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Cyclicc-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan 1 

biosynthesis enzyme GlmM in Lactococcus lactis. 2 
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 32 

 33 

SUMMARY 34 

The second messenger cyclic-di-AMP plays important roles in cell growth, virulence, cell wall 35 

homeostasis, potassium transport and is known to affects resistance to antibiotics, heat and 36 

osmotic stress. Most Firmicutes contain only one c-di-AMP synthesizing diadenylate cyclase 37 

(CdaA) and apart from the positively regulating CdaR proteinhowever, little is known about 38 

signals and effectors controlling CdaA activity.  In this study, a genetic screening method was 39 

used to identify components which affect the c-di-AMP level in Lactococcus.  We characterised 40 

suppressor mutations that restored osmoresistance to spontaneous c-di-AMP phosphodiesterase 41 

gdpP mutants which contain high c-di-AMP levels. Functionally Ddestructive and restorative 42 

mutations were identified in the cdaA and gdpP genes, respectively, which lead to lower c-di-43 

AMP levels.  A mutation was also identified in the phosphoglucosamine mutase encoding gene 44 

glmM which is commonly commonly located withinin the cdaA operon in bacteria.  The glmM 45 

I154F mutation resulted in a lowering of the c-di-AMP level and a reduction in the key 46 

peptidoglycan precursor UDP-N-acetylglucosamine in L. lactis. C-di-AMP synthesis by CdaA 47 

was shown to be inhibited by GlmM and more by GlmM
I154F

, while the GlmM
I154F

 variant was 48 

found to bind more strongly to CdaA than GlmMUsing Escherichia coli as a heterologous 49 

expression host, c-di-AMP synthesis by CdaA was shown to be reduced by GlmM and 50 

furthermore by the GlmM
I154F

 variant.  These findings identify GlmM as a c-di-AMP level 51 

modulating protein and provide a direct connection between c-di-AMP synthesis and 52 

peptidoglycan biosynthesis.   53 

 54 

 55 

INTRODUCTION 56 

Ubiquitous nucleotide second messengers including cAMP, cGMP, (p)ppGpp, c-di-GMP and c-57 

di-AMP have been shown to control a wide range of bacterial processes (Kalia et al., 2013). The 58 

recently discovered essential nucleotide c-di-AMP has been found in some Gram-negative and 59 

many Gram-positive bacteria and has been shown to control bacterial growth, cell wall 60 

homeostasis, potassium transport, antibiotic resistance, osmotolerance, cell lysis, metabolism and 61 

immunomodulation (Woodward et al., 2010; Corrigan et al., 2011; Luo and Helmann, 2012a; 62 

Pozzi et al., 2012; Smith et al., 2012; Bai et al., 2013; Mehne et al., 2013; Witte et al., 2013; Bai 63 
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et al., 2014; Sureka et al., 2014; Ye et al., 2014). Up until recently c-di-AMP was considered 64 

essential for cell viability, however work in Listeria monocytogenes has shown that c-di-AMP is 65 

not essential for growth in minimal media (Whiteley et al., 2015).  For optimal growth on 66 

nutrient rich media, however, Llevels of c-di-AMP need to be strictly controlled in the cell by 67 

modulation of expression and/or activity of c-di-AMP synthesis and degradation enzymes 68 

(Corrigan and Grundling, 2013). Most bacteria possess one diadenylate cyclase (DAC) enzyme 69 

(CdaA [also called YbbP and DacA]) (Romling, 2008; Corrigan and Grundling, 2013) while 70 

Bacillus subtilis has two additional DACs (CdaS [also called YojJ] and DisA) (Romling, 2008).  71 

DHH/DHHA1 domain containing phosphodiesterases (PDEs) such as membrane bound GdpP-72 

type (also called YybT or Pde1) and standalone PDEs carry out c-di-AMP hydrolysis (Bai et al., 73 

2013; Corrigan and Grundling, 2013). Recently another c-di-AMP phosphodiesterase (PgpH) of 74 

the HD-domain family has been identified in L.isteria monocytogenes (Huynh et al., 2015).  75 

Diadenylate cyclase activity of the DNA integrity scanning protein DisA has been shown to be 76 

negatively regulated by another DNA associated protein RadA (Zhang and He, 2013) while 77 

CdaS is regulated by its own N-terminal inhibitory domain (Mehne et al., 2014). The membrane 78 

bound CdaA protein has been shown to be positively regulated by the YbbR-domain containing 79 

protein CdaR through direct protein-protein interaction (Mehne et al., 2013). GdpP and PgpH 80 

activity is inhibited by the stringent response compound (p)ppGpp and it GdpP contains a 81 

possibly regulatory hemin binding PAS domain (Rao et al., 2010; Tan et al., 2013; Huynh et al., 82 

2015).  Expression of gdpP in B. subtilis is also transcriptionally regulated by σ
D
 (Luo and 83 

Helmann, 2012b).  Recent work has also identified cross-talk between c-di-AMP and (p)ppGpp 84 

signalling nucleotides with both high and low c-di-AMP levels triggering high (p)ppGpp (Liu et 85 

al., 2006; Corrigan et al., 2015; Whiteley et al., 2015).  Apart from these studies, little is known 86 

regarding stimuli which control the c-di-AMP level within a cell. In single DAC containing 87 

bacteria, c-di-AMP has been shown to be involved in cell wall homeostasis and osmotolerance 88 

and therefore stimuli related to these processes are likely to be involved.     89 

Modulation of signal transduction can occur by c-di-AMP binding to effector proteins 90 

and RNA molecules which then influence their activity. Effectors which bind c-di-AMP have 91 

been identified including the transcription factor DarR from Mycobacterium smegmatis (Zhang 92 

et al., 2013); the K
+
 transport gating protein KtrA, ion transporter CpaA and PII-like signal 93 

transduction protein PstA from Staphylococcus aureus (Corrigan et al., 2013); the ydaO 94 

riboswitch class in Actinobacteria, Bacillales, Clostridia and Cyanobacteria (Nelson et al., 95 

2013); and pyruvate carboxylase, CbpA, CbpB, NrdR, PstA and several other proteins which 96 
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may bind c-di-AMP indirectly in L. monocytogenes (Sureka et al., 2014). Crystal structures of 97 

pyruvate carboxylase (Sureka et al., 2014), PII-like signal transduction proteins (Campeotto et 98 

al., 2015; Choi et al., 2015; Gundlach et al., 2015a; Muller et al., 2015), RCK domains of KtrA 99 

and CpaA (Chin et al., 2015; Kim et al., 2015) and the ydaO riboswitch (Gao and Serganov, 100 

2014; Jones and Ferre-D'Amare, 2014; Ren and Patel, 2014) have provided insights into c-di-101 

AMP binding sites.  The first structure of a CdaA-type DAC has also been recently reported 102 

(Rosenberg et al., 2015).  Many of these c-di-AMP targets however are yet to be thoroughly 103 

characterized and thus their roles in c-di-AMP controlled phenotypes are still to be elucidated. 104 

Previous research has identified osmosensitive phenotypes for gdpP mutants of L. lactis 105 

and S. aureus (Smith et al., 2012; Corrigan et al., 2013). In this study we used a genetic 106 

screening approach to identify proteins involved in controlling the c-di-AMP level and thus 107 

osmotolerance in L. lactis. The roles of the c-di-AMP synthesis and hydrolysis enzymes (CdaA 108 

and GdpP) were confirmed, while the broadly conserved cell wall biosynthesis enzyme GlmM 109 

was identified as a new c-di-AMP level modulator. The results presented identify a connection 110 

between c-di-AMP signalling and cell wall biosynthesis pathways.  111 

 112 

RESULTS 113 

Mutations in the diadenylate cyclase encoding gene (cdaA) restore osmoresistance in gdpP 114 

defective mutants 115 

Previous studies in our laboratory identified a role of the c-di-AMP phosphodiesterase GdpP in 116 

osmotolerance in two independent strains of L. lactis (Smith et al., 2012). During this work we 117 

noticed that upon plating of spontaneous osmosensitive gdpP mutants (OS strains) on high salt 118 

containing agar, the presence of healthy looking colonies at low frequency (~1 in 10,000 to 119 

100,000, as seen in Fig.ure 1, panels A and C in (Smith et al., 2012)). The OS strains used here 120 

contain either a single nucleotide changes (OS1 and OS3 contain gdpPA573D and gdpPE472Stop, 121 

respectively) or a single nucleotide insertion (OS2 contains gdpPK122Stop) (Smith et al., 2012). We 122 

hypothesised that the reason for osmosensitivity of gdpP mutant strains was due to a high 123 

intracellular c-di-AMP level and that osmoresistant suppressor mutants (OR strains) which could 124 

grow on high salt agar would contain mutations which would lower the c-di-AMP level.  Two 125 

colonies derived from OS1 growing on high salt agar (named OR1 and OR2 [Table S1]) were 126 

picked and confirmed to be stably osmoresistant (Fig. 1A). In fact OR2 became dependent upon 127 

high osmotic conditions for efficient growth (Fig. 1A). To identify the mutation(s) in OR1 and 128 
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OR2, whole genome sequencing was performed. Only one common gene was mutated in both 129 

