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Abstract

Understanding the evolution and emergence of technology domains remains a challenge, particularly so
for potentially breakthrough technologies. Though it is well recognized that emergence of new fields is
complex and uncertain, to make decisions amidst such uncertainty, one needs to mobilise various
sources of intelligence to identify known-knowns and known-unknowns to be able to choose
appropriate strategies and policies. This competitive technical intelligence cannot rely on simple trend
analyses, breakthrough technologies have little past to inform such trends, and the directions of
evolution are difficult. Neither do qualitative tools, embracing the complexities, provide all the
solutions, since transparent and repeatable techniques need to be employed to create best practices and
evaluate the intelligence that comes from such exercises. In this paper, we present a hybrid
roadmapping technique that draws on a number of approaches and integrates them into an approach
that can be applied to breakthrough technology fields and integrates a multi-level approach (individual
activities, industry evolutions and broader global changes). We describe this approach in deeper detail
with a case study on dye-sensitized solar cells. Our contribution to this special issue is to showcase the
technique as part of a family approaches which are emerging around the world to inform strategy and
policy.
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Highlights

1) Insights into developments in hybrid quantitative/qualitative approaches to technology roadmapping
and their applications for strategy and policy;

2) The development of selection and evaluation criteria for practical roadmapping approaches suitable
for real-world situations;

3) Application of adaptive technology roadmapping models for the production of competitive technical
intelligence, including the engagement of ST&I factors, emerging technology-oriented empirical study;
4) Insights on the approach via application to the field of dye-sensitized solar cells.



Introduction

Technology Roadmapping (TR) is a future-oriented strategic planning device (Winebrake 2004) that
provides a structured approach to help identify relationships between existing and developing
technologies, products, and markets over time (Phaal et al. 2004). If one take socio-technical change as
three interlinked, but distinct, layers (Rip and Kemp 1998), it is reasonable to classify TR endeavours
by scope related to these three layers: 1) TR for national Research & Development (R&D) planning to
inform policy involving economic, scientific, technological, and innovation landscapes; 2) TR for
industries and sectors, which focus on existing and potential collaborations and collective coordination
in target technological areas; 3) TR for specific technological trajectories (Zhang et al. 2013).

Over the past years, our colleagues from Georgia Institute of Technology’s Program in Science,
Technology, and Innovation Policy and Beijing Institute of Technology’s Knowledge Management and
Data Analysis Lab have been pursuing Tech Mining (Porter and Cunningham 2004) and Technology
Opportunities Analysis (Porter and Detampel 1995) research to analyze Newly Emerging Science and
Technologies (NESTSs). One such collaborative endeavour focused on “Forecast Innovation Pathways”
(FIP) to help capture and project developmental trends for a specific technological field, assessment
application prospects, and pose options for private and/or public decision makers (Robinson et al.
2013b). A combination of text mining techniques contributes to FIP (Guo et al. 2012). We have applied
the FIP approach to deal with real-world NEST concerns, including nano-enhanced solar cells (Porter
et al. 2010), nano-enabled biosensors (Huang et al. 2012), hybrid & electric vehicles (Porter et al.
2013), and nano-enabled drug delivery (Robinson et al. 2013a). These FIP efforts share targets with TR,
but pay more attention to foresight aspects. Nevertheless, it is still logical to consider FIP as a parallel
form of TR.

Due to the strategic emphases, expert knowledge still plays a determinant role in TR and the
development of TR remains a largely qualitative task (Geum et al. 2015). Traditional text mining
techniques, although widely applied for technical characterization, mainly defer to expert contributions
in devising TRs (Kostoff et al. 2004). Phaal et al. (2004) summarised fourteen examples of general TR
cases to offer a guidebook for TR alternatives. There are also quite a few TRs that rely on quantitative
methods with diverse emphases (Gerdsri and Kocaoglu 2007; Lee et al. 2009a; Huang et al. 2014;
Zhou et al. 2014; Geum et al. 2015). However, there are still no adaptive criteria and metrics for the
evaluation of TRs; existing ones tend to be limited within particular systems. This paper thus focuses
on the following research questions:

1) How to balance qualitative and quantitative methodologies to inform TR regarding key components
and their relationships?

2) Which criteria and metrics can be used for the evaluation of the efficacy of alternative TRs?
3) How is TR related, similar to and different from technology foresight projects?

The theme of seeking suitable balance between qualitative and quantitative methodologies runs through
the entire paper. We also emphasize the strategy and target-driven criteria for TR selection and
evaluation. In this paper, we address concerns of Competitive Technical Intelligence (CTI) (Porter and
Cunningham 2005) and aim to develop a series of TR models that balance qualitative and quantitative
methods. First, based on traditional text mining techniques and a “Term Clumping” stepwise process
(Zhang et al. 2014a), we present a term/topic-based TR composing model (Zhang et al. 2013) that
highlights the interaction between core technological components. Then, we introduce Subject — Action
— Object (SAO) analysis and the Contradiction Matrix concept of TRIZ theory to retrieve Problem &
Solution (P&S) patterns (Zhang et al. 2014b). Those can contribute to a problem-solving sequence for
technological evolutionary pathways in P&S pattern-based TR model. In parallel, we apply Fuzzy Set
(Zadeh 1965) to transfer rough expert knowledge to defined numeric values. This can help generate TR
automatically (Zhang et al. 2015).

This paper draws on Science, Technology & Innovation (ST&I) data to generate historical TRs. Such
summarization of developmental patterns can inform R&D program management. Our model is to then
seek approaches, e.g. expert knowledge, trend extrapolation, and quantitative methods, to get from the
historical data-based TRs to forecast future developmental trajectories. Referring to the above TR
models, we propose criteria for TR selection and evaluation on target technologies, compare foci, and
take various ST&I factors into consideration — e.g. Triple Helix model that emphasizes government —
industry — academy relationships (Etzkowitz and Leydesdorff 1995; Etzkowitz and Leydesdorff 2000)
or the GUISPs model that focuses on the Government — University — Industry Strategic Partnerships
(Robinson 2009); incorporation of multiple ST&I data types (Zhang et al. 2015); and attention to



Technology Delivery System (TDS) for market/user, R&D and manufacturing factors (Robinson et al.
2013b).

This paper is organized as follows — the Related Works section reviews previous studies on qualitative
and quantitative methods for TR. The Methodology section presents three models for composing TRs —
Term/Topic-based TR, P&S Pattern-based TR, and Fuzzy Set-based Automatic TR. The Empirical
Study follows, applying our TR models to Dye Sensitized Solar Cells (DSSCs) to profile technological
evolutionary pathways and foresee possible trends in the near future. We summarize the criteria that
could be used for TR selection and evaluation and discuss the similarity and difference between TR
and other foresight projects in the Discussion section. Finally, we conclude our research and outline
future research priorities.

Related Work

This section reviews TR-related previous literatures on Qualitative Method-based TR, Quantitative
Method-based TR, and Hybrid TR.

Qualitative Method-based TR

Since Motorola and Corning firstly applied TRs for commercial strategy and technology evolution and
positioning studies (Robinson and Boon 2014), TR has become a powerful instrument for supporting
strategic planning, which holds on mighty capabilities on exploring the dynamic relationships between
technological resources, organizational objectives and the changing environment (Phaal et al. 2004).
Qualitative methods, e.g. expert interview, Delphi, scenario planning, discussion/seminar/workshop,
still take leading roles in TR’s construction and implementation, and usually contain academic
researchers, industrial stakeholders, and government officials (Garcia and Bray 1997; Phaal et al. 2004;
Winebrake 2004; Zhang et al. 2013).

As a pioneer of TR studies, Sandia National Laboratories constructed fundamental criteria and schemes
for roadmapping (Garcia 1997; Garcia and Bray 1997), and this 3-phase process and its modified
versions were applied in a large range of emerging technologies, e.g. microsystem and nano-system
(Walsh 2004), semiconductor silicon industry (Walsh et al. 2005), and pharmaceutical technology
(Tierney et al. 2013). Aiming to outline a general guidance to adapt wider strategic needs, Lee and Park
(2005) firstly developed a modularization method-based TR customizing function, Robinson and Propp
(2008) designed a catalogue for technology management-oriented analytic, Tran and Daim (2008) laid
out technology assessment-related approaches onto defined levels of public decision making domain
and business and non-government domain, and then, Stirling (2008) proposed a core roadmapping
framework which provided flexibility for multiple strategic perspectives or a hierarchical family of
roadmaps.

