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 

Abstract—Surface electromyography (sEMG) based pattern 

recognition studies have been widely used to improve the 

classification accuracy of upper limb gestures. Information 

extracted from multiple sensors of the sEMG recording sites can 

be used as inputs to control powered upper limb prostheses. 

However, usage of multiple EMG sensors on the prosthetic hand 

is not practical and makes it difficult for amputees due to 

electrode shift/movement, and often amputees feel discomfort in 

wearing sEMG sensor array. Instead, using fewer numbers of 

sensors would greatly improve the controllability of prosthetic 

devices and it would add dexterity and flexibility in their 

operation. In this paper, we propose a novel myoelectric control 

technique for identification of various gestures using the 

minimum number of sensors based on Independent Component 

Analysis (ICA) and Icasso clustering. The proposed method is a 

model based approach where a combination of source separation 

and Icasso clustering was utilized to improve the classification 

performance of independent finger movements for transradial 

amputee subjects. Two sEMG sensor combinations were 

investigated based on the muscle morphology and Icasso 

clustering and compared to Sequential Forward Selection (SFS) 

and greedy search algorithm. The performance of the proposed 

method has been validated with 5 transradial amputees, which 

reports a higher classification accuracy (>95%). The outcome of 

this study encourages possible extension of the proposed 

approach to real time prosthetic applications.  

 
Index Terms—Blind source separation (BSS); Independent 

component analysis (ICA); Finger Gestures; Linear discriminant 

analysis (LDA); Myoelectric control; Pattern Recognition, 

Surface electromyography (sEMG); Transradial Amputees. 

I. INTRODUCTION 

Nrecent years, myoelectric control based on surface 

electromyography (sEMG) has been the focus of the 

research on myoelectric prosthesis (MP) technology [1-4]. 
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Currently, most of the EMG-controlled device users are 

transradial upper-limb amputees (amputation occurred below 

elbow). For these people, the replacement of missing arm 

functionalities can be of a significant improvement to the 

quality of life [5-7]. Surface EMG based pattern recognition 

(PR) is achieved by applying pattern recognition algorithm to 

EMG signal stream. The approach consists of four sequential 

steps: (i) EMG signal conditioning and pre-processing, (ii) 

EMG feature extraction, (iii) EMG dimensionality reduction 

and (iv) EMG pattern classification [8]. 

Surface EMG pattern recognition techniques have been 

developed to increase dexterity of myoelectric control and to 

overcome the limitations of conventional proportional control 

by extracting multiple features from EMG signals rather than 

entirely relying on EMG amplitude [9]. In order to control a 

sEMG based prosthetic hand, it is essential to map EMG 

signals corresponding to different muscle contractions using 

various pattern recognition and classification methods[6]. 

However, in most of the instances, the above is achieved 

either by usage of larger number of EMG sensors or through 

EMG sensor arrays. Despite the encouraging results and 

higher classification accuracies from high-density sEMG 

recording and analysis, using a large number of EMG sensors 

hinders the practical application in terms of computational 

complexity and practicality. Therefore, for myoelectric 

prosthesis, it is very important to select a small number of 

appropriate sensors which can yield the desired classification 

accuracy. Moreover, it is essential to understand which 

muscles are relevant and how they are connected to each hand 

or finger movement. There exist numerous barriers which 

limit clinical implementation of PR systems. Among these are 

impractically large number of EMG sensors [10], variations in 

limb position [3, 11] and force variation [12, 13]. Usage of 

large number of EMG sensors may cause patient discomfort, 

in addition to the computational and hardware costs [14]. To 

improve the practicality and usability of PR systems, finding 

the optimal set of EMG sensors is an important challenging 

task. The benefits of reduced subset of EMG sensors can be 

seen not only in the laboratory controlled experiments, but 

also in the real time clinical prostheses usage which will have 

an important role to enable the clinical implementation of PR 

systems [4, 15]. 