OR1 and OR2 which was llmg_0448 (or herein named cdaA) (Table 1). This gene encodes a 130 

diadenylate cyclase (DAC) which has homology to CdaA (also termed DacA and YbbP). The 131 

mutations in cdaA are likely to cause abnormal abolished protein expression (CdaA
E11frameshift

 in 132 

OR1) or reduced activity (CdaA
M136I 

in OR2) of the enzymeCdaA resulting in a lowering of the 133 

intracellular c-di-AMP level. Indeed intracellular c-di-AMP levels were significantly lower in the 134 

OR1 and OR2 strains than in the parent OS1, which contains a gdpP mutation, though not as low 135 

as for wild-type MG1363 (below detection limit)  (Fig. 1B). CdaA in L. lactis is the only protein 136 

containing a DAC domain. These results show that the c-di-AMP level influences salt resistance 137 

in L. lactis and can be altered through mutation in the DACc-di-AMP synthesis  (CdaA) or and 138 

PDEdegradation enzyme (GdpP).  139 

To identify more sites within CdaA which are important for c-di-AMP synthesis and also 140 

other genes which may affect the c-di-AMP level and thus osmotolerance, 158 additional salt 141 

resistant suppressor mutants from several different gdpP mutant backgrounds (OS1 [n=42], OS2 142 

[n=112] and OS3 [n=4] [Table S1]) were obtained and characterized. The cdaA gene was 143 

amplified by PCR and sequenced and 66 independent cdaA mutations were identified in total 144 

(Fig. 2 and Fig. S1). These mutations resulted in amino acid changes, frameshift mutations, a 145 

start codon change (from TTG to TTA) and the insertion of an IS905 element 12-bp upstream of 146 

cdaA. Changes were found at the extracellular N-terminal region, both in and between the three 147 

transmembrane spanning domains and also in the DAC enzymatic domain (Fig. 2), and therefore 148 

may affect protein expression, signal sensing, oligomerization and/or enzymatic activity. A vast 149 

majority of the mutations resulted inresulted in a a D123Y change in CdaA, suggesting a 150 

significant proportion of sibling mutants were present in our culture stocks.  CdaA mutations 151 

were obtained in two independent gdpP mutants derived from both MG1363 (OS1 and OS2) and 152 

an industrial L. lactis strain background (OS3).  Salt resistant industrial strain derivatives OR3 153 

and OR4 which contained CdaA
T50K

 and CdaA
A195D

 changes, respectively which resulted in the 154 

same salt resistant phenotype and, had significantly reduced  reduction in c-di-AMP levels 155 

compared to their parent OS3 (Fig. 1C & 1D).  Out of all the salt resistant suppressor mutants 156 

obtained, only five mutants possessed no changes in the cdaA gene. Another way the cell might 157 

reduce the c-di-AMP level is through restoration of PDE activity.  Therefore the gdpP gene was 158 

sequenced in the five mutants and in four (derived from OS1) new mutations were observed. The 159 

OS1 parent contains an A573D change in GdpP from wild-type MG1363 (Smith et al., 2012). 160 

The four osmoresistant suppressor mutants either had reverted back to alanine at this position or 161 
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a similar residue (glycine) thereby likely restoring c-di-AMP PDE activity. The final 162 

characterized osmoresistant suppressor mutant (OR5) still possessed the same gdpP mutation 163 

present in its parent OS2 (K122Stop) and therefore was predicted to still have no or low PDE 164 

activity. 165 

 166 

GlmM affects osmoresistance as well as peptidoglycan precursor and c-di-AMP levels 167 

The osmoresistant mutant (OR5) which contained unaltered cdaA and gdpP gene sequences as 168 

its osmosensitive parent strain (OS2) was confirmed to be salt resistant (Fig. 3A).  Interestingly 169 

OR5 had a significantly reduced levels of c-di-AMP (Fig. 3B), which were similarly low aswas 170 

similar to that observed for cdaA mutants OR1 and OR2 (Fig. 1B). Whole genome sequencing 171 

was carried out on this strain and its parent (OS2), and only one single nucleotide difference 172 

(A→T) was identified. This change was in the glmM (femD) gene and was confirmed by Sanger 173 

sequencing as causing an I154F amino acid change in the encoded protein. GlmM is the 174 

phosphoglucosamine mutase enzyme responsible for interconversion of glucosamine-6-175 

phosphate to glucosamine-1-phosphate and forms an early part of the pathway leading to the 176 

biosynthesis of cell wall peptidoglycan and other cell wall polymers including the cell wall 177 

pellicle produced by L. lactis (Fig. 3C) (Chapot-Chartier et al., 2010). The glmM gene is present 178 

in the same operon as the cdaA gene in L. lactis (Fig. 3D), a genetic arrangement that is highly 179 

conserved in almost all Firmicutes (Bai et al., 2013; Corrigan and Grundling, 2013; Dengler et 180 

al., 2013; Mehne et al., 2013). To determine if cell wall biosynthesis precursor levels are 181 

affected by changes in the intracellular c-di-AMP level and by the GlmM I154F mutation, we 182 

measured intracellular UDP-N-acetylglucosamine (UDP-NAG) levels. The level of UDP-NAG 183 

was around 3-fold higher in the high c-di-AMP gdpP mutant strain (OS2) compared to wild-type 184 

and was reduced to below wild-type levels as a result of the glmM mutation in OR5 (Fig. 3E). 185 

This result demonstrates that c-di-AMP affects the level of cell wall biosynthesis precursor and 186 

that the I154F GlmM mutation leads to reduced peptidoglycan precursor biosynthesis. 187 

Interestingly the low c-di-AMP level observed in the glmM mutant strain also suggests that cell 188 

wall precursor biosynthesis activity can also affect the c-di-AMP level in the cell.  189 

Previous work has identified the involvement of c-di-AMP in cell lysis (Luo and 190 

Helmann, 2012a; Witte et al., 2013). We therefore investigated if the glmM mutation would also 191 

alter autolysis activity.  Like that found in B. subtilis and L. monocytogenes, different most OR 192 

cdaA mutant strains lysed significantly faster than their parent (OSR2) (Fig. 4).  The glmM 193 

mutant (OR5) lysed similarly to the strains that contained cdaA mutations and faster than OS2 194 
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(Fig. 4). The wild-type exhibited a moderate slower autolytic rate than OS2, in between the OS 195 

and OR derivatives. These results collectively provide support for the role of c-di-AMP and 196 

glmM in cell wall stability.  197 

The product of the gene located between the cdaA and glmM in L. lactis MG1363 (Fig. 198 

3D) has significant homology to the CdaR protein from B. subtilis whichand has been identified 199 

as a positive regulator of diadenylate cyclase activity of CdaA (Fig. 3D) (Mehne et al., 2013).  In 200 

B. subtilis, L. monocytogenes and S. aureus, CdaR contains several YbbR domains (pfam07949) 201 

and is also encoded by a single gene located between cdaA and glmM. In MG1363 there appears 202 

to have been a single nucleotide deletion in a single ancestral cdaR gene resulting in a premature 203 

stop codon and is annotated as a pseudogene in the MG1363 Genbank entry (NC_009004.1).  204 

This sequence deletion was confirmed by Sanger sequencing in MG1363.  It is possible that this 205 

pseudogene could express two open reading frames (previously denoted in NC_009004.1 as 206 

llmg_0449 and llmg_0450), however the YbbR domain would not be linked to the N-terminal 207 

transmembrane domain and thus not exposed on the extracellular side of the membrane like other 208 

CdaR proteins.  Investigation of other available Lactococcus spp. genomes (strains SK11, 209 

IL1403, A76, TIFN3, TIFN6, UC509.9, A12, KF147, IO-1, CNCMI-1631 and CV56) and four 210 

industrially used Lactococcus in our culture collection revealed a full length ~320 aa CdaR 211 

encoding gene in all cases, therefore suggesting that the mutated CdaR in MG1363 is unusual for 212 

Lactococcus.. Therefore in MG1363, the YbbR domains which are encoded by the downstream 213 

potential open reading frame within cdaR' (llmg_0450) are separated from the N-terminal 214 

transmembrane domains and therefore likely to not be anchored to the cytoplasmic membrane 215 

and possibly not even expressed due to the absence of an efficient ribosome binding site. 216 