What is clear is that, although quantitative methods are increasingly applied to computation, they are
outweighed by qualitative method-based TR which remain the mainstream of current TR activities and
especially real-world applications, e.g. manufacturing industry (Gerdsri et al. 2009), internet security
technologies (Fenwick et al. 2009), produce-service integration(Geum et al. 2011), car-sharing service
(Geum et al. 2014), transparent display (Jeong and Yoon 2015). One reasonable understanding for the
popularity of qualitative method-based TR would likely be that expert knowledge affords powerful
creditability to take responsibility for the results, although there is always an expert biased which
would well be counterbalanced by quantitative approaches.

Quantitative Method-based TR

Text mining as well as bibliometric, scientometric, and informetric techniques have been used to help
experts to retrieve textual elements for ST&I studies since the 1990s (Kostoff et al. 2004), but
computer-based graphical techniques were firstly introduced to convey information to users and
provide constructs for developers (Walsh 2004). Now, the development of high intelligent information
techniques, e.g. artificial intelligence, pattern recognition, and machine learning, dramatically increases
the capability to identify and visualise potential relationships automatically, although this kind of
attempts is still far away from large-scale applications.

Narrowing our focus on ST&I text analyses, a technique which is widely recognized is to retrieve
topics via textual element, e.g. words, terms, or phrases, and identify their relationships via defined
association rules. There has been a substantial contribution in the form of automatic techniques,
although most of them could only be defined as quantitative methods for information extraction and
visualization rather than strictly quantitative method-based TR. As an example, based on co-occurrence
analysis, Zhu and Porter (2002) developed an automatic approach to extract and visualise information



for network analysis; Chen (2006) developed a generic approach to detect emerging trends from
co-citation networks and applied for visualising TR automatically; Waltman et al. (2010) defined an
association link to blend linkages, e.g. co-occurrence, co-citation, and bibliographic coupling, and
visualised grouped nodes as networks. In parallel, novel statistical techniques also started to occupy
position on historical data-based trend analysis, e.g. Allan et al. (1998) proposed approaches to find and
follow new events in a stream of broadcast news stories, Kim et al. (2009) complemented a
probabilistic approach to retrieve linguistic relationships from patents and discover technological trends,
and Blei (2012) applied Topic Model algorithm to analyze all of Science magazine from 1880 to 2002.

Today, the techniques and methodologies for quantitative method-related TR are still under
construction. Although decades ago Kostoff et al. (2001) took the attitude that “the proper use of
automated techniques for text mining is to augment and amplify the capabilities of the expert by
providing insights to the database structure and contents, not to replace the experts by a combination of
machines and non-experts,” and it is still promising for current ST&I studies.

Hybrid TR

It is commonly accepted that, in a hybrid TR model, computer-based techniques help process massive
raw data and reduce scalable data dimensions for further manual operations, and expert-based
qualitative methods play active roles in result selection and evaluation. Our previous FIP studies kept
following this rule where tech mining (e.g. statistical analysis, collaboration and competition analysis)
and science overlay mapping (Rafols et al. 2010) techniques were used to capture R&D factors and
potential commercial signals, and, at the same time, we set expert engagement as a particular step to
run through the whole process, feedback in multiple studying iterations, and help create the FIP
mapping (Guo et al. 2012; Robinson et al. 2013a). Furthermore, Huang et al. (2012) enriched the expert
knowledge into a detailed workshop setting, and Porter et al. (2013) on the one hand, introduced a
semantic map to represent patent applications, and one the other hand, illustrated the attempt that
combined quantitative results — identified factors — and expert knowledge to refine the FIP mapping in
the workshop process.

Kostoff and Schaller (2001), exploring the combination of qualitative and quantitative methodologies,
aggregated TR variants into two fundamental TR approaches: expert-based and computer-based, and
then, proposed a disruptive TR developing process which introduced the text mining component of
Literature-Related Discovery (LRD) to identify technical disciplines and experts and assisted these
experts in workshops (Kostoff et al. 2004). Further, the LRD method (Kostoff et al. 2008) has become
an effective instrument to link two or more literature concepts that have heretofore not been linked, and
is used to assist medical experts to explore potential treatments of quite a few diseases (Kostoff 2014;
Kostoff and Patel 2015), and it does not link with TR at this moment but it would be reasonable to
imagine their potential relationships.

Since the lack of high intelligent computer-based techniques, as we mentioned, the hybrid TR that
blends qualitative and quantitative methodologies is still a trend in terms of ST&lI studies. Yoon and
Park (2005) simply used keywords to help expert-based morphology analysis, then, Lee et al. (2009a)
introduced citation-based patent analytic approaches and Pajek to identify the relationships between the
keywords, which also packaged as keyword-based patent/knowledge map (Yoon and Park 2005; Lee et
al. 2009b), and Geum et al. (2015) used co-occurrence analysis to extend the relationship calculation to
a two-layer mapping. Another interesting study is that Choi and Park (2009) proposed a citation-based
algorithm to link isolated patents as development pathways which solved the relation identification
problem to a certain extent, and experts were invited to select key patents and label clusters.

Methodology

Our methodology, as discussed in Related Works, lies mostly under the framework of hybrid TR. We
take up the challenge to seek a suitable balance between qualitative and quantitative methodologies,
engage ST&I factors for CTI concerns, and develop a strategy and target-driven TR composing method
that includes a Term/Topic-based TR Composing Mode, a P&S Pattern-based TR Composing Model,
and a Fuzzy Set-based TR Composing Model. The framework of this paper is given in Figure 1.

ST&I textual data is the main input of our method. General ST&I data includes academic publications,
patents, academic program proposals, technical product reports, etc. We mainly focus on the textual
content of title and abstract, but other sections, e.g. claims of patent data or full text, also make sense
for our scope. We apply a Term Clumping process (Zhang et al. 2014a) to clean, consolidate, and
cluster the meaningful terms and phrases retrieved by Natural Language Processing, and the outputs —
core terms and topics — are considered as the basic elements of our TR models.
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Figure 1 Framework of Technology Roadmapping for Competitive Technical Intelligence
Definitions of TR

Aiding with text mining and bibliometric techniques to explore value-added technological information,
our TRs mainly emphasize detailed technological evolution of specified NESTs but also give attention
to ST&I factors on national R&D level and industrial level. Considering general format of TR, we
define the basic element of TR as Object and denote an Object as O(L, I, T) where L is for Label, I is
for Implication, and T is for Time. The Relationship between objects is described as R(0;, 0;). The
detailed definitions are listed as below:

® Object — the element that is laid out on TR and is usually described as core technological
component;

Label — the semantic structure of Object that would be a term or a phrase or a sentence;

Implication — the description of TR’s strategy and target foci, e.g. technology development and
technology commercialization;

® Time — the time that Object appeared firstly in target ST&I data or firstly ascended in top N
high-frequency list and usually would be yearly, semi-yearly, or monthly;

® Relationship — the direct or indirect linkage between Objects, e.g. co-occurrence, semantic
similarity, problem and solution, collaboration and competition between target organizations.

We have designed a general format of TR shown as Figure 2, where the horizontal axis and vertical
axis denote Time and Implication respectively and compose TR’s basic framework. We could divide
Implication into several phases to indicate a hierarchical structure for specified strategy or target, and
we also use a milestone line to highlight a significant event in the past. In particular, we extend the
horizontal axis and add a Forecasting section to compare with profiled historical pathways. We also use
diverse shapes to distinguish the Object’s emphasis for ST&I factors, e.g. different data sources or
different organizations. The linkage between Objects is used to reflect the relationships identified by
specified association rules.

Engagement of ST&I Factors
e.g. Multiple ST&I Data Incorporation; Triple Helix model; TDS Analysis; v
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Figure 2 General Format of Technology Roadmapping
Composing Model of TR

Following the definitions and the structure of the general format of TR in Figure 2, we propose three
TR composing models with different approaches to identify Object, Relationship, and Implication. The
three models are term/topic-based TR composing mode, P&S pattern-based TR composing mode, and
fuzzy set-based TR composing model.