In ideal situations, prosthetic devices use large number of 
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electrodes for gesture recognition. However, it is difficult to 

extract the reliable information (sources) and reduce the 

number of sensors (at the same time) due to the amputation 

level and muscle overlapping. In recent times, several research 

studies are carried out to tackle the above issue. A collection 

of sEMG sensor minimisation techniques are concisely 

presented below to emphasise the suitability of source 

separation technique for the task at hand. In order to reduce 

the number of sensors of myoelectric classification, 

previously, researchers have used a sequential forward 

selection (SFS) method [16]. The method selects the best 

single sensor for classification and then adds one sensor at a 

time that can maximize classification performance in 

combination with the selected sensors. With this method, the 

classifier has to be repeatedly implemented in order to select a 

single sensor each time. Moreover, reduction of the number of 

features in the same sensor is not considered, since features 

extracted from each sensor are fixed during the process. Thus, 

the SFS algorithm cannot remove the already selected features 

that may become obsolete after the addition of other candidate 

features (or sensors). In order to overcome the limitations of 

SFS, Liu et al [9], proposed a sensor reduction strategy based 

on evaluation of EMG features extracted from high-density 

surface EMG recordings. The proposed strategy showed an 

improvement and does not require repeated implementation of 

the classification, but such a system may not be practical for 

prosthetic devices due to the use of high density sensor arrays. 

Recently, Geng et al. [17] proposed a multi-class common 

spatial pattern (MCCSP) for EMG sensor selection for high 

density EMG recorded from impaired traumatic brain injury 

patients. The proposed method outperformed the traditional 

SFS and Fisher-Markov selector (FMS) in terms of finding the 

optimal EMG features for gesture classification. While the 

above studies showed significant improvement in reduction of 

sEMG sensors, identifying the best choice of sensors still 

remains an important challenge for EMG prosthetics. Also, 

since the sEMG signals are estimated from the front and back 

side of the forearm muscles [18, 19], a combination of source 

separation and careful selection of muscle configuration would 

help to minimise the number of sEMG sensors. 

Independent components analysis (ICA) is one of the blind 

source separations (BSS) techniques which utilises both lower 

and higher order statistics to estimate set of linearly mixed 

variables into their independent components (ICs). In the 

recent past, ICA has been extensively used for sEMG signal 

processing, especially for upper limb EMG applications [20-

22]. One of the advantages of using ICA is that it decomposes 

the linearly mixed several muscle activities into its constituent 

ICs or motor units [20, 22].  

Extracting most reliable information from the ICA 

algorithms are always a challenging task, because they (most 

algorithms) have random (stochastic) elements [23]. The most 

reliable ICs provide important neural information for the 

myoelectric classification. One solution in this regard is to use 

Icasso, an extension of ICA, which pools all the IC estimates 

together and forms clusters bottom-up among them. The basic 

idea is that a tight cluster of estimates is considered to be a 

candidate for including a ―good‖ estimate. A centroid of such 

cluster is considered more reliable estimates than any estimate 

from an arbitrary run[24]. In the recent past, Icasso has been 

successfully used for various biomedical signal processing 

applications such as artefact removal [25], measuring 

directional coupling between electroencephalography (EEG) 

sources [26], brain functional connectivity [27], and 

repeatability measures on results of fMRI [28]. To the best of 

our knowledge, this study reports the first use of Icasso 

clustering for EMG signal analysis for prosthesis control 

applications. In this research, Icasso is being used to find the 

underlying sEMG sources and to find a subset of useful 

electrodes contributing to those sources.  

The main aim of this study is to propose a novel 

myoelectric classification scheme using minimum number of 

EMG sensors. In order to minimise the number of EMG 

sensors, two strategies are used in this study: i) usage of Icasso 

[24] to cluster the number of similar muscle activities 

(sensors) as groups and ii) maximum number of times the 

sensors appeared in the cluster. The features extracted from 

the reduced sEMG sensors are then classified using linear 

discriminant analysis (LDA) to identify movements associated 

with the different finger gestures for five transradial amputees.  

A brief overview of the ICA, followed by a succinct 

description of the Icasso is in order in Section II. The 

experimental design, feature extraction methods and LDA 

classifier design for the proposed scheme are presented in 

Section III. Subsequently, the experimental results that 

corroborate with our claim are provided in Section IV. Finally, 

Section V includes conclusions drawn and future challenges 

associated with myoelectric classification and prosthesis.  

II. BACKGROUND 

A. Independent Component Analysis 

ICA is one of the blind source separation (BSS) techniques 

and its goal is to separate/estimate instantaneously mixed 

sources from the recordings. Here, we briefly recall the main 

concept associated with the ICA. Let M be the number of 

sEMG amputee surface measurements   ( )   [   ]to 

which contribute N unknown sEMG sources   ( )   [   ], 
with    . The aim of ICA is to find the unknown muscle 

components (s) into their motor unit action potential trains 

MUAPS/ICs, such that x = As, where A is called the mixing 

matrix (without any prior information)[20, 29]. ICA computes 

the unmixing matrix W and estimate the sEMG sources s 

provided (s=Wx); they are statistically independent from each 

other[23, 30]. ICA can be solved using both higher order and 

lower order statistical techniques such as FastICA [23], 

Infomax [30], JADE and SOBI. This study uses FastICA 

algorithm, which adapts a fixed point iteration scheme to 

compute the maximum of the non-Gaussianity of the sources. 