 217 

GlmM down-regulates c-di-AMP synthesis by CdaA and the GlmM
I154F

 variant has greater 218 

inhibitory activity. 219 

To determine evaluate the effect of GlmM and GlmM
I154F

 in controlling CdaA activity more 220 

directly, we expressed different combinations of L. lactis cdaA operon genes in E. coli which is 221 

known to not produce c-di-AMP (Corrigan et al., 2011; Mehne et al., 2013) (Fig. 5A).  By 222 

comparing c-di-AMP levels in E. coli containing the complete cdaAR'-glmM operon, iIt was 223 

found that E. coli expressing the the cdaAR'-glmMI154F variant operon led had to a 5-fold lower 224 

c-di-AMP concentration compared to that found with thefor E. coli expressing the wild-type 225 

cdaAR'-glmM operon (Fig. 5A & 5B).  This suggests that the I154F mutation in GlmM results in 226 

inhibition of CdaA activity and is in agreement with that found in L. lactis where the glmMI154F
  

227 
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mutation caused a lowering of the c-di-AMP level (Fig. 3B).  To determine the effect of wild-228 

type GlmM on CdaA activity, we compared c-di-AMP levels in E. coli containing the cdaAR'-229 

glmM and cdaAR' only operons and found that the presence of GlmM resulted in a 19-fold 230 

reduction in c-di-AMP level (Fig. 5A & 5B). Combined these resultsThis demonstrates a general 231 

inhibitory effect of GlmM on CdaA-mediated c-di-AMP synthesis and that the I154F mutation in 232 

GlmM enhances CdaA inhibition.   233 

To extend these findings further we expressed combinations of cdaA, cdaR and glmM 234 

genes from another Gram-positive bacterium (S. aureus NCTC 8325) in E. coli and measured c-235 

di-AMP levels (Fig. 5B).  In agreement with that above, S. aureus GlmM was found to reduce c-236 

di-AMP levels (Fig. 5B).  Comparison of c-di-AMP levels in E. coli expressing S. aureus CdaA 237 

and CdaAR also suggests that CdaR inhibits CdaA activity.  These results suggest that GlmM 238 

and CdaR are likely regulators of CdaA activity in a broad range of bacteria. 239 

 240 

Global protein analysis reveals c-di-AMP affects the expression of the glycine-betaine 241 

transporter and a penicillin binding proteinThe GlmM
I154F

 variant binds more strongly to 242 

CdaA than GlmM. 243 

C-di-AMP is expected to mediate its effects on cells by affecting gene expression or enzyme 244 

activity through binding of RNA (Nelson et al., 2013) or effector proteins (Corrigan et al., 2013). 245 

To determine the effects of elevated c-di-AMP on protein expression and to further explore how 246 

c-di-AMP controls cellular processes we compared the proteomes of wild-type MG1363 and 247 

OS2 using SWATH-MS (Gillet et al., 2012). Whole genome sequencing of the OS2 mutant in 248 

this study revealed only one single nucleotide polymorphism when compared to wild-type. This 249 

was a thymine insertion which causes a K122Stop change in the GdpP previously reported 250 

(Smith et al., 2012), thus making it a suitable gdpP mutant for this experiment. Using a 2-fold 251 

cut-off, 14 proteins were up-regulated and 16 proteins were down-regulated in the gdpP mutant 252 

compared to the wild-type (Table 2).  We hypothesized that the reason GlmM
I154F

 inhibits c-di-253 

AMP synthesis by CdaA more than wild type GlmM is due to a stronger interaction between the 254 

two proteins.  We examined the binding between CdaA and GlmM or GlmM
I154F

 using a 255 

bacterial two-hybrid system.  Following measurement of β-galactosidase activities, a direct 256 

interaction was found between CdaA and GlmM while a significantly stronger interaction 257 

between GlmM
I154F

 and CdaA was observed (Fig. 6).  The higher binding affinity of GlmM
I154F

 258 

for CdaA provides a possible explanation for why this variant protein has greater CdaA 259 

inhibitory activity and why OS5 contains lower c-di-AMP levels.   260 
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Of particular relevance to osmotolerance, the glycine betaine transporter BusAB was identified 261 

in the proteome analysis as being downregulated 2.9-fold (Table 2). This ATP-binding cassette 262 

(ABC) type compatible solute transporter (BusAA-AB) has been identified in L. lactis as being a 263 

major contributor to osmotolerance and is regulated by the transcriptional repressor BusR 264 

(Romeo et al., 2003). Previous work in our lab has identified that the RNA transcript level of 265 

busAA is downregulated ~5-fold in a gdpP mutant strain Δ1816 (Smith et al., 2012) and we 266 

determine here that OS2 has a ~10-fold lower busAA transcript than wild-type (data not shown). 267 

This suggests that c-di-AMP levels affect the expression of the BusAA-AB genes at a 268 

transcriptional level.   269 

The most highly upregulated protein (18-fold) in OS2 was DacA which encodes a cell wall 270 

peptidoglycan D-alanyl-D-alanine carboxypeptidase (note: DacA from L. lactis should not be 271 

confused with DacA in other bacteria which is a diadenylate cyclase, othologous to CdaA). This 272 

low molecular weight penicillin binding protein (PBP) has been shown to cleave the last alanine 273 

from the interpeptide crossbridge to provide a substrate for peptide crosslinking and has also 274 

been shown to affect resistance to the cell wall acting antimicrobial peptide Lcn972 (Roces et al., 275 

2012).  An isogenic ΔdacA mutant was constructed in a wild-type MG1363 background and was 276 

found to be more resistant to penicillin G (zone of inhibition size was 37.1±0.1 mm for wild-type 277 

MG1363 and 29.8±0.4 mm for ΔdacA) confirming its role in peptidoglycan 278 

biosynthesis/maturation.  This is in contrast to what was expected however, as ΔgdpP mutants 279 

are resistant to β-lactams (Corrigan et al., 2011; Luo and Helmann, 2012; Smith et al., 2012; 280 

Witte et al., 2013), therefore suggesting that other aspects of c-di-AMP signalling play a role in 281 

antibiotic resistance in L. lactis. 282 

 283 

 284 

DISCUSSION 285 

Here we identify GlmM as a modulator of c-di-AMP synthesis through its regulation of 286 

CdaA activity.Using a suppressor screen to isolate mutants with reduced c-di-AMP levels in 287 

gdpP mutant backgrounds and subsequent genetic and biochemical studies, we identify GlmM as 288 

an important modulator of CdaA-mediated c-di-AMP synthesis (Fig. 6).  In turn, it is In 289 

additionfound that, it was found that the c-di-AMP level affects peptidoglycan precursor 290 

synthesis, thereby demonstrating a close interconnection between c-di-AMP and peptidoglycan 291 

synthesis pathways.  The broadly conserved clustering of glmM in the diadenylate cyclase cdaA 292 

gene operon in Firmicutes hasd drawn speculation of a role of c-di-AMP in peptidoglycan 293 
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biosynthesis (Luo and Helmann, 2012a; Corrigan and Grundling, 2013; Mehne et al., 2013; 294 

Witte et al., 2013; Commichau et al., 2015).  How GlmM regulates CdaA activity is uncertain at 295 

present, however it appears likely to be through direct protein-protein interaction as 296 

demonstrated here.  In agreement with this, recent work by Gundlach et al (2015b) has 297 

demonstrated binding between B. subtilis CdaA and GlmM.  Coordinated activity of CdaA and 298 

GlmM is likely to occur and therefore play a role in various phenotypic changes observed in cells 299 

with altered c-di-AMP levels, such as cell lysis. A model likely to be broadly conserved based on 300 

our results and others involving CdaA and GlmM is shown (Fig. 7).  301 

It is possible that CdaA may be able to respond directly to GlmM activity through 302 

protein-protein interaction, since other clustered genes in DAC encoding operons have been 303 

shown to physically interact with the DAC and regulate c-di-AMP synthesis.  These include 304 

CdaR which positively regulates CdaA (Mehne et al., 2013) and RadA which negatively 305 

regulates DisA (Zhang and He, 2013). Alternatively, it may be an indirect effect with CdaA 306 

sensing cell wall precursor levels or peptidoglycan changes. Regardless of this, the essential 307 

nature of c-di-AMP may be due to its regulation of peptidoglycan precursor biosynthesisHere we 308 

identify GlmM as a modulator of c-di-AMP through its regulation of CdaA activity.  The variant 309 