1) Term/Topic-based TR Composing Model

The term/topic-based TR composing model is the basic model in our method. We identify the core
terms and topics as Objects, and introduce co-occurrence analysis to explore the relationships between
Objects. However, this kind of relationship is rough and uncertain, so we do not use the linkage to
connect Objects but locate related Objects on a similar layer and group them together. At the same time,
we engage expert knowledge to guarantee the results, although quantitative methods are our main tools
in this process.

The core terms and topics derived from the Term Clumping process are defined as core technological
components in this model, which mostly relate to the detail of target NESTs — e.g. materials,
techniques, processing methods, products. This model generally emphasizes the question “What the hot
technological components were, are, and will be,” which highlights these isolated components and
attempts to summarize evolutionary pathways via tracking the changes of their contents.

2) P&S Pattern-based TR Composing Model

Narrowing our focus into specified technological component, we introduce SAO analysis and the
Contradiction Matrix concept of TRIZ theory to enrich the core terms and topics into SAO structures,
and identify SAO structures as technical problems or related solutions. This paper mostly follows our
proposed methodology for SAO structure retrieval and P&S pattern identification (Zhang et al. 2014b).
The framework of the P&S pattern-based TR composing model is shown as Figure 3.

In the SAO analysis, we define the core terms and topics as Subject/Object, retrieve their nearby verbs
from a combined Title + Abstract field or full text, and define the verbs as Action and the entire phrase
as SAO structure. The main concept of the Contradiction Matrix is that external or internal
contradictions exist between “object” and “tool”, and the way where we solve contradictions is the
same as where we find “ideal final result” (Rantanen and Domb 2010). We apply this idea to SAO
structures and introduce expert knowledge to help define them as Problems or Solutions. The P&S
patterns make good sense to identify the relationships between Problem & Solution, Problem &
Problem (P&P), Solution & Solution (S&S), and Solution & Problem (S&P). Zhang et al. (2014b)
listed a general definition of the relationship between P&S patterns: P&P — Relate, P&S — Solve, S&S



— Relate/Upgrade, and S&P — Evolve. We would re-define these relationships depending on real
requirements.

Selected Technological Components Title + Abstract or Full Text of ST&I Data
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Figure 3 Framework of P&S Pattern-based TR Composing Model

The P&S pattern-based TR composing model focuses on the questions “Which problems are addressed,
and when?” and “How was the problem solved (new techniques, materials, or something else), and
when?” Comparing with the term/topic-based TR, this model helps discover linguistic features of
technological components and emphasizes the logical relationships during the process of technology
evolution.

3) Fuzzy Set-based TR Composing Model

The fuzzy set-based TR composing model could be considered as an assistant instrument for the above
two models. It is easy to define the Time as the coordinate figure of the horizontal axis in TR, but the
Implication — our strategy and target — usually is vague and difficult to be defined as exact numeric
values. Therefore, in the above two models we draw the TRs manually to adapt the vagueness and
uncertainty. Aiming to minimize the aid of manual operations and maximize the usage of expert
knowledge in limited time and scope, this model introduces the fuzzy set to transfer vague human
thoughts (e.g. expert knowledge) to defined numeric values and helps generate TR automatically.

We denote “all Objects” as the universe X = {xq,x,, ..., X, ..., Xn_1,X,} and “each phase of the
Implication” as a fuzzy set A; defined on the X where j € [1,m]. The membership function A4;(x;)
is considered as the degree that Object x; belongs to the phase A;, and will be decided depending on
research purposes and empirical data.

Engagement of ST&I Factors

Aiming to afford flexibility to address real-worlds concerns for diverse targets and emphases in ST&lI
analysis, we provide possible approaches to engage ST&I factors in our TR models.

1) Triple Helix Model/ GUISPs Model

The Triple Helix model holds interests on the research knowledge transfer among university, industry,
and government (Etzkowitz and Leydesdorff 1995; Etzkowitz and Leydesdorff 2000), and it is also a
feasible instrument to measure ST&I activities in many domains (Park et al. 2005). Similarly, the
GUISPs model has eyes on R&D strategies and emphasizes the knowledge integration through
company partnerships with government agencies, universities, and other industry players (Robinson
2009). Considering the general format of TR in Figure 2, we reserve an interface to describe the
information of Triple Helix model/GUISPs model — the shape of Object.



It is easy to retrieve Object’s organization information via text mining techniques, and then, we are
able to extend the definition of Object O(L, I, T) to O(L, I, T, Org.) where Org. is the organization that
Object belongs to. In this context, our TR models describe the fourth dimensional information of
Object via its shape, and indicate the interactions according to the Relationships between Objects with
the same or different shapes.

2) Multiple ST&I Data Types

There are a bunch of common senses on current ST&I data sources and their emphases. Zhang et al.
(2015) summarized popular ST&I data in current researches and classified their emphases into four
levels — Idea/Concept, Basic Research, Application Research, and Commercial Information. It is also
critical sometimes to combine those emphasis and type-differed ST&I data together, e.g. the time gap
between idea and commercialization, and the patent barriers with more commercial and legal issues
rather than technical information (Zhang et al. 2013; Zhang et al. 2015).

At this stage, we also provide the possibility to describe multiple ST&I data into our TRs. We extend
the definition of Object O(L, I, T) to O(L, I, T, D) where D is used to describe data type and match with
the shape of Object. We can imagine the benefit of this kind of combination as the multiple ST&l
data-oriented TR opens a window to compare ST&I activities of target technology on different levels
and scopes, but we strongly suggest to notice and discuss the diverse emphases of different ST&I data
types.

3) Technology Delivery System

TR is developed to trigger change, whether internally in an organization or to create changes to
industries and value chains. For the latter, we apply what we call a TDS, which depicts a value chain as
a system diagram of components that come together to form a functioning value chain. Below is an
example for lab-on-a-chip technology (shown as Figure 4).
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Figure 4 ATDS for the emerging lab-on-a-chip field (Robinson and Boon 2014)
In this example, the multi-disciplinary science community interacts in various ways to create the
knowledge that forms a knowledge reservoir that is a source for innovation (central/left-hand side of
the diagram). This knowledge can be mapped using tech mining tools (Porter and Cunningham 2004).
Industrial actors can be identified, and here they are instrument manufacturers and the pharmaceutical
industry. These represent the firms which up value the knowledge from the reservoir, through
developing manufacturing techniques and standards. However, the situation is more complex, there are



start-ups involved and hospitals as both co-developers and users of the innovations coming from
lab-on-a-chip roadmaps, and thus the value chain is more extended. In addition there are other
sectoral/application drivers (bottom of the diagram) which create expectations and hype, which may
trigger further “fishing” in the knowledge reservoir, or indeed trigger knowledge production there.
Another part of the TDS is the framing conditions, funding agencies, insurance companies (if they are
relevant for the value chain) organized user groups which drive demand (here it is patient groups) and
regulatory agencies.

The TDS can be used both as a way of depicting the elements and relationships in the situation today as
well as a way of mobilising the insights from technology roadmapping to help depict “a future working
world”, or put another way, the desired future value chain. In this way, it is much more than a picture
of boxes and arrows, but it is a translation tool of the roadmapping procedure to those not involved in
the roadmapping. Put in another way, the TDS helps inform, justify and evaluate the implementation of
TRs.

Empirical Study

In this section, we applied our method to the ST&I data of Dye Sensitized Solar Cells (DSSCs) domain:
1) we blended the term/topic-based TR with the fuzzy set-based TR on Web of Science (WoS)
publication data, and automatically generated one TR of global DSSCs development which emphasized
the detailed technological components of DSSCs, e.g. materials, techniques, components, and products.
2) We addressed the potential collaboration and competition among government, university, and
institution to the P&S pattern-based TR with Derwent Innovation Index (DII) patent data, which hold
powerful capability to illustrate the solving pathways of specified technological problems and also
indicate the relationships between related organizations.

Global DSSCs TR

Publication data focuses on basic technological components and acts as the first step to transfer
innovative ideas to applications (Zhang et al. 2015), thus, aiming to landscape the global DSSCs
technological development pathways, we select DSSCs-related scientific publications in WoS. Since
DSSCs were invented in 1991 and are still dominating Solar Cell-related techniques, we updated our
DSSCs database and captured 13,066 records from 1991 to 2014, and the Term Clumping process
(Zhang et al. 2014a) then helped us to retrieve 447 core terms from a raw 191,186-term list.