More details of FastICA can be found in [23]. 

B. Icasso and Optimum Sensor Selection  

The FastICA algorithm is stochastic in nature, which means 

that multiple repetitions of the ICA analysis on the same 
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dataset can give slightly different results. One of the solutions 

is clustering of the obtained components based on multiple 

ICA runs, which is also known as Icasso [24]. The method is 

based on estimating a large number of independent 

components, and visualizing their clustering in the signal 

space. Each estimated IC is one point in the space. If an IC is 

reliable, (almost) every run of the algorithm should produce a 

point that is very close to the ideal component corresponding 

to the cluster center. Thus, reliable independent components 

correspond to tight clusters, and unreliable ones correspond to 

points which do not belong to any cluster. Icasso identify 

clusters of ICA-estimates that are consistently found across 

random initializations of the ICA algorithm of the input data. 

The process of Icasso consists of the following steps [24]: 

1) Initially, parameters (symmetrical or deflatory, contrast 

function, etc.) for the estimation of FastICA algorithm are 

selected.  

2) The estimation is run several times using the selected 

training parameters. Each time the data is bootstrapped and/or 

the initial conditions of the estimation algorithm are changed. 

3) Mutual similarities between all the estimates are computed. 

As the measure of similarity, we use the absolute value of the 

linear correlation coefficient between the ICs. The estimates 

are clustered (agglomerative clustering with average-linkage 

criterion) according to their mutual (dis) similarities.  

4) The clustering is visualized as a dendrogram and a 2D plot. 

The user investigates how dense the clusters are. The 

clustering of the estimates is expected to yield information on 

the reliability (robustness) of estimation. A compact cluster 

emerges when a similar estimate repeatedly comes up despite 

of the randomization. 

5) The user can retrieve the estimates belonging to certain 

cluster(s) for further analysis and visualization. 

The mathematical basis of Icasso algorithm is explained in 

detail in [24]. However, the cluster combination for each 

gesture may slightly vary; this is due to electrode shift or level 

of Transradial amputation. Hence, Icasso algorithm was 

utilised to select the best four EMG sensors responsible for 

amputee finger gestures. This would also help us to determine 

functional synergy of the muscles. 

III. METHODOLOGY 

A. Amputee Participants  

The EMG dataset used in this study was originally recorded 

by Al-Timemy et al. [7]. The EMG signals were acquired 

from the left stump of five traumatic transradial amputees 

(TR1-TR5) aged 24-34 years. It is noteworthy to mention that 

none of the amputees used myoelectric prosthesis after the 

amputation. The amputees‘ data were collected at the 

Artificial Limbs and Rehabilitation Centres in Baghdad (Iraqi 

Army) and Babylon (Ministry of Health), Iraq. It may be 

noted that the time since amputation was within the range of 

4-8 years for all amputees. The study was approved by the 

Human Ethics Committee of the Faculty of Science and 

Technology at Plymouth University (17/9/2009) and updated 

to collect the data from the Iraq. Amputee subjects were 

debriefed about the study, and they were asked to give their 

written informed consent to participate in the study. 

B. Electrode Placement  

Before the start of the EMG data collection, the skin was 

cleaned with alcohol and abrasive skin preparation gel 

(NuPrep®, D.O. Waver and Company, USA) was applied to 

the stump. Eleven EMG sensors connected to a differential 

amplifier were used with pairs of self-adhesive Ag–AgCl 

electrodes (Tyco healthcare, Germany) placed around the 

circumference of the upper part of the forearm either in one or 

two rows. To reproduce electrode positions, European 

recommendations for sEMG (SENIAM) [31] were followed. 

The elbow joint was used as a reference to mark the electrode 

locations on the upper part of the forearm. For TR1, the 11 

pairs of sensors were placed around the circumference of the 

upper forearm in one row, whereas the sensors were placed 

into two rows around the circumference of the upper forearm 

for the rest of the amputees. Fig.1 illustrates an example of the 

locations of EMG sensors for TR5. The ground reference 

electrode was placed at the end of the stump for TR1-TR2 and 

at the Olecranon process of the Ulna for TR3-TR5. Bipolar 

EMG measurements were used with inter-electrode distance of 

24 mm as recommended by Young et al. and the SENIAM 

[20]. It is worth mentioning that the amputees TR1, TR3 and 

TR4 have thick hair on their forearms but it was not shaved to 

avoid inconvenience to the amputees. 