GlmM
I154F

 identified in this study was found to inhibit CdaA activity and bind to CdaA more 310 

strongly than to reduce c-di-AMP levels in L. lactis and in E. coli expressing CdaAR' more so 311 

than wild-type GlmM.  The structure of GlmM location of the I154 site can be examined based 312 

on the known structure of the homologous GlmM from Bacillus anthracis (Mehra-Chaudhary et 313 

al., 2011).  Using SWISS-MODEL, the 154 site in GlmM is predicted to be exposed on thea 314 

surface region of opposite side of the protein away from the active site phosphate transferring 315 

serine at residue 101.  Interestingly the equivalent position of I154 in L. lactis GlmM is a 316 

phenylalanine (F) in S. aureus, B. subtilis and L. monocytogenes.  This suggests that the I154F 317 

mutation that occurred in the L. lactis GlmM doesn’t destroy activity of the enzyme.  It is 318 

possible that this region of the enzyme may be the point of contact between GlmM and CdaA, 319 

however more work is needed to determine this., but may alter how it is regulated and how it 320 

regulates CdaA.  321 

The only other identified regulator of CdaA that has been identified to date is the 322 

membrane bound extracellular exposed CdaR (Mehne et al., 2013).  In the heterologous host E. 323 

coli, it was shown that B. subtilis CdaR positively regulated CdaA and binding between the two 324 

proteins has been confirmed (Mehne et al., 2013).  In contrast, recent work in L. monocytogenes 325 

has suggested that CdaR is a negative regulator of CdaA as a cdaR mutant contained a higher c-326 
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di-AMP level (Rismondo et al., 2015).  Like that found for B. subtilis, L. monocytogenes CdaR 327 

and CdaA directly interact (Rismondo et al., 2015).  Our findings comparing c-di-AMP levels in 328 

E. coli expressing various combinations of cdaA operon genes from S. aureus suggest that CdaR 329 

also negatively regulates CdaA activity in this system.   Despite these differences, which may be 330 

due to the experimental conditions employed, it is clear that CdaR is an important regulator of 331 

CdaA.  Although strain backgrounds and gdpP mutations are different, a ~3-fold higher level of 332 

c-di-AMP in OS1 compared to OS3 could perhaps be due to L. lactis MG1363 derivatives not 333 

carrying a functional negative regulator CdaR as mentioned above.  In B. subtilis another DAC 334 

(Mehne et al., 2014)(DisA) is regulated by RadA (Zhang and He, 2013), suggesting that DAC 335 

enzymes likely operate as complexes with other proteins which regulate their activity and thus c-336 

di-AMP levels.   337 

 338 

. 339 

The vast majority of mutations restoring osmoresistance in gdpP mutants were affected in 340 

the CdaA enzyme thus providing an excellent inverse correlation between c-di-AMP level and 341 

osmoresistance. Numerous single amino acid altering suppressor mutations were identified in 342 

regions in CdaA outside of the DAC domain including within and between the three N-terminal 343 

transmembrane domains. It is possible that the changes may affect CdaA activity by affecting 344 

dimerisation which has been shown recently for L. monocytogenes CdaA (Rosenberg et al., 345 

2015), interaction with the CdaR or GlmM regulatory proteins or sensing of cell envelope or 346 

external stimuli. Synthesis of c-di-AMP has been found to be essential in several Gram-positive 347 

bacteria (Luo and Helmann, 2012a; Mehne et al., 2013) including L. monocytogenes, S. aureus 348 

and Streptococcus pneumoniae, where deletion of their single DAC gene is not possible when 349 

cultured on rich media (Song et al., 2005; Chaudhuri et al., 2009; Woodward et al., 2010).  350 

Recent work has however identified that CdaA and thus c-di-AMP is not essential in L. 351 

monocytogenes when cells are cultured on minimal media or when suppressor mutations 352 

affecting (p)ppGpp levels or peptide transport exist (Whiteley et al., 2015).  Since we were using 353 

rich media for our suppressor selection experiment, Wwe were surprised therefore to see 354 

frameshift mutations in the cdaA gene in osmoresistant suppressor mutants upstream of the DAC 355 

domain encoding region of cdaA, as this would be predicted to generate a cell devoid of DAC 356 

activity. However the location of an alternative ATG start codon (residue 136) just inside the 357 

start of the DAC domain could potentially allow expression of an N-terminally truncated enzyme 358 

(Fig. 2). In agreement with this, a low but detectable level of c-di-AMP was found in the OR1 359 
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mutant which has a frameshift mutation early in the gene (codon 11). Due to destructive 360 

background mutations in gdpP in the osmoresistant suppressor mutants, low levels of c-di-AMP 361 

are predicted to be more stable as the cell is likely devoid of significant c-di-AMP 362 

phosphodiesterase activity.  It is also plausible that cdaA naturally encodes two variants, one of 363 

which is the full length membrane bound version and the other may begin with M136 and be 364 

devoid of the N-terminal transmembrane domains.  Interestingly, this methionine is conserved in 365 

most CdaA proteins in other bacteria (Fig. S1). 366 

Suppressor mutations in cdaA have recently been identified in a B. subtilis strain lacking 367 

both GdpP and PgpH phosphodiesterases that underwent lysis on agar plates (Gundlach et al., 368 

2015b).   Overall c-di-AMP levels within the mutants however did not change, leading the 369 

authors to speculate that local pools of CdaA controlled c-di-AMP exist within the cell 370 

(Gundlach et al., 2015b).  Our findings of significantly lower c-di-AMP levels within L. lactis 371 

cdaA osmoresistant suppressor mutants perhaps reflect a more simple bacterium where only one 372 

DAC is present.  In addition to this, the relatively high c-di-AMP levels we observed in the L. 373 

lactis gdpP mutant, which were for example 80-fold higher than the cdaA suppressor mutant 374 

OR1, is possibly reflective of L. lactis lacking a PgpH phosphodiesterase (Huynh et al., 2015).  375 

Similarly the gdpP mutant of S. aureus, which also lacks PgpH(Huynh et al., 2015b), has ~15-376 

fold higher c-di-AMP than wild-type (Corrigan et al., 2011).  Evidence is mounting showing that 377 

growth conditions can alter the importance of different enzymes in their regulation of c-di-AMP 378 

levels, including nitrogen source (Gundlach et al., 2015b) and growth in media or host cells 379 

(Huynh et al., 2015) and it is likely that additional yet to be discovered enzymes exist which can 380 

regulate c-di-AMP under certain environmental conditions.      (Huynh et al., 2015) 381 

  382 

The role of c-di-AMP in cell wall homeostasis has been established based on several 383 

findings from several laboratories. It has been found in different bacteria that there is a direct 384 

correlation between resistance to cell wall acting antibiotics and c-di-AMP level (Corrigan et al., 385 

2011; Luo and Helmann, 2012a; Smith et al., 2012; Kaplan Zeevi et al., 2013; Witte et al., 386 

2013).  S. aureus gdpP mutants have increased peptidoglycan cross-linking (Corrigan et al., 387 

2011) and cCells with low c-di-AMP have been found to exhibit a lysis phenotype which can be 388 

stabilized by high osmoticNaCl conditions or Mg
2+

 (Luo and Helmann, 2012a; Witte et al., 389 

2013; Rismondo et al., 2015). In agreement with this, Wwe observed that many cdaA suppressor 390 

mutants exhibited growth defects on normal agar which could was be restored upon addition of 391 

salt, and also differences and also changes in autolysis rates in for strainscells with different c-di-392 
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AMP levels. Mutation in gdpP has been found to lead to increased peptidoglycan cross-linking 393 

in S. aureus (Corrigan et al., 2011) and in agreement with this we found that the PBP (DacA) is 394 

highly upregulated in a gdpP mutant and its inactivation affects penicillin resistance. DacA in L. 395 

lactis is a D-Ala-D-Ala-carboxypeptidase which cleaves peptidoglycan pentapeptide side chains 396 

to form tetrapeptide side chains (Roces et al., 2012). Spontaneous Lactococcus mutants with 397 

resistance to the bacteriocin Lcn972 were found to have lower levels of pentapeptide side chains 398 

and were sensitive to penicillin and lysozyme further suggesting an important role for DacA in 399 

peptidoglycan maturation and cell wall acting antimicrobial resistance (Roces et al., 2012). 400 

DacA is homologous to PBP3 from S. pneumoniae, DacA (PBP5) of B. subtilis and PBP4 of S. 401 

aureus and its role in trimming the last residue in the peptide side chain likely reduces the 402 

availability of donors for the transpeptidation reaction, thus regulating the degree of 403 

peptidoglycan crosslinking (Morlot et al., 2004).  In a recent study of S. aureus, PBP4 was found 404 

to be transcriptionally upregulated 2.7-fold in a gdpP mutant (Corrigan et al., 2015).  Further 405 

work exploring how c-di-AMP regulates DacA/PBP4 levels and what role this PBP plays in β-406 

lactam resistance is of interest to allow understanding of how c-di-AMP level changes lead to 407 

resistance to several different cell wall acting antibiotic classes (Luo and Helmann, 2012) .   408 

Here we identify GlmM as a modulator of c-di-AMP through its regulation of CdaA 409 

activity.  The variant GlmM
I154F

 was found to reduce c-di-AMP levels in L. lactis and in E. coli 410 

expressing CdaAR' more so than wild-type GlmM.  The structure of GlmM can be examined 411 

based on the known structure of the homologous GlmM from Bacillus anthracis (Mehra-412 