Consulting with domain experts, we decided to build up three fuzzy sets for material, technique &
component, and product to indicate the degree of technology development. At the same time, we
evaluated the feasibility of introducing machine learning technique to train the membership functions
of the three fuzzy set. It is definite that machine learning technique matched well on our scope, but the
difficulty on training an algorithm to understand complex linguistic and technological relationships
would extraordinarily increase the uncertainty of our results. In this context, based on expert

knowledge, we let the power set F(X) = {4,,4,, A3}, and choose Gaussian distribution to identify the
membership functions as below.

A (): X ~N(0,1/,),x € [0,1]
A,(0): X ~N (15, 1/5),x € [01]
A;(0): X ~N (1,1/,,),x € [01]

We firstly convened experts to classify the 447 terms into one of the three fuzzy sets and marked a
membership grade A;(x) for the selected fuzzy set A;. It is promising to understand that one term
would indicate both material and technique or both technique and product, and experts help enforce
one category but fuzzy set reflects the degree of this kind of belonging. As an example, because of
diverse background and relevant, some experts categorized the term “electron injection” as technique
& component and marked the membership grade as 0.95, while some other experts marked as 0.6 to the
fuzzy set — material because they thought it related to material more but was not an total material. We
then used the membership function conversely to calculate the x value which was identified as the
degree of technology development. Furthermore, the mean of the x values derived from different
experts was set as the Object’s Y value on the mapping while its X value was the first year when it
appeared in the dataset.



The term/topic and fuzzy set-based TR for global DSSCs development is given in Figure 5 (from 1991
to 2002) and Figure 6 (from 2003 to 2014). It is obvious that this mapping explores the detailed DSSCs
technologies during its past 24-year development pathway, but professional expertise would be
necessary to understand its insights. Aiding with domain experts, we address several concerns as
below:

1) The preparation material of DSSCs was always a hot topic for researchers. The first peak time was
from 1996 to 2000, when nanotechnology was introduced to prepare electrode and electrolyte in 1998,
and then, the second peak time came with the invention of graphene in 2004 which firstly appeared in
our list as graphene film four years later. The combination of these two emerging technologies captured
the interests of researchers in the following years. TiO2 and ZnO are still the leading materials for
DSSCs, and since 2010 various kinds of materials have been applied as composite or mix materials.

2) The device durability and low-cost fabrication were two main problems during the first 15 years of
DSSCs’ development, but environment-friendly feature has become a popular and emergent
requirement since the term “environmental purification” firstly appeared in 2012. In parallel, more and
more one-step or two-step had being used to name related techniques and methods since 2009, which
seemed to indicate the needs for rapid and convenient DSSCs fabrication.

3) DSSCs-related techniques concentrated on solar cell rather than other industrial applications, but
drug delivery and biomedical appeared in 2009 and 2011 respectively which would be a good starting
point for extended applications of DSSCs. Although experts explained this phenomenon was due to the
policy restrictions in most European countries and Japan, note here one argument for rare applications
in our results is that we would likely over-clean the records and terms before 2011.

4) Dye is the highest frequent term on the mapping and there is no doubt that it is the most important
sub-technology in DSSCs. Organic dye and metal complex dye were two leading directions until 2014
where researchers attempted to broaden the selection of organic or metal substances.



0.75 lithium batteries hybrid solas cells
5
£ dyesepsifzed solid-state photoveltaiccels dye-sensitized nancerystalline solar cells nanostructured solarcells
H dye-sensitized photoelectrochénic
& solid-sate dye-sensiized solar celly - photoelectrochemical devices
Optoelectronic devices
silicon based solar cells
0.65
cell fabrication
&
0ss | § sol-gel method chemical bath deposition
B tight-to-clectricity conversion efficiency Xeray diffraction p-tvpe semiconductor density functional theory calculations
H B B ¥ ¥ incident photon-to-slectron conversion efficiency ¥ >
3 Low costfabrication process conversion efficiency photoanode tensity-modulated . cyclic voltammetry nanostructured semiconductors
< Long-tem stabitity oxide semiconductors transient absorption spectroscopy dye-sensitized semiconductors
] [
045 | & heterogeneous photocatalysis . ocost atemative Blopis orce icrascony AFM srothemal synthesis lght-hary esting effciency
e = - recombination cattering. eféctron-hole pairs -
3 tral sensitizati lectron tr: hotodearadatic alin, tr: it conductin; tion effi
3 adzorption spechi =ensization © etron H2pping Sedot mediator E it E“n@‘% RGeS gy nsparentconductingglass ) Hite-resolyed Huorescence
I electron transfer m%u conductive glass fluorescence measurements ﬁlecﬂnnmeaﬂn il factor & acereeation Gye ez fectron electron diffusion.
ShOAERS cumrent density Sie3gemits gnission speciza EE.H S Retivity § ©
photooxidation Spen-ciretit photoveliage Botoelec calcination temperature dye loading Banostructured films narmpamtlt flms dye adsorption
eparcal Conducting substrectton geceptoe 740 ims
thin film porgus gzoporqus fims Enucnndﬂ\fctuznannpamnles fintey tectrode El’mm electrode
035 film photon absorption porousnature conduction band edge onduction band phatoral swface placmonyesonance e Sleciode e clecdiyte
interfacial electron injection H d clecirofyte bjanium dlouds fims Lafinum electrods P efecoivte
sensitizers inotosensitizers counter electrode d?s ctured materials E uT ton Eie Ee Eg ﬂur{l }F R Ranotubes
semiconductor particles El B one Efuudeelecrmlste mtE ce Composite electrode \sn Sate clectrolyte S04 dectiolvte
dye molecules p cdm P reton photoescited dye ole tansport p & slectrode retod e o clecroivtes fitiiciters e ;senm barticles
$ t ¥ it 1 ed slectr fapsharent slectr " e Sebstrat 3
organic dyes shodamimne dyes electron donor ive Ranocrystalline titanium nmzenerie slectrons H&Fuaren Shectro i‘lmmp e Hecods e?f‘{ﬂ.mmte Frastic substrates by ey
- chromophore coppertio i e Eﬁ ogen perbaide molecular sensitzers eitvatives
3 metal substrate Faltferuanil Compleses ﬂéség{];\l'l_;-[nh ondized dyes irboiic acid e es:wndu:u\ewx:h Forfliti subs\:rates
025 | § titanium dioxide organic solvents thiocyanate ZirconfumlV_oxide Zine oxide (e‘uanmmde Titanium nitride ic i odide 'ﬁu.mxﬁ de
= graphite powder E siver chionde o s dide
H Eorifogs lectrolyte i Jodide
for moteculye weight gelator poter sofvents
cell v 5 electralyte fullerenes anatase e Subide rutile nanopores zine acetate
incident photon
triodid amide ion
0.15 clecirods materials carboxylic 2cid group
cyanide ion hydroxide ion cyanateion
0.05
1990 1901 1002 1003 1004 1005 1006 1007 1008 1009 2000 2001 2002 2003
0.78 fuel cells lithium ion batteries ‘black dye based dye-sensitized solar cells
composite nanofibers
cobalt-based dye-sensitized solar cells
ko) nanofibers atEI f&hﬁglﬁ iye sensitized solar cells ‘Wire-Shaped Dye-Sensitized Solar Cells
3 lostic DSS typed tized solar celt Bibers e 0 amatic DSSC ite solar cell.
AS] - e dye-sensitized solar cells omatic S erovskite solar cells
E ) BB Sotar cells Ppedy aqueous dye-sensitized salar cells. - P
£ bulk } solar cells qu: lid-state D3SCs mndustnal applications Self-Powered Systems N719-based D3SCs
2 drug delivery biomedicine Ptfree sensitized solar cells
electrochemical devices - ENVIrD: ntal problems
0.65 electrospun nanofibers Pt
device durability oimaging applications
light-emitting diodes supercapacitors nucleation slectrospinning process environmental purification  low-cost large-scale production
low-cost production
g . photovoltaic conversion efficiancy _ .
0ss | ¥ sol-gel techniques ‘Be-dependent DFT liquid phased hodzel p graphy one-step hydrothermal method one-Step Fabrication
g
= cyclic voltammetry CV low-1 tEﬂPEIEmJ!E ‘hydrothermal method brunauer-Emmett-Teller BET analysis two-step anodization one-step hydrothermal reaction nanosystems
%] - .. transient photovoltage decay measure: - . CL. . -
Y low-temperature fabrication photocatalytic degradation  hydrothermal process long electron lifetime n-type ductor: light soaking pray pyrolysis dep
¥ metal-to-ligand charge transfer MLCT. solvothe: method . . - e logdin acity -
045 | § Pyrolysis condensation anodic oudation radio freq 2 lectrochemical anod fectropt dep erD IS HRT solvothermal synthesis photoisomerization
b spray pyrolysis d re uptake porphyrin chromopho
= i e[e:unsmgl:mtem:non electrophoretic deposition hled g‘u fele:tmspmrm’;e method phnmzenemtedele:unnuansfer organic redox shuttle
Bl electrocatalytic activity &1 € absorptior e egradatien energy trans =
3 light scattefing ability electron life time atomic layer deposition electrolyte system low-cost counter electrode methylene blue degradation  bilayer photoanode functionalized carbon nanotubes
B P P!
- Eh ctron nao b al- h 4 electrochemical mpedance y 4 h 4 h ) 4 = B - o thiophene fink mtauncéd;f}. ele:uwdh 4
n; /stalline s otoanode maters ato-an transparent counter electrodes mesoporous photoanode graphene electrodes ctocatalytic water ophene linker cal porous photoanode
inda “%n“m‘ém 117 s Bl %ﬁaﬂm{n i Staf free oroanic sencrizers oo F srep e P porousp
ho! sVE fm decrode, dfectrode ) ) ngr-accepiot dye graphene shests ) gxaphene oride film revessible hydrogen lectrode
0.35 B ﬂ; sensitizers nietal -free orzam: d yes b%le -layer film orgamc segs&nzefs ruthenium sensitizers %}ﬁf iter electrode photocatalytic systems a.l cobalt-based electrolyte r:o;L omgactl Vers
eft-free electrolyte UM NANOPArT 'ast\nz sensitizers  1odidetriiodide electrolyte iodide-based electrolyte S oiyte - - redox electrolyte - aphene eEts
liguid electrolytes nanocompogjtes - on nangtubes C}T 2 a’lt 28 m?lf. liquid Elefﬂmﬂlt splvent-based electrol: ncs.amn dye - _— ormmet\c. sensitizers
NT e - composite tnphenylamine-based organic e electrol rEanic electrolyte hEnoxasz Dryes D33 dye dye combinations
E%gﬂgxuédves uﬁ aP on xianumb ulﬁdE i{ec‘t{w lyte ¢ relay dyes B)DJ 11 E g
aled yes anowires " 50] pn 'rmer electrolyt: nZEInSShEE[ 4 I% bstrat ANOpPArtH el garu: dB(E 149 artict g{a ene-base anrglélmall‘sn\ﬂ) " Sttt [01{3]:1125 solution
natur: hyés fEf.uISﬂf solug 01’1 nL) nanoprod arays 35S substrate graphefie 5 3110 es a1 0] es 'S nanosized CLys ite: col nytrat
- nanotubes & nanopatticle e enestycal PFEG  Amral oo oS Eé ré gxafl‘?me muf“&»afm carbon nanotubes ?uuble le layered photoanode nsum eray % P rene dotiviives miine eraphent onds Y anemde NH2CN
2 eraphite oxide met: anopart articls I]a nitrogen-doped graphene Exnh nm ala steine
s T Lm.,{n pelorate o e acid 3 Forblrvrin core gla% nei i gl)ejt Earx‘llaéllopamcles e e fide . Fiotene moiery
L= 1oom temperature lonic lig fic aci acid grouw ene anthocy 0-exciied electrons L. ﬂ amd 01 Cé indol my es O] 21 nde
g o m?[;ﬂ. Y group 1qu3§i Tource Samazifitacd Shnge dnﬁnn'ﬁ[ Gy oppert suffid E;m iR fg;.te:am e “%&gpw
. catechol . 1 substrate enodeoxycholic aci silver s de \ydroxide - B[G Eﬁ ene
= triphenylamine hydrofluoric acid Y B T isde d&‘i’cé’umuse T B Sl
- - Potassium chloride n;ﬁ;mm[p tovoltaics e ttapwm 2 Macrocycles
hydroxyl groups perylene titania electrons phenorazine siboflavin Guahidnium thiocyanate GNCS
015
0.05
2002 2003 2004 2005 2006 2007 2008 2009 20 2011 2012 203 2014

