

velocity of the droplet,  is the undisturbed droplet radius,  is the surface tension of the droplet. Fig. 10 shows 323 

the Weber numbers of primary break-up droplets of ethanol and gasoline sprays at the nozzle exit varying with 324 

fuel temperature. The Weber number is an important indicator for the choosing of breakup models in spray 325 

simulation [49]. The primary droplets are very close to the nozzle exit, which are only tens of nozzle hole 326 

diameters away from the injector tip (intact core length) [33, 50]. Therefore the u is assumed be the jet velocity, 327 

which is 100 m/s ( ). The d is determined based on the blob injection concept, which assumed 328 

the primary droplet to be the similar size of the nozzle diameter [51-53]. As shown in Fig. 10, when temperature 329 

is lower than 390 K, the ethanol Weber number is less than 80 which is in the regime of bag breakup. The 330 

ethanol breakup regime becomes catastrophic breakup when the temperature is higher than 485 K. On the other 331 

hand, the effect of fuel temperature on gasoline spray is less significant. Below 370 K, the gasoline spray is in 332 

the regime of bag breakup. The gasoline spray remains in the stripping breakup regime even when the 333 

temperature reaches 500 K. Higher Weber number means shorter breakup time and faster breakup rate, thus 334 

leads to smaller droplet size and higher evaporation rate. 335 

4. CONCLUSIONS 336 

The high speed Shadowgraphy imaging technique was used to investigate the spray and evaporation 337 

characteristics of ethanol and gasoline fuels injected from a multi-hole injector as part of investigation of the 338 

ethanol direct injection plus gasoline port injection (EDI+GPI) engine, which is a new fuelling and combustion 339 

module. Experiments were conducted in a constant volume chamber with fuel temperature varied from 275 K 340 

(non-evaporating) to 400 K (flash-boiling). Particularly the spray transition process from normal-evaporating to 341 

flash-boiling was investigated. The major conclusions of this study are as follows: 342 
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(1) Ethanol and gasoline sprays showed the same patterns in non-evaporating conditions. As fuel 343 

temperature increased, it had greater effect on gasoline spray structure than on ethanol’s, indicated by 344 

lower spray collapse temperature of gasoline than that of ethanol. The effect of fuel temperature on 345 

macroscopic characteristics was insignificant for non-flash boiling sprays, but significant for flash-346 

boiling sprays whose spray angles and projected areas became much smaller and the spray tip 347 

penetrations were slightly longer. 348 

(2) Ethanol evaporated more slowly than gasoline did in low temperature environment (< 375 K), but they 349 

reached a similar evaporation rate when the fuel temperature was higher than 375 K. The sprays could 350 

be considered as non-evaporating when the vapour pressure was smaller than 30 kPa, demonstrated by 351 

the low evaporation rates at temperature lower than 325 K for ethanol and 300 K for gasoline. The 352 

evaporation rates increased significantly when temperatures were further increased. The low evaporation 353 

rate of ethanol fuel in low temperature environment implied that EDI should only be applied in high 354 

temperature engine environment. 355 

(3) For both ethanol and gasoline sprays, flash-boiling (droplet explosion) did not occur when the fuel 356 

temperature was higher than the boiling point until the excess temperature reached 14 K. When excess 357 

temperature was smaller than 4 K, the sprays behaved the same as subcooled sprays did. The sprays 358 

collapsed at excess temperature of 9 K. The spray collapse temperature was dependent on the spray 359 

angle of the injector, where injectors with larger spray angles had higher transition temperatures. 360 

(4) Not only the spray evaporation modes but also the breakup mechanisms changed with the fuel 361 

temperature. The ethanol spray went through all the three breakup mechanisms within the temperature 362 

range from 275 K to 500 K, while gasoline spray only went through the bag breakup and stripping 363 

breakup regimes. 364 
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ABBREVIATIONS 369 

ASOI=after the start of injection; EDI=ethanol direct injection; GDI=gasoline direct injection; SI=spark 370 

ignition; EDI+GPI=ethanol direct injection plus gasoline port injection; Pa/Ps=ambient-to-saturation pressure 371 

ratio; ΔT=spray excess temperature; We=droplet Weber number; ρ=density; u=velocity; σ=surface tension; 372 

d=diameter. 373 
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 492 

(a) 493 

 494 

(b) 495 

Fig. 1. Schematic of the injector: (a) distributions of the nozzle holes, (b) plume directions and footprints. 496 
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 506 

(a)                                                                                  (b) 507 

 508 

(c)                                                                               (d) 509 

Fig. 2. Ethanol and gasoline fuel properties: (a) viscosity, (b) surface tension, (c) diffusion coefficient in air, 510 

and (d) saturation vapour pressure [34-36]. 511 
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 519 

Fig. 3. Schematic diagram of the experimental apparatus. 520 
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   536 
                        (a) background image                  (b) raw spray image              (c) background corrected 537 

   538 
                          (d) binary image                  (e) detected spray boundary         (f) processed spray image 539 

Fig. 4. Shadowgraphy spray image processing method. 540 
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 0.1 ms ASOI 0.5 ms ASOI 1.0 ms ASOI 2.0 ms ASOI 8.0 ms ASOI 
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Fig. 5. Ethanol spray images in non-evaporating, normal-evaporating and flash-boiling conditions. (Please refer 559 

to the electronic version of Fig. 5 for a clearer interpretation of the droplet explosion.) 560 
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Fig. 6. Gasoline spray images in non-evaporating, normal-evaporating and flash-boiling conditions. (Please 573 

refer to the electronic version of Fig. 6 for a clearer interpretation of the droplet explosion.) 574 
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 586 

 587 

 588 

Fig. 7. Macroscopic spray characteristics: (a) ethanol spray tip penetration, (b) gasoline spray tip penetration, 589 

(c) ethanol spray projected area, (d) gasoline spray projected area, (e) ethanol spray angle, (f) gasoline spray 590 

angle. 591 

(a)      (b)      

(c)      

(e)      

(d)      

(f)      
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 592 

Fig. 8. Pixel intensity at 8.0 ms ASOI in non-evaporating, normal-evaporating and flash-boiling conditions. 593 
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(b) 611 

Fig. 9. Ethanol (a) and gasoline (b) spray images in the transition process. (Please refer to the electronic version 612 

of Fig. 9 for a clearer interpretation of the spray cloud.) 613 



 

30 

 614 

Fig. 10. Weber numbers of primary break-up droplets of ethanol and gasoline sprays at the nozzle exit with 615 

different fuel temperatures. The velocity of the primary droplet is assumed be the jet velocity [33, 50]. The 616 

diameter is determined based on the blob injection concept [51-53]. 617 
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Table 1. Saturation vapour pressures of ethanol and gasoline fuels at the temperatures investigated [34-36] 632 

Fuel temperature (K) 275 300 325 350 375 400 

Ethanol vapour pressure (kPa) 1.83 8.77 32.09 95.07 238.42 523.05 

Gasoline vapour pressure (kPa) 11.05 28.83 64.90 130.11 237.75 402.90 

 633 