Chaudhary et al., 2011).  Using SWISS-MODEL, the 154 site in GlmM is predicted to be 413 

exposed on the surface of opposite side of the protein away from the active site phosphate 414 

transferring serine at residue 101.  Interestingly the equivalent position of I154 in L. lactis is a 415 

phenylalanine (F) in S. aureus, B. subtilis and L. monocytogenes.  This suggests that the I154F 416 

mutation that occurred in the L. lactis GlmM doesn’t destroy activity of the enzyme, but may 417 

alter how it is regulated and how it regulates CdaA. 418 

Comparison of the proteome of wild-type L. lactis to the gdpP mutant OS2 revealed 30 419 

proteins with a >2-fold difference in expression.  The glycine-betaine transporter BusAB was 420 

downregulated in the L. lactis gdpP mutant.  Another major function of c-di-AMP that has been 421 

identified is in the control of osmotolerance. Appropriate turgor pressure needs to be strictly 422 

controlled in bacteria by regulation of the accumulation of osmolytes including ions such as K
+
 423 

and compatible solutes such as glycine-betaine (Kempf and Bremer, 1998). Recent work has 424 

identified the K
+
 transport gating component KtrA as a c-di-AMP effector which affects 425 
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osmoresistance by regulating K
+
 transport in a c-di-AMP dependent manner (Corrigan et al., 426 

2013; Bai et al., 2014). Additionally the riboswitch ydaO which regulates the expression of a 427 

broad range of genes, including osmoprotection genes such as those encoding K
+
 and compatible 428 

solute transporters, has been shown to bind c-di-AMP (Nelson et al., 2013).  In L. lactis we have 429 

previously shown that the glycine-betaine transporter BusAA-AB is downregulated 5-fold in a 430 

gdpP mutant suggesting it may be a reason for the osmosensitive phenotype in this strain (Smith 431 

et al., 2012).  Interestingly numerous destructive mutations were identified in the GbuABC 432 

glycine-betaine transporter genes in c-di-AMP deficient suppressor mutants of L. monocytogenes 433 

(Whiteley et al., 2015) suggesting that high levels of intracellular glycine-betaine is detrimental 434 

to growth.  We hypothesise that K
+
 and glycine-betaine transporters are closed or not expressed, 435 

respectively, in cells with high c-di-AMP and are open or overexpressed, respectively, in cells 436 

with low c-di-AMP.  This would explain why high c-di-AMP cells are osmosensitive and low c-437 

di-AMP cells are osmoresistant or even become dependent upon high osmolarity for normal 438 

growth, as we found in the current study.  Further exploration of the role of c-di-AMP in 439 

osmoregulation is required to confirm this model and studies are needed to elucidate other 440 

important and possibly interrelated roles this signalling molecule plays within the cell. In 441 

contrast to our findings, in a microarray experiment performed with a gdpP mutant of L. 442 

monocytogenes, expression of the homologous osmolyte transporter (OpuCA encoded by 443 

lmo1428) was found to be upregulated 2.2-fold (Witte et al., 2013).  Only slightly increased 444 

levels of c-di-AMP were observed in the supernatant of this mutant therefore it is possible that 445 

the c-di-AMP level is not high enough to trigger downregulation of this osmolyte transporter.  446 

Whether c-di-AMP affects BusAA-AB expression directly or indirectly through possible effects 447 

on ion homeostasis remains to be determined. 448 

Several other differentially regulated proteins in our dataset have been reported in other 449 

studies examining c-di-AMP signalling.  The acetaldehyde-CoA/alcohol dehydrogenase AdhE 450 

and the oligopeptide binding protein transporter OppA were downregulated 3.6- and 2.5-fold, 451 

respectively in the L. lactis gdpP mutant.  AdhE was also transcriptionally downregulated 11-452 

fold in a gdpP mutant of S. aureus (Corrigan et al., 2015).  Interestingly, both AdhE (Lmo1634) 453 

and OppA were also identified recently in a chemical proteomics screen to identify c-di-AMP 454 

interacting proteins in L. monocytogenes (Sureka et al., 2014), indicating that this binding may 455 

affect protein levels.  Further work is needed to identify how c-di-AMP levels alter the 456 

expression of these proteins and importantly how this binding may influence the cell’s 457 

phenotype. 458 
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 459 

 460 

 461 

 462 

EXPERIMENTAL PROCEDURES 463 

Isolation of osmoresistant suppressor mutants from gdpP mutant strains OS1, OS2 and OS3 464 

L. lactis subsp. cremoris strains used in this study are shown in Table S1. Strain MG1363 and 465 

derivatives were cultured as described previously (Smith et al., 2012). Two independent 466 

MG1363 derivatives (OS1 and OS2) and an ASCC892185 derivative (OS3) contain mutations in 467 

the gdpP gene which were shown to be osmosensitive (Smith et al., 2012). To isolate 468 

osmoresistant suppressor mutants, cells were taken from different growth phases in broth (lag, 469 

mid-log and stationary phase), from colonies of agar plates and from frozen glycerol (40% final 470 

v/v) stocks and plated onto GM17 or LM17 containing an additional 0.2, 0.25 or 0.3 M sodium 471 

chloride. Following incubation for 2-3 days at 30°C, colonies were then re-streaked onto agar 472 

containing the same level of salt again to ensure purity before being subcultured in broth without 473 

added salt and frozen in 40% glycerol at -80°C. To confirm stable osmoresistance, cells were 474 

tested for growth on salt containing agar similarly to that described previously (Smith et al., 475 

2012). 476 

 477 

Whole-genome sequencing and mutation identification 478 

Whole genome sequencing of strains OS2, OR1, OR2 and OR5 was carried out using an 479 

Illumina HiSeq2000 instrument (Macrogen, South Korea). Trimming and mapping of 100-bp 480 

raw reads to the reference L. lactis MG1363 genome was performed using Geneious Pro 6.1.6 as 481 

described previously (Smith et al., 2012). Criteria for SNP identification were >100-fold 482 

coverage with >90% variant frequency as used previously (Linares et al., 2010; Smith et al., 483 

2012). In a few cases, SNPs which were called in one strain but not another (due to a slight 484 

greater than to having slightly lower than 90% variation frequency), were confirmed using a 485 

slightly lower threshold cut-off and manual inspection. SNPs in OS1 have been identified before 486 

(Smith et al., 2012) while SNPs in strains OS2, OR1, OR2 and OR5 are identified here from 487 

mapping using average read depths of 554-, 659-, 704- and 633-fold, respectively. SNPs in cdaA, 488 

gdpP and glmM were confirmed following PCR using GoTaq green (Qiagen) and Sanger 489 

sequencing (Macrogen, South Korea) using primers listed in Table S1. 490 
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 491 

Penicillin susceptibility test 492 

Susceptibility tests for penicillin were performed using a disk diffusion assay (Luo and Helmann, 493 

2012a) with slight modifications. A volume of 0.1 ml of the strain harvested in mid-log phase 494 

(OD600 ~ 0.6) was mixed with 5 ml of GM17 containing 0.75% agar and poured onto an agar 495 

base consisting of GM17 containing 1.5% agar (15ml). Sterile 8 mm diameter filter paper disks 496 

(Advantec, CA) were loaded with 20 μg penicillin G (Sigma-Aldrich, MO) and put on the agar. 497 

The diameter of each growth inhibition zone was measured after overnight incubation at 30°C. 498 

The difference between strains tested in triplicate was analyzed using the Student’s t-test. 499 

 500 

Extraction of c-di-AMP 501 

Overnight L. lactis cultures were diluted 1:100 into 30 ml GM17 or LM17 broth and incubated at 502 

30C till OD600~0.7 (mid-log phase). Cells were pelleted by centrifugation at 3,500 × g (Awel 503 

MF20, Awel International, France) for 5 min, and re-suspended in 1 ml ice-cold extraction buffer 504 

(40% methanol, 40% acetonitrile and 20% ddH2O in vol.). Fifty microliters of 2-,2-dideoxy-505 

cyclic diadenosine monophosphate (Biolog, Denmark) was added and used as an internal 506 

standard. Samples were mixed with 0.5 ml equivalent of 0.1 mm zirconia/silica beads and 507 

disrupted using a Mini-Beadbeater-16 (Biospec, USA) 3 times for 1 min each with 1 min cooling 508 

on ice in between. Glass beads were separated by centrifugation at 16,873 × g (Eppendorf, 509 

Germany) for 5 min. The supernatant was dried under liquid nitrogen before resuspended in 1ml 510 

ddH2O before being filtered (0.22 µm pore size). Levels of protein in a duplicate culture sample 511 

taken were determined following equivalent cell homogenisation using a Qubit Protein Assay Kit 512 

and Qubit 2.0 Fluorometer (Invitrogen, Life Technologies). 513 

 514 

Quantification of c-di-AMP 515 

C-di-AMP was detected and quantified by UPLC-coupled tandem mass spectrometry (UPLC-516 

MS/MS; Waters Corporation, Milford City, MA). The chromatographic separation was 517 

performed on an ACQUITY UPLC, using a C18-BEH 1.7µm x 2.1 x 100mm column. Eluent A 518 

consisted of 10 mM ammonium acetate in water and eluent B was methanol. Sample volume of 519 