Figure 6 Term/Topic and Fuzzy Set-based TR for Global DSSCs Development (from 2003 to 2014)



P&S Pattern-based TR for Triple Helix Model of China’s DSSCs Development on Conversion
Efficiency

Universities and institutions are the leading role in publications, while governments and companies
hold more interests to patents due to their commercial concerns, which would lead to the success on
dominating global or industrial competitions. Therefore, we choose the DIl patent data for exploring
the Triple Helix relationships among government, university, and company in China’s DSSCs industry.
Based on our previous experiences, 1) we divided the Academy part of original Triple Helix model into
academy and university to distinguish their distributions; 2) we set Chinese Academy Science (CAS) as
a special category to highlight this academic institution which has a significant government-supporting
background in China; 3) aiming to demonstrate the advantage of the P&S pattern-based TR on tracking
problem-solving pathways, we narrowed our focus to the “conversion efficiency” problem, which is
considered as one problem throughout the entire development pathway of DSSCs.

Aiding with automatic software, we retrieved 186 SAO structures from the raw content of 1,167 patent
records, the priority country of which is China. We then arranged our domain experts to evaluate these
SAO structures and identify 74 solutions and their relationships. We ignored the Object’s shape for a
clearer graph and marked the Triple Helix category as the initial letter: University — U, Academy
(Institution) — A, Government — G, Industry — I. We presented our results in Figure 7. This TR drew a
clear landscape to understand how the conversion efficiency problem was solved in China and how the
key players of China’s DSSCs industry played with their interested techniques, and helped explore the
potential collaboration and competition relationships in the Triple Helix model. Our discoveries are
listed as below:

1) In China, the “conversion efficiency” problem was solved in four directions — a) to absorb more light
via enlarging surface area, adding more layers, and etc.; b) to improve the efficiency of the dye, where
organic materials and metals were the two foci; c) to improve the efficiency of the film, anode, or
electrode, where TiO2 and ZnO were two basic materials, nano materials were widely used, and
graphene was becoming a popular one; d) to transfer the state of the electrolyte from liquid to gel and
solid.

2) The “measurement of conversion efficiency” was the direct related problem, while we were also able
to identify “electrolyte leaking”, “device stability” and “photoelectron transport loss” as relevant
problems. Actually, a reasonable understanding is sometimes one patent would likely focus other
problems and the “conversion efficiency” problem was solved the same as the focused one.

3) The University group was the main force of China’s DSSC researches, which provided 53 solutions
in the past 10 years. The CAS followed with 10 solutions, while the Industry group had 9 and the
Academy had 2. Resulting from Figure 6 and experts’ experiences during the evaluation process, we
take the attitude that the patents of China’s University hold more innovative techniques than other
organizations and the Industry paid more attention to the preparation methods.

4) China’s government is considered as the most powerful driving force for China’s DSSCs
development. On the one hand, CAS, the leading organization with the largest number of solutions on
the mapping, definitely contributed excellent works for solving the “conversion efficiency” problems.
Its government background and the massive program and funding supports obtained from government
make us believe that China’s government was highly involved into DSSCs industry. On the other hand,
compared our analytic results for the data before 2012 (Zhang et al. 2014c), in 2014 the Government
finally directly appeared in China’s DSSCs patents for conversion efficiency problem. We traced this
patent and noticed that it was applied by National Center for Nanoscience and Technology, China, an
academic research centre built by CAS and the Ministry of Education, China (that is the reason we only
marked it as A/G on the mapping). Nevertheless, we are able to foresee that more and more
state-owned enterprises or institutions would join in this army to support China’s DSSCs development.

5) The collaborations between the Triple Helix organizations in China are rare. Only 2 solutions were
provided by collaborations between the University and the Industry — University of Fudan with
Changzhou Youze technology Co. Ltd., and Dalian University of Technology with Yingkou Opvtech
Energy Co. Ltd. It is obvious that geo-advantage played an important role in both collaborations.
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Discussion

Referring to our TR composing models and the results obtained in the empirical study, we summarize
the criteria for TR model selection and evaluation and discuss the similarity and difference between TR
and other foresight projects in this section.

Criteria and Metrics

How to choose the best TR model for specified requirements and evaluate the efficacy of TR is one of
the main research questions in this paper. Actually one possible answer of this question would likely
relate to the balance between qualitative and quantitative methodologies. Researchers always argue the
subjective bias of expert knowledge and the uncertainty of data evidence, but the both heavily
influences the implementation of TR including selection and evaluation.

1) Criteria for Expert Engagement

We engage experts in various kinds of ways, e.g. questionnaire, interview, seminar, and workshop, and
there are two criteria that we need to take consideration — background relevant and cost (including time
and expense). The ideal situation is the background of expert is highly relevant and the cost is low,
however, experts usually are busy, expensive, and might not match your need exactly. At this stage, in
Table 1 we summarize the criteria for expert engagement in possible situations.

Table 1 Criterion for Expert Engagement

Level Criterion Situation
A Ideal Situation — to engage expert knowledge as )
much as you can; * High Relevant and Low Cost,
Good Situation — to emphasize expert ¢ High Relevant and Normal Cost;
B knOW|8dge aldlng with limited quantitative « Normal Relevant and Low Cost;
methods; » Normal Relevant and Normal Cost;

Normal Situation — to strict expert knowledge in | « High Relevant and High Cost;
limited scopes and prefer quantitative methods; | « Normal Relevant and High Cost;

Bad Situation — to apply quantitative methods as
D much as you can (high intelligent IT techniques | « | ow Relevant:
might be necessary);

The promise here is that the more experts we have the more creditability we are able to gain, and we
prefer expert-based qualitative methodologies rather than machine-based quantitative methodologies.
As shown in Table 1, we classify the possible real situations into four types — Ideal, Good, Normal, and
Bad. In the Ideal and Good situation, we hold the capability to arrange large-scale expert engagement
for our studies, and quantitative methodologies would only act as an assistant tool for expert-based
decision making. Mostly these situations occur in the R&D plans of national governments or big
business, and they would be time-consuming. The Normal situation is common in institutions and small
and medium enterprises, where the resources are limited and it is necessary to take the place of experts
via quantitative methodologies. However, a systematic research framework construction and feasibility
study are necessary, and appropriate expert engagement would be the guarantee for outputs. We do not
suggest persisting in continuing the research in the Bad situation, unless it is possible to introduce high
intelligent IT techniques to fully support the study.

Referring to Table 1, it is helpful to think about expert resources and budget before we start a TR study,
and know which kind of balance between qualitative and quantitative methodologies is fit for our
current situation. That would be the pre-assessment for TR selection and evaluation, since we need to
know what is on our hand.

2) Criteria for TR Selection and Evaluation

This section compares our three TR models with qualitative method-based TRs, quantitative
method-based TRs, and hybrid TRs in Emphasis, Situation Requirement, Data Quality, Flexibility (e.g.
combining with ST&I factors, implementing for real-world applications), Visualization, and
Understanding (as shown in Table 2). As discussed in the Related Works, the qualitative method-based
TRs are mainly based on expert knowledge and might involve limited statistical models for results
computation, the quantitative method-based TRs are mostly automatic generated mappings aiding with



text mining, bibliometrics, and other intelligent techniques, and there is rare or very little expert
engagement for them, while the hybrid TRs combine them both to a certain extent. We lay out as more
as possible factors that influence the efficacy of TR, and propose the criteria for TR selection and
evaluation as below:

The qualitative method-based TRs hold high flexibility while designing and implementation, and even
do not need data support. Their visualization efficacy highly depends on real needs, which sometimes
is graph-based but sometimes is text-based. The visual approach would also influence the difficulty on
understanding, although most of them are easy-going for governors, administrators, and the ones with
limited expertise. However, the guarantee from expert ensures the credibility of outputs, and the
qualitative method-based TRs are still the most popular formats in current implementations.

The quantitative method-based TRs highly depend on related algorithms and data, and are highly
intelligence for data analyses and visualization. However, the algorithms sometimes strictly limit the
TRs in designed framework and would be not flexible for different data type, graphic format, and etc.
Understanding on this kind of TRs would need professional expertise. Nevertheless, possible missing
relationships between items on the mapping would lead to misunderstanding. It is also critical to totally
believe in a machine in real-world applications.

The hybrid TRs would be a middle way between qualitative method-based TRs and quantitative
method-based TRs and obtain the benefits from the both. One challenge of hybrid TRs that we need to
concern is to adapt the different requirements and backgrounds of a number of disciplines, e.g.
computer science, management, and target technology.

The fuzzy set-based TR, similar with quantitative-based TRs, fixes elements into designed basic graph,
prefers high data quality, and is not quite flexible for changing requirements. Its advantage would be
the possible adaptability for the Bad situation of Table 1, e.g. only have very little experts or expert
backgrounds are low relevant to the target. At this stage, it would likely be promising that fuzzy set
collects and transfer the rough and limited knowledge as a group decision;

The term/topic-based TR follows most benefits from hybrid TRs, where the appropriate expert
engagement reduces the requirements on data quality and increases the flexibility on real-world
applications. However, this model mainly focuses on technological components, and the relationships
between technological components are derived from quantitative analyses, which sometimes would be
rough and uncertain. The P&S pattern-based TR increases expert engagement to help explore
relationships between technological components and its focus on problem-solving pathways also
increases the visualization efficacy.

Generally, we need to pay regard to current resources and foci of TR studies, and Table 2 would act as
a guidebook that provides feasible criteria for TR selection and evaluation.



Table 2 Criterion for TR Selection and Evaluation

No. TR Type Emphasis Situation Requirement Data Quality | Flexibility Visualization Understanding
1 Term/Topic-based TR Component and Evolutionary Pathways Normal Situation or more Normal Normal Normal Professional
Relationships and Evolutionary A Normal or .
2 P&S Pattern-based TR Pathways (Problem Solving Pathway) Good Situation Low Normal Good Intuitive
3 Fuzzy Set-based TR Component and Evolutionary Pathways Possible Bad Situation Normal Low Normal -
Qualitative Landscape, Evolutionary pathway, or I . .
4 Method-based TR Specified Problem-oriented Good Situation NIA High Normal Intuitive
Quantitative . . . .
5 Method-based TR Components or Evolutionary Pathways Bad Situation or more High Low Good Professional
6 Hybrid TR Component, Relationship, or Normal Situation or more Normal Normal Normal Intum_ve/
Professional

Evolutionary Pathways




Comparison between TR and Other Foresight Projects

As shown in the general format of TR in Figure 2, we attempt to combine historical data profiling and
forecasting studies within TR model, which seems to be an evidence to indicate a high relevant
between TR and foresight studies. Based on Table 2, we list the similarity and difference between TR
and other foresight projects in Table 3.

Table 3 Comparison between TR and Other Foresight Projects

No. Factors

TR

Expert-based Foresight

Quantitative-based
Foresight*

1 Future-oriented

One of main foci

Main focus

Main focus

2 Visualization

Mapping-preferred

No special pursuance

No special pursuance,
but some prefer

Historical Data

One of main foci,
profiling historical

No special pursuance,
but emphasizing the

Recognizing and
learning from

qualitative
methodologies

highly expert-engaged

3 Profiling data for assessment logical relation historical data for
. between the past and —
and forecasting prediction
future
Concentrating on Involving with ST&I Ignoring possible
ST&I e .
4 Eactor-involved specified one or factors as more as influence from ST&l
two ST&I factors possible factors
To seek suitable .
Emphasize
balance between o
Expert o quantitative-based Almost no
5 quantitative and - - .
Engagement prediction models*, or | expert-required

*The quantitative-based foresight mainly indicates mainstream algorithms and models in artificial
intelligence, data mining, and machine learning domains, e.g. link prediction (Liben-Nowell and
Kleinberg 2007), burst detection (Bogard and Tiederman 1986), collaborative filtering (Resnick et al.
1994), recommender system (Resnick and Varian 1997), and time series analysis (Hamilton 1994).