10µl, with a flow rate of 0.3 ml/min. Eluent A (98%) was used from 0 to 1 min followed by a 520 

linear gradient from 98% to 50% of eluent A until 10 min.  The column was then washed with 521 

100% B for 4 mins, and then re-equilibrated with 98% A for 6 mins prior to re-injection. The 522 
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internal standard of 2-,2-dideoxy-c-di-AMP and commercial c-di-AMP (Biolog, Denmark) 523 

were used.  Analyte detection was performed on a Synapt G2-Si mass spectrometer equipped 524 

with an electrospray ionization source (Waters Corporation) using MRM transitions of the 525 

internal standard 627→216 and c-di-AMP 659→330 in positive ionization mode, using argon as 526 

collision gas. Detection of c-di-AMP was carried out with Mass Lynx software (Waters 527 

Corporation). 528 

 529 

Quantification of UDP-N-acetylglucosamine 530 

UDP-NAG was detected and quantified using a modified method (Marcellin et al., 2009). 531 

Cultures in mid-exponential growth phase were spun at 6,000 × g (Allegra X14, Coulter 532 

Beckman, USA) for 5 min, and the cell pellet was resuspended in ice cold 50% acetonitrile 533 

containing 50 nmol of azidothymidine (Sigma-Aldrich) as internal standard. Samples were lysed 534 

using 0.1 mm glass beads (Biospec, USA) using a Precellys 24 homogenizer equipped with a 535 

cryolys unit (Precellys, France) to maintain the temperature bellow 4°C. The supernatant was 536 

freeze dried and resuspended in 200 µL of MilliQ water. UDP-NAG was detected and quantified 537 

using LCMS. The mass spectrometer, an ABSciex 4000 QTRAP (ABSciex, Canada), was 538 

attached to a Dionex Ultimate 3000 liquid chromatography system (Dionex, USA). 539 

Chromatographic separation was achieved on a Gemini-NX C18 150×2.0 mm, 3 µm 110 Å 540 

particle column (Phenomenex, Germany) maintained at 55°C in the column oven as previously 541 

described (McDonald et al., 2014).  542 

 543 

Autolysis of L. lactis strains 544 

Overnight cultures of L. lactis MG1363, OS2, OR5 and several OR mutants with differing cdaA 545 

mutations were diluted 1/100 in 35 mL of fresh GM17 broth.  OD600 measurements using a 546 

spectrophotometer (Lovibond, Germany) were taken using 2 mL of culture regularly during the 547 

growth phase and then less regularly during lysis.  Before each sample was taken the culture was 548 

mixed by vortexing to ensure homogeneity of the cells.    549 

 550 

Expression of cdaA operon genes from L. lactis and S. aureus in E. coli. 551 

Genes from L. lactis MG1363 were synthesised and cloned into XhoI and PstI sites in pRSET-A 552 

downstream of the T7 promoter by Geneart (Life Technologies, Germany).  Gene names in 553 

MG1363 are named llmg_0448 (cdaA), llmg_0449 and llmg_0450 (cdaR') and llmg_0451 554 

(glmM).  The start codon for CdaA was changed from a TTG to an ATG in all the constructs to 555 
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improve expression.  For the glmMI154F mutant construct, a single nucleotide change was 556 

introduced which was identical to that found in L. lactis OR5.  Genes from S. aureus NCTC 557 

8325 were synthesised and cloned into XhoI and PstI sites in pRSET-A downstream of the T7 558 

promoter by Geneart (Life Technologies, Germany).  Gene names in NCTC 8325 are named 559 

SAOUHSC_02407 [cdaA], SAOUHSC_02406 [cdaR] and SAOUHSC_02405 [glmM]).   L. lactis 560 

gene Pplasmids were transformed into E. coli BL21 (DE3) (New England Biolabs, USA), while 561 

S. aureus gene plasmids were transformed in to E. coli T7 Express lysY/I
q
 (New England 562 

Biolabs, USA).  and Ggenes were expressed from OD600 ~0.5 (mid-log phase) with 1 mM 563 

isopropyl-B-D-thiogalactopyranoside (IPTG) for 3 hours at 37°C with shaking at 220 rpm.  Cells 564 

from 6 ml culture were harvested by centrifugation at 16,873 × g for 5 mins and c-di-AMP levels 565 

were determined as above for L. lactis.  Levels of protein in a duplicate culture sample taken 566 

were determined following equivalent cell homogenisation using a Qubit Protein Assay Kit and 567 

Qubit 2.0 Fluorometer (Invitrogen, Life Technologies). 568 

 569 

Bacterial two-hybrid system analysis of CdaA-GlmM interaction 570 

The bacterial adenylate cyclase two-hybrid system (Euromedex, France) allows evaluation of 571 

protein-protein interactions following co-expression of test proteins fused to T25 and T18 572 

subunits of the Bordetella pertussis adenylate cyclase.  If the proteins interact, T25 and T18 are 573 

brought together leading to cAMP synthesis and activation of the catabolite activator protein 574 

CAP resulting in increased expression of the lacZ reporter gene and β-galactosidase activity.  575 

PCR primers used to cloned genes into plasmids are shown in Table S1.  The L. lactis cdaA gene 576 

encoding a protein without the N-terminal transmembrane domains (αα 98-292) was cloned into 577 

PstI and KpnI digested pKNT25 in frame with the T25 cya gene fragment at the 3’ end.  The 578 

wild-type glmM and glmMI154F variant genes were cloned into PstI and KpnI digested pUT18C in 579 

frame with the T18 cya gene fragment at the 5’ end.  Plasmids, including empty pUT18C and 580 

pKNT25 and also positive control zip gene containing plasmids were transformed into E. coli 581 

DHP-1 and selection using kanamycin (50 µg/mL) and ampicillin (100 µg/mL) in Luria-Bertani 582 

(LB) agar. From this point onwards antibiotics were always included when growing these strains 583 

and incubation was always carried out at 29°C (Gloeckl et al., 2012).  β-galactosidase activity on 584 

agar was examined following spotting of mid-log phase (OD600 ~0.5) E. coli cultures grown in 585 

LB broth onto LB agar with IPTG (0.5 mM) and X-gal (40 µg/mL) and incubation for 16.5 hr at 586 

29°C.  Following this the plates were stored for 4 d at 4°C to allow colour development.  β-587 

galactosidase activity in broth was quantified from mid-log phase (OD600 ~0.5) E. coli cultures 588 
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grown in LB broth with IPTG (0.5 mM) and assayed according to the BACTH kit instructions 589 

(Euromedex, France) except chloroform was used to permeabilize cells instead of toluene.  590 

Enzymatic activity is presented as Miller units (Ref needed here XXXX).   591 

 592 

Proteome comparison of MG1363 and OS2 using SWATH MS 593 

Proteins were extracted from cell pellets obtained from triplicate mid-exponential phase cultures. 594 

Cells were lysed using glass beads for 5 minutes at 4,800 rpm using a Precellys 24 homogenizer 595 

equipped with a cryolys unit (Precellys, France) at 4°C. RNaseA and DNaseI (Thermo Scientific, 596 

USA) were added and incubated for 15 minutes at room temperature. The lysate was clarified at 597 

16,000 × g for 10 min at 0°C and the protein concentration in the supernatant was measured 598 

using the 2D Quant Kit (GE Healthcare, USA). Proteins (100 µg) were digested overnight with 599 

Trypsin Gold (Promega, USA) using FASP (Wisniewski et al., 2009) and analysed via Nano-LC 600 

MS/MS. The mass spectrometer (ABSciex TripleTof 5600, Canada), was equipped with a nano-601 

spray ESI sources operated in positive ion mode coupled to a Nano-LC (Shimadzu Prominence, 602 

Japan). Peptides were separated using a flow rate of 30 μl/min on a Vydac Everest C18 column 603 

(300 A, 5 μm, 150 mm × 150 μm) at a flow rate of 1 μl/min and a gradient of 10-60% mobile 604 

phase B over 90 min. Analyst Software was used for peak picking with a method searching for 605 

masses of 300 to 1800 Da. A SWATH reference library was generated from information-606 

dependent acquisition on a pooled sample containing 30 µg of proteins selecting for +2 to +4 607 

charges which exceeded 150 counts using Enhanced Resolution scans. The two most abundant 608 

ions in each of these scans (or with unknown charge) were subjected to MS/MS. Protein Pilot 609 

Software v 4.5 (ABSciex, Canada) and the Paragon Algorithm were used for peptide 610 

identification. The theoretical ions and peaks were matched using the tolerance used by the 611 