Actually current foresight projects are totally divided into two isolated parts: expert-based foresight and
quantitative-based foresight. R&D managers prefer qualitative methods for forecasting study, which
ensures the creditability and meets the needs from macro level, e.g. national strategy. In contrast,
researchers in mathematics and computer science endeavour in machine-based methodologies to
predict events or trends in the near future, e.g. energy demand and economy time series, although it still
needs a long time to apply these models to solve real-world problems.

It is obvious that TR shares most foci with expert-based foresight projects, e.g. future-oriented, ST&I
factor-involved, and expert-required, but the “roadmapping” feature of TR emphasizes the visualization
process and historical data profiling. At the same time, since TR models seek to introduce quantitative
methodologies to support decision making, one feasible application is to use statistical models of
quantitative-based foresight to help expert to foresee possible changes in the future. At this stage, TR
seems to be the bridge that connects isolated expert-based foresight and quantitative-based foresight
projects.

Conclusions

In this paper, we have presented an approach to TR which builds on a family of techniques both
quantitative and qualitative, created a typology of tools and applied them to the case of dye-sensitized
solar cells. TR for breakthrough technology fields requires the integration of a number of techniques to
be able to handle the complexity of emergence and make it practicable to inform strategy and policy
making. Such TR for technology fields can be further developed in a number of ways, by being 1)
integrated with expert engagement to anticipate further multi-level evolutions e.g. in Robinson (2009)
and 2) included in exploring multiple micro-level pathways such as open-ended roadmapping
(Robinson and Propp 2008; Stirling 2008) to determine individual strategies to determine innovation
pathways. A key challenge for TR is to evolve as part of ongoing strategy or policy making. This
requires “living TR”. Our approach presented here allows for regular updating and evaluation as part of



such a “living TR” approach, and our future work will explore further this link to ongoing strategy
making.

Acknowledgement

We acknowledge support from the National High Technology Research and Development Program of
China (Grant No. 2014AA015105), the Australian Research Council (ARC) under Discovery Project
DP140101366, and the United States National Science Foundation (Award #1527370 — Forecasting
Innovation Pathways of Big Data & analytics). Douglas K. R. Robinson (LISIS), participates in this
research activity also as part of the Mapping Dynamics of Emerging Technologies project — MDET
(ANR-10-ORA-007).

References

Allan, J., Carbonell, J. G., Doddington, G., Yamron, J., & Yang, Y. (1998). Topic detection and tracking
pilot study final report.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Bogard, D., & Tiederman, W. (1986). Burst detection with single-point velocity measurements. Journal
of Fluid Mechanics, 162, 389-413.

Chen, C. (2006). CiteSpace Il: Detecting and visualizing emerging trends and transient patterns in
scientific literature. Journal of the American Society for Information Science and Technology,
57(3), 359-377.

Choi, C., & Park, Y. (2009). Monitoring the organic structure of technology based on the patent
development paths. Technological Forecasting and Social Change, 76(6), 754-768.

Etzkowitz, H., & Leydesdorff, L. (1995). The Triple Helix--University-industry-government relations:
A laboratory for knowledge based economic development. Easst Review, 14(1), 14-109.
Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: from National Systems and
“Mode 2” to a Triple Helix of university—industry—government relations. Research Policy,

29(2), 109-123.

Fenwick, D., Daim, T. U., & Gerdsri, N. (2009). Value Driven Technology Road Mapping (VTRM)
process integrating decision making and marketing tools: Case of Internet security
technologies. Technological Forecasting and Social Change, 76(8), 1055-1077.

Garcia, M. L. (1997). Introduction to technology roadmapping: The semiconductor industry
associations technology roadmapping process: Sandia National Labs., Albuquerque, NM
(United States).

Garcia, M. L., & Bray, O. H. (1997). Fundamentals of technology roadmapping: Sandia National
Laboratories Albuquerque, NM.

Gerdsri, N., & Kocaoglu, D. F. (2007). Applying the Analytic Hierarchy Process (AHP) to build a
strategic framework for technology roadmapping. Mathematical and Computer Modelling,
46(7), 1071-1080.

Gerdsri, N., Vatananan, R. S., & Dansamasatid, S. (2009). Dealing with the dynamics of technology
roadmapping implementation: A case study. Technological Forecasting and Social Change,
76(1), 50-60.

Geum, Y., Lee, S., Kang, D., & Park, Y. (2011). Technology roadmapping for technology-based
product-service integration: A case study. Journal of Engineering and Technology
Management, 28(3), 128-146.

Geum, Y., Lee, S., & Park, Y. (2014). Combining technology roadmap and system dynamics simulation
to support scenario-planning: A case of car-sharing service. Computers & Industrial
Engineering, 71, 37-49.

Geum, Y., Lee, H., Lee, Y., & Park, Y. (2015). Development of data-driven technology roadmap
considering dependency: An ARM-based technology roadmapping. Technological Forecasting
and Social Change, 91, 264-279.

Guo, Y., Ma, T., Porter, A. L., & Huang, L. (2012). Text mining of information resources to inform
Forecasting Innovation Pathways. Technology Analysis & Strategic Management, 24(8),
843-861.

Hamilton, J. D. (1994). Time series analysis (Vol. 2): Princeton university press Princeton.

Huang, L., Guo, Y., Porter, A. L., Youtie, J., & Robinson, D. K. (2012). Visualising potential innovation
pathways in a workshop setting: the case of nano-enabled biosensors. Technology Analysis &
Strategic Management, 24(5), 527-542.

Huang, L., Zhang, Y., Guo, Y., Zhu, D., & Porter, A. L. (2014). Four dimensional Science and
Technology planning: A new approach based on bibliometrics and technology roadmapping.
Technological Forecasting and Social Change, 81, 39-48.



Jeong, Y., & Yoon, B. (2015). Development of patent roadmap based on technology roadmap by
analyzing patterns of patent development. Technovation, 39, 37-52.

Kim, Y., Tian, Y., Jeong, Y., Jihee, R., & Myaeng, S.-H. (2009). Automatic discovery of technology
trends from patent text. Paper presented at the Proceedings of the 2009 ACM symposium on
Applied Computing.

Kostoff, R. N., & Schaller, R. R. (2001). Science and technology roadmaps. Engineering Management,
IEEE Transactions on, 48(2), 132-143.

Kostoff, R. N., Toothman, D. R., Eberhart, H. J., & Humenik, J. A. (2001). Text mining using database
tomography and bibliometrics: A review. Technological Forecasting and Social Change, 68(3),
223-253.

Kostoff, R. N., Boylan, R., & Simons, G. R. (2004). Disruptive technology roadmaps. Technological
Forecasting and Social Change, 71(1), 141-159.

Kostoff, R. N., Briggs, M. B., Solka, J. L., & Rushenberg, R. L. (2008). Literature-related discovery
(LRD): Methodology. Technological Forecasting and Social Change, 75(2), 186-202.

Kostoff, R. N. (2014). Literature-related discovery: common factors for Parkinson’s Disease and
Crohn’s Disease. Scientometrics, 100(3), 623-657.

Kostoff, R. N., & Patel, U. (2015). Literature-related discovery and innovation: Chronic kidney disease.
Technological Forecasting and Social Change, 91, 341-351.

Lee, S., & Park, Y. (2005). Customization of technology roadmaps according to roadmapping purposes:
Overall process and detailed modules. Technological Forecasting and Social Change, 72(5),
567-583.

Lee, S., Yoon, B., Lee, C., & Park, J. (2009a). Business planning based on technological capabilities:
Patent analysis for technology-driven roadmapping. Technological Forecasting and Social
Change, 76(6), 769-786.

Lee, S., Yoon, B., & Park, Y. (2009b). An approach to discovering new technology opportunities:
Keyword-based patent map approach. Technovation, 29(6), 481-497.

Liben-Nowell, D., & Kleinberg, J. (2007). The link - prediction problem for social networks. Journal
of the American Society for Information Science and Technology, 58(7), 1019-1031.

Park, H. W., Hong, H. D., & Leydesdorff, L. (2005). A comparison of the knowledge-based innovation
systems in the economies of South Korea and the Netherlands using Triple Helix indicators.
Scientometrics, 65(1), 3-27.

Phaal, R., Farrukh, C. J., & Probert, D. R. (2004). Technology roadmapping—a planning framework
for evolution and revolution. Technological Forecasting and Social Change, 71(1), 5-26.

Porter, A. L., & Detampel, M. J. (1995). Technology opportunities analysis. Technological Forecasting
and Social Change, 49(3), 237-255.

Porter, A. L., & Cunningham, S. W. (2004). Tech mining: exploiting new technologies for competitive
advantage (Vol. 29): John Wiley & Sons.

Porter, A. L., & Cunningham, S. W. (2005). Tech mining. Competitive Intelligence Magazine, 8(1),
30-36.

Porter, A. L., Guo, Y., Huang, L., & Robinson, D. K. (2010). Forecasting innovation pathways: The
case of nano-enhanced solar cells. Paper presented at the International conference on
technological innovation and competitive technical intelligence.

Porter, A. L., Cunningham, S. W., & Sanz, A. (2013). Extending the FIP (Forecasting Innovation
Pathways) approach through an automotive case analysis. Paper presented at the Technology
Management in the IT-Driven Services (PICMET), 2013 Proceedings of PICMET'13..

Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research
policy and library management. Journal of the American Society for Information Science and
Technology, 61(9), 1871-1887.

Rantanen, K., & Domb, E. (2010). Simplified TRIZ: new problem solving applications for engineers
and manufacturing professionals: CRC press.

Resnick, P., lacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an open
architecture for collaborative filtering of netnews. Paper presented at the Proceedings of the
1994 ACM conference on Computer supported cooperative work.

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3),
56-58.

Rip, A., & Kemp, R. (1998). Technological change: Battelle Press.

Robinson, D., Zhou, X., Guo, Y., & Porter, A. (2013a). Nano-enabled Drug Delivery—Capturing the
state of the art and forecasting innovation pathways. Paper presented at the Portland
International Conference on Management of Engineering and Technology (PICMET), San
Jose, CA.



Robinson, D. K., & Propp, T. (2008). Multi-path mapping for alignment strategies in emerging science
and technologies. Technological Forecasting and Social Change, 75(4), 517-538.

Robinson, D. K. (2009). Co-evolutionary scenarios: An application to prospecting futures of the
responsible development of nanotechnology. Technological Forecasting and Social Change,
76(9), 1222-1239.

Robinson, D. K., Huang, L., Guo, Y., & Porter, A. L. (2013b). Forecasting Innovation Pathways (FIP)
for new and emerging science and technologies. Technological Forecasting and Social
Change, 80(2), 267-285.

Robinson, D. K. R., & Boon, W. P. C. (2014). Does 3D bioprinting mean business? Making explicit the
assumed industry scenarios for the assessment of business cases for breakthrough
technologies. Paper presented at the The 5th International Conference on Future-oriented
Technology Analysis, Brussels, Belgium.

Stirling, A. (2008). “Opening up” and “closing down” power, participation, and pluralism in the social
appraisal of technology. Science, technology & human values, 33(2), 262-294.

Tierney, R., Hermina, W., & Walsh, S. (2013). The pharmaceutical technology landscape: A new form
of technology roadmapping. Technological Forecasting and Social Change, 80(2), 194-211.

Tran, T. A, & Daim, T. (2008). A taxonomic review of methods and tools applied in technology
assessment. Technological Forecasting and Social Change, 75(9), 1396-1405.

Walsh, S. T. (2004). Roadmapping a disruptive technology: A case study: The emerging microsystems
and top-down nanosystems industry. Technological Forecasting and Social Change, 71(1),
161-185.

Walsh, S. T., Boylan, R. L., McDermott, C., & Paulson, A. (2005). The semiconductor silicon industry
roadmap: epochs driven by the dynamics between disruptive technologies and core
competencies. Technological Forecasting and Social Change, 72(2), 213-236.

Waltman, L., van Eck, N. J., & Noyons, E. C. (2010). A unified approach to mapping and clustering of
bibliometric networks. Journal of Informetrics, 4(4), 629-635.

Winebrake, J. J. (2004). Alternate energy: Assessment and implementation reference book: The
Fairmont Press, Inc.

Yoon, B., & Park, Y. (2005). A systematic approach for identifying technology opportunities:
Keyword-based morphology analysis. Technological Forecasting and Social Change, 72(2),
145-160.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Zhang, Y., Guo, Y., Wang, X., Zhu, D., & Porter, A. L. (2013). A hybrid visualisation model for
technology roadmapping: bibliometrics, qualitative methodology and empirical study.
Technology Analysis & Strategic Management, 25(6), 707-724.

Zhang, Y., Porter, A. L., Hu, Z., Guo, Y., & Newman, N. C. (2014a). “Term clumping” for technical
intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social
Change, 85, 26-39.

Zhang, Y., Zhou, X., Porter, A. L., & Gomila, J. M. V. (2014b). How to combine term clumping and
technology roadmapping for newly emerging science & technology competitive
intelligence:“problem & solution” pattern based semantic TRIZ tool and case study.
Scientometrics, 101(2), 1375-1389.

Zhang, Y., Zhou, X., Porter, A. L., Gomila, J. M. V., & Yan, A. (2014c). Triple Helix innovation in
China’s dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology
roadmapping. Scientometrics, 99(1), 55-75.

Zhang, Y., Chen, H., Zhang, G., Zhu, D., & Lu, J. (2015). Multiple Science Data-Oriented Technology
Roadmapping Method. Paper presented at the Portland International Center for Management
of Engineering and Technology, Portland, USA.

Zhou, X., Zhang, Y., Porter, A. L., Guo, Y., & Zhu, D. (2014). A patent analysis method to trace
technology evolutionary pathways. Scientometrics, 100(3), 705-721.

Zhu, D., & Porter, A. L. (2002). Automated extraction and visualization of information for
technological intelligence and forecasting. Technological Forecasting and Social Change,
69(5), 495-506.



Yi Zhang is a dual-degree Ph.D. candidate at the Decision Systems and e-Service Intelligence
Research Laboratory, Centre for Quantum Computation and Intelligent System, Faculty of Engineering
and Information Technology, University of Technology Sydney, Australia, and the School of
Management and Economics, Beijing Institute of Technology, China. His specialty is text mining and
technology innovation management, especially technological assessment and forecasting with the
combination of qualitative and quantitative methodologies.

Douglas K. R. Robinson is an expert in innovation analysis. Originally trains as a physicist and space
scientist, Douglas has a PhD in innovation studies and technology assessment and experience in a
number of Innovation management institutions in Europe as well as in the private sector. His research
and consultancy activities follow 3 interlinked axes: (1) Assessment and foresight of industrial change
and business model innovation relating to breakthrough technologies (such as additive manufacturing,
nanomaterials in the food sector and bio-printing), (2) Policy and strategy intelligence on research and
innovation, (3) Projecting innovation and impact pathways through the analysis of value chains,
regulatory factors, finance and potential societal/market uptake.

Alan L Porter is Professor Emeritus of Industrial & Systems Engineering, and of Public Policy, at
Georgia Institute of Technology, where he remains Co-director of the Technology Policy and
Assessment Center. He is also Director of R&D for Search Technology, Inc., Norcross, GA. He is
author of some 220 articles and books. Current research emphasizes measuring, mapping, and
forecasting ST&I knowledge diffusion patterns.

Donghua Zhu is currently a Professor and the Associate Dean of the School of Management and
Economics, and the Director of the Knowledge Management and Data Analysis Laboratory, at Beijing
Institute of Technology, China. His main academic research fields include science and technology data
mining, technology innovation management, technology forecasting and management. His current
research emphasizes big data analytics.

Guangquan Zhang received his Ph.D. degree in applied mathematics from Curtin University of
Technology, Perth, Australia, in 2001. He is currently an Associate Professor in the Faculty of
Engineering and Information Technology, and the Co-director of the Decision Systems and e-Service
Intelligence Research Laboratory, Centre for Quantum Computation and Intelligent Systems, at
University of Technology Sydney. His main research interests include multi-objective and group
decision making, decision support system tools, fuzzy measure and optimization, and uncertain
information processing.

Jie Lu received the Ph.D. from Curtin University of Technology, Perth, Australia, in 2000. She is
currently a Professor and the Associate Dean Research (Acting) in the Faculty of Engineering and
Information Technology, and the Director of the Decision Systems and e-Service Intelligence Research
Laboratory, Centre for Quantum Computation and Intelligent Systems, at University of Technology
Sydney, Australia. Her main research interests include decision making modelling, decision support
system tools, uncertain information processing, recommender systems, and e-Government and
e-Service intelligence.