Paragon Algorithm search, based on information about the mass accuracy of the instrument 612 

chosen in the Paragon Method dialog box. Search parameters used were the same as specified 613 

previously (Marcellin et al., 2013). SWATH MS was used for protein quantification (Gillet et 614 

al., 2012). SWATH analyses scanned across m/z 350-1800 for 0.05 sec followed by high 615 

sensitivity DIA mode, using 26 m/z (1 m/z for window overlap) isolation windows for 0.1 sec, 616 

across m/z 400-1250. Collision energy for SWATH samples was automatically assigned based 617 

on m/z mass windows by Analyst. C18 ZipTips (Millipore, USA) were used to avoid overloading 618 

the detector and to ensure that equal amount of peptides (1 µg) were loaded in SWATH MS 619 

mode. Prior to MS analysis, samples were concentrated using a vacuum centrifuge to remove 620 

residual acetonitrile and resuspended in 99.5 µl of 0.1% formic acid (Mobile phase A). Each 621 
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sample was spiked with 0.5 µl of synthetic peptides in order to correct for retention time shifts 622 

between samples (HRM calibration kit from Biognosys, Switzerland). All IDA and SWATH 623 

samples were injected twice. Peak View (ABSciex, Canada) was used for peak selection.  624 

 625 

Contruction of a ΔdacA mutant 626 

Flanking regions either side of dacA (llmg_2560) were amplified and fused by splicing by 627 

overlap extension PCR (SOE-PCR) using primers listed in Table S1. These fragments were then 628 

cloned into suicide plasmid pRV300 (Leloup et al., 1997) to generate pRV300∆dacA which was 629 

transformed into the wt MG1363 using a standard method (Wells et al., 1993) and integrants 630 

were selected using 3 μg/ml erythromycin and confirmed by PCR. The vector was then excised 631 

from the chromosome by successive subculturing in fresh GM17 broth without erythromycin. 632 

Replica plating on GM17 agar with and without erythromycin allowed detection of the deletion 633 

mutant which was confirmed by PCR (Table S1). 634 

 635 
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 804 

Table 1. Polymorphisms identified in osmoresistant suppressor mutants OR1 and OR2 compared 805 

with the parent OS1 by whole genome sequencing. 806 

 807 

Strain Reference 

position  

Gene or region Gene function Nucleotide 

change  

Protein effect 

OR1 442839 llmg_0448 (cdaA) c-di-AMP synthase A deletion Frameshift from 

codon 11  

 1010850 142-bp upstream of busAA Glycine betaine 

transporter 

G → T Intergenic 

      

OR2 443214 llmg_0448 (cdaA) c-di-AMP synthase G → A M136I 

     

824826 16-bp upstream of uxuB Fructuronate reductase A → G Intergenic 

 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 
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 816 

 817 

 818 

Table 2. Proteome comparison of wild-type MG1363 and high c-di-AMP containing strain 819 

(OS2). Only proteins which had a >2.0 fold change and P<0.05 are presented and up-regulated 820 

proteins are shaded grey. 821 

GI # Protein^ 

 

Alternate 

protein 

name 

Putative function Fold change 

(OS2 vs wt) 

P-

value* 

125625313 Llmg_2560 DacA D-alanyl-D-alanine carboxypeptidase 18.2 0.01 

125624549 Llmg_1759  NADH-flavin reductase 12.2 0.04 

125625244 Llmg_2488 RuvA Holliday junction resolvasome, DNA-binding subunit 6.7 0.04 

125623715 Llmg_0871 Asd Aspartate-semialdehyde dehydrogenase 6.3 0.04 

125624459 Llmg_1660  TetR family transcriptional regulator 5.1 0.02 

125623296 Llmg_0429 SodA Superoxide dismutase 3.4 0.01 

125623422 Llmg_0557 PrfA Protein chain release factor A 3.3 0.03 

125625088 Llmg_2327 GlpF3 Glycerol uptake facilitator and related permeases 3.2 0.02 

125623323 Llmg_0456 PgmB β-phosphoglucomutase 2.8 0.00003 

125623774 Llmg_0933  RNA binding protein 2.7 0.001 

125623372 Llmg_0505 NifZ Cysteine sulfinate desulfinase/cysteine desulfurase and 

related enzymes 

2.4 0.005 

125624134 Llmg_1314  Uncharacterized FAD-dependent dehydrogenases 2.1 0.01 

125624935 Llmg_2164  Uncharacterized conserved protein 2.1 0.0009 

125623623 Llmg_0769  DivIVA cell division initiation protein 2.0 0.0005 

125624150 Llmg_1330  hypothetical protein 0.48 0.002 

125623375 Llmg_0508  Cysteine synthase 0.47 0.003 

125623558 Llmg_0702 PepO Predicted metalloendopeptidase 0.46 0.004 

125623934 Llmg_1103  hypothetical protein 0.44 0.003 

125623969 Llmg_1138 MtsA Manganese transporter (substrate binding protein) 0.43 0.0003 

125624260 Llmg_1452  Amino acid transporters 0.41 0.004 

125623557 Llmg_0701 OppA Peptide transport system (substrate binding protein) 0.40 0.002 

125623967 Llmg_1136 MtsB Manganese transporter (ATPase component) 0.40 0.002 

125622903 Llmg_0022 MtlA Phosphotransferase system, mannitol-specific IIBC 

component 

0.40 0.0001 

125625268 Llmg_2514  Universal stress protein family (UspA) 0.37 0.003 

125623880 Llmg_1049 BusAB Glycine betaine transporter (permease component) 0.35 0.00007 

125623830 Llmg_0993 HprT Hypoxanthine-guanine phosphoribosyltransferase 0.34 0.0003 

125623241 Llmg_0372 AsnB Asparagine synthase (glutamine-hydrolyzing) 0.29 0.0002 

125625190 Llmg_2432 AdhE bifunctional acetaldehyde-CoA/alcohol dehydrogenase 0.28 <0.00001 
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125625247 Llmg_2491 MutS Mismatch repair ATPase (MutS family) 0.13 0.008 

125624224 Llmg_1412 GuaC Guanosine 5'-monophosphate oxidoreductase 0.10 0.00004 

^from Genbank entry AM406671.1    *Statistical analysis of these data (three biological replicates per strain) was 822 

performed by fitting the data for each protein to a linear model using the R package Limma. Limma's empirical 823 

Bayes method was used to calculate a moderated t-statistic test for the contrast and proteins were classified as 824 

differentially expressed if the adjusted p-value (Benjamini-Hochberg) was lower than 0.05. 825 

 826 

FIGURE LEGENDS 827 

Figure 1.  828 

Osmoresistant suppressor mutants of L. lactis OS1 and OS3 have reduced c-di-AMP. (A) 829 

Comparison of growth of L. lactis MG1363 background strains on GM17 agar or GM17 agar + 830 

0.25 M NaCl following spotting of serial dilutions. (B) Levels of c-di-AMP in wt, OS1, OR1 and 831 

OR2 mutants from three biological replicates. (C) Comparison of growth of industrial L. lactis 832 

ASCC892185 background strains on LM17 agar or LM17 agar + 0.2 M NaCl following spotting 833 

of serial dilutions. (D) Levels of c-di-AMP in wt, OS3, OR3 and OR4 mutants from three 834 

biological replicates. Significant P<0.01 (**) and P<0.05 (*) results were determined using 835 

Tukey’s test. ND, none detected. 836 

 Figure 1.  837 

Osmoresistant suppressor mutants of OS1 have reduced c-di-AMP. (A) Comparison of growth of 838 

L. lactis MG1363 background strains on GM17 agar or GM17 agar + 0.25 M NaCl following 839 

spotting of serial dilutions. (B) Levels of c-di-AMP in wt, OS1, OR1 and OR2 mutants. (C) 840 

Comparison of growth of industrial L. lactis ASCC892185 background strains on LM17 agar or 841 

LM17 agar + 0.2 M NaCl following spotting of serial dilutions. (B) Levels of c-di-AMP in wt, 842 

OS3, OR3 and OR4 mutants. **, P<0.01 using Tukey’s test based on results from duplicate 843 

cultures. ND, none detected. 844 

 845 

Figure 2.  846 

Location of mutations in the CdaA protein in osmoresistant suppressor mutants. Red dots 847 

indicate amino acid changes and dark blue horizontal bars indicate frameshift mutations. The 848 

transmembrane domains are highlighted as thick yellow regions and the DAC domain is marked 849 

green. The DAC active site residues are highlighted in cyan.  850 

 Figure 2.  851 
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Location of mutations in the CdaA protein in osmoresistant suppressor mutants. Red dots 852 

indicate amino acid changes and dark blue horizontal bars indicate frameshift mutations. The 853 

transmembrane domains are highlighted as thick yellow regions and the intracellular DAC 854 

domain is marked green. The DAC active site residues are highlighted in cyan.  855 

 856 

Figure 3. 857 

Mutation of glmM affects salt resistance, c-di-AMP level and peptidoglycan precursor synthesis. 858 

(A) Comparison of growth of strains on GM17 agar or GM17 agar + 0.25 M NaCl following 859 

spotting of serial dilutions. (B) Levels of c-di-AMP in wt, OS2 and OR5 mutants from three 860 

biological replicates. (C) Early steps in the bacterial cell wall peptidoglycan biosynthesis 861 

pathway. (D) Location of the glmM (femD) gene in the same operon as cdaA and the frameshift 862 

mutated cdaR pseudogene (denoted as cdaR') in MG1363.  The GlmM I154F mutation in OR5 is 863 

shown with an arrow. (E) Levels of peptidoglycan precursor UDP-N-acetylglucosamine in 864 

strains from three biological replicates. Significant P<0.01 (**) and P<0.05 (*) results were 865 

determined using Tukey’s test. ND, none detected.  866 

 Figure 3. 867 

Mutation of the glmM gene affects salt resistance, the c-di-AMP level and peptidoglycan 868 

precursor synthesis. (A) Comparison of growth strains on GM17 agar or GM17 agar + 0.25 M 869 

NaCl following spotting of serial dilutions. (B) Levels of c-di-AMP in wt, OS2 and OR5 870 

mutants. **, P<0.01 using Tukey’s test based on duplicate cultures. ND, none detected. (C) Early 871 

steps in the bacterial cell wall peptidoglycan biosynthesis pathway. (D) Location of the glmM 872 

gene in the same operon as cdaA and the frameshift mutated cdaR pseudogene (denoted as 873 

cdaR') in MG1363.  The GlmM I154F mutation in OR5 is shown with an arrow. (E) Levels of 874 

peptidoglycan precursor UDP-N-acetylglucosamine in strains. *, P<0.05 and **, P<0.01 using 875 

Tukey’s test based on triplicate cultures. 876 

 877 

Figure 4. 878 

Autolysis is affected by the c-di-AMP level in cells. Wild-type MG1363 (solid grey line), a high 879 

c-di-AMP containing osmosensitive gdpP mutant (OS2 [solid black line]), and several low c-di-880 

AMP osmoresistant suppressor mutants derived from OS2 containing cdaA (dashed grey lines) 881 

or glmM (OR5 [dashed black line]) mutations were incubated in GM17 broth at 30°C and 882 

monitored with regular OD600 measurements. Averages and standard deviation error bars are 883 

shown based on three biological replicates. 884 
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 Figure 4. 885 

Autolysis is affected by the c-di-AMP level in cells. Wild-type MG1363 (solid black line), a high 886 

c-di-AMP containing osmosensitive gdpP mutant (OS2 [solid grey line]), and several low c-di-887 

AMP osmoresistant suppressor mutants containing cdaA (dashed grey lines) or glmM (OR5 888 

[dashed black line]) mutations were incubated in GM17 broth at 30°C and monitored with 889 

regular OD600 measurements. The experiment was carried out in duplicate (SD is shown as error 890 

bars). 891 

 892 

Figure 5. 893 

GlmM reduces c-di-AMP synthesis by CdaA and the GlmM
I154F 

variant shows greater inhibitory 894 

action. (A) Three different combinations of CdaA operon genes from L. lactis MG1363 were 895 

expressed in E. coli and c-di-AMP levels from three biological replicates were determined.  896 

CdaR' indicates the product(s) from the frameshift mutated cdaR' pseudogene which has 897 

homology to the YbbR domain containing protein CdaR in other bacteria.  The star indicates the 898 

I154F mutation in GlmM. (B) Three different combinations of CdaA operon genes from S. 899 

aureus NCTC 8325 were expressed in E. coli and c-di-AMP levels from three biological 900 

replicates were determined. Significant P<0.01 (**) results were determined using Tukey’s test.  901 

 Figure 5. 902 

GlmM
I154F

 reduces c-di-AMP synthesis by CdaAR' in E. coli more than wild-type GlmM. (A) 903 

Three different combinations of CdaA operon genes from L. lactis MG1363 were expressed in E. 904 

coli.  CdaR' indicates the product(s) from the frameshift mutated cdaR' pseudogene which has 905 

homology to the YbbR domain containing protein CdaR in other bacteria. (B) Levels of c-di-906 

AMP in three E. coli strains expressing genes shown in (A) were determined **, P<0.01 using 907 

Tukey’s test based on triplicate cultures. 908 

 909 

Figure 6. 910 

L. lactis GlmM
I154F

 binds more strongly to CdaA than GlmM. Bacterial two-hybrid analysis 911 

showing β-galactosidase activity in E. coli strains containing different combinations of two 912 

plasmids encoding domains of the B. pertussis adenylate cyclase. Different genes cloned into 913 

pKNT25 or pKT25 and pUT18C are indicated. The leucine zipper GCN4 (Zip) proteins are 914 

positive controls (
a
note that zip in cloned in pKT25 while cdaA was cloned in pKNT25), while 915 

negative controls containing at least one empty plasmid (indicated as ‘―’) are shown. The 916 

negative control strain which had the highest β-galactosidase activity was used for comparison to 917 
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the strain expressing both CdaA and GlmM. Significant P<0.01 (**) results were determined 918 

using Tukey’s test using three biological replicates.  919 

 920 

Figure 7. 921 

Model of the c-di-AMP signalling pathway involving CdaA from results obtained in this and 922 

other studies.  Solid black lines indicate enzymatic reactions, dashed black lines indicate a 923 

translation product, red lines indicate a negative effect and green arrows indicate a positive 924 

effect. Synthesis and degradation of c-di-AMP is carried out by diadenylate cyclase (CdaA as the 925 

most common and is shown here) and phosphodiesterase (GdpP is the most common and is 926 

shown here).  CdaR binds to and regulates CdaA mediated c-di-AMP synthesis (note that in L. 927 

lactis MG1363 cdaR is a pseudogene).  The stringent response nucleotide (p)ppGpp inhibits 928 

GdpP thereby reducing c-di-AMP hydrolysis while high or low c-di-AMP levels can result in an 929 

increase in the (p)ppGpp level.  GlmM binds directly to and inhibits CdaA mediated c-di-AMP 930 

synthesis and c-di-AMP levels affect peptidoglycan precursor (UDP-NAG) biosynthesis, most 931 

likely via GlmM.   932 

 933 

 934 

Figure 6. 935 

Model of the c-di-AMP signalling pathway involving CdaA from results obtained in this and 936 

other studies.  Solid black lines indicate enzymatic reactions, dashed black lines indicate a 937 

translation product, red lines indicate a negative effect and green arrows indicate a positive 938 

effect. Synthesis and degradation of c-di-AMP is carried out by diadenylate cyclase (CdaA as the 939 

most common and is shown here) and phosphodiesterase (GdpP is the most common and is 940 

shown here) enzymes.  CdaR binds to and stimulates CdaA mediated c-di-AMP synthesis (note 941 

that in L. lactis MG1363 cdaR is a pseudogene).  The stringent response nucleotide (p)ppGpp 942 

inhibits GdpP thereby reducing c-di-AMP hydrolysis while high c-di-AMP levels result in an 943 

increase in the (p)ppGpp level.  GlmM inhibits CdaA mediated c-di-AMP synthesis and c-di-944 

AMP levels affect peptidoglycan precursor (UDP-NAG) biosynthesis, most likely via GlmM. 945 

 946 

Supplementary Figure 1.  947 

Alignment of CdaA homologs in Gram-positive bacteria. Darker red shading indicates highly 948 

conserved residues while darker blue shading indicates less conserved residues. The location of 949 

the mutations found in suppressor mutant strains here are indicated by spots above the amino 950 
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acid. Bacteria listed are as follows: llm, Lactococcus lactis subsp. cremoris MG1363; bce, 951 

Bacillus cereus ATCC 14579; bsu, Bacillus subtilis subsp. subtilis 168; btk, Bacillus 952 

thuringiensis 97-27; cac, Clostridium acetobutylicum ATCC 824; cpe, Clostridium perfringens 953 

13; efa, Enterococcus faecalis V583; gka, Geobacillus kaustophilus; hhd, Halobacillus 954 

halophilus; lac, Lactobacillus acidophilus NCFM; lca, Lactobacillus casei ATCC 334; ljo, 955 

Lactobacillus johnsonii NCC 533; lla, Lactococcus lactis subsp. lactis Il1403; llc, Lactococcus 956 

lactis subsp. cremoris SK11; lme, Leuconostoc mesenteroides subsp. mesenteroides ATCC 957 

8293; lmo, Listeria monocytogenes EGD-e; lpl, Lactobacillus plantarum WCFS1; lrh, 958 

Lactobacillus rhamnosus GG; lsa, Lactobacillus sakei; ooe, Oenococcus oeni; ppe, Pediococcus 959 

pentosaceus ATCC 25745; sav, Staphylococcus aureus subsp. aureus Mu50 (MRSA/VISA); 960 

spm, Streptococcus pyogenes MGAS8232 (serotype M18); spn, Streptococcus pneumoniae 961 

TIGR4 (virulent serotype 4); spy, Streptococcus pyogenes SF370 (serotype M1); stc, 962 

Streptococcus thermophilus CNRZ1066. 963 