C. Experimental Procedure  

The EMG signals were acquired with the custom-built 

EMG amplifier. Each EMG sensor was sampled at a rate of 

2000 Hz with data acquisition system (NI USB 6210, National 

Instruments, USA) with 16-bit resolution. A Virtual 

Instrument (VI) was developed in LABVIEW (National 

Instruments, USA) to display and store the EMG signals. 

None of amputee subjects had been trained on EMG 

recording prior to the study. The amputees were instructed to 

produce a specific imagined finger movement. They used the 

 
Fig. 1.  Example of electrode locations for amputee person TR5 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

movements of the fingers of the intact-hand to help them to 

reproduce the desired movement. They performed 12 classes 

of finger movements (11 individual finger movements as well 

as the rest position, which is considered as one of the 

movement classes in this study). The 12 individual finger 

movements performed by amputee subjects are: little flexion 

(f1), ring flexion (f2), middle flexion (f3), index flexion (f4), 

rest position, little extension (e1), ring extension (e2), middle 

extension (e3), index extension (e4), thumb flexion (f5), 

thumb extension (e5) and thumb abduction (a5). Thumb 

adduction was discarded in the data recording, because the 

muscles responsible for thumb adduction lie in the hand itself 

and it cannot be decoded from the upper forearm.  

During the recording of the EMG signals, each participant 

sat on a chair in front of a computer with the Labview 

interface screen to view all the EMG sensors in real-time, 

while imagining the movements. The arm was resting on a 

pillow, and participants were instructed to keep their arm 

position fixed during the experiment. They were asked to 

produce a succession of different finger movements separated 

by 5-10 second periods of rest. Participants were asked to 

produce finger movements with a moderate, constant-force, 

and non-fatiguing contraction to the best of their ability. The 

final position of a movement was held for a period of 5-10 

seconds for the amputees in order to avoid fatigue. Each 

holding phase is referred to in this study as a ―trial‖. TR1 and 

TR2 performed shorter trials of 3-4 seconds than the rest of 

the amputees. The transition regions were removed from the 

signals. Five-seven trials were recorded for each movement of 

the 11 movements for each amputee. 

D. Data processing - Feature Extraction and Feature 

reduction   

Prior to feature extraction, movement artefact (<20 Hz), 

power-line interference (50 Hz) and high-frequency noise 

(>450 Hz) were removed. The sEMG data were divided into 

overlapping windows of 256 ms length with a 64 ms (25%) 

increment between windows. This segmentation scheme was 

used for all numerical experiments in this study. The proposed 

amputee gesture classification scheme based on ICA and 

Icasso clustering is shown in Fig. 2. 

In order to select the optimum sensor configuration, we 

used Icasso‘s default agglomerative clustering with average-

linkage criterion. Icasso runs the ICA algorithm (FASTICA 

algorithm was used) a number of times (20 runs were used); 

each run gives different estimates of the ICs. Icasso collects 

the ICs estimated from all runs and then matches components 

across runs by clustering components based on the absolute 

value of the correlation between squared source estimates. The 

number of clusters in the data was automatically selected with 

the R-index[24]. Each cluster was uniquely represented by a 

single centrotype ICA-estimate, which is just an estimate in 

the cluster that has the maximum sum of similarities to other 

points in the cluster. Only centrotypes of significant clusters 

were considered as valid ICA-estimates. 

Fig. 3(a) and Fig. 3(b) depict the results of the Icasso 

analysis applied to sEMG recordings from amputee TR1 and 

TR2 respectively where Dendrogram is a tree-structured graph 

used to visualize the result of a hierarchical clustering. The R-

index suggested an optimal partition of 4 clusters in the data. 

This index measures the difference between average 

intracluster correlations and average intercluster correlations 

for each cluster, which is useful in quantifying the consistency 

in the performance of the algorithm and also selection of 

optimal partition of data [24]. These four clusters exhibited a 

high repeatability within the same subject and across subjects. 

For instance, Fig. 3 (a) shows sensors (5, 10, 3), (9, 8, 6), (7, 

2, 4) and (1, 11) as four clusters for amputee 1 (TR1). Similar 

configurations are achieved for the other amputees as well. 

The Icasso cluster combinations obtained for five amputees 

are shown in Table I. From the table, it can be seen that 

sensors 3, 9, 7 appear in all cluster combinations (amputees) 

and hence, they (3 sensors) were selected for further analysis. 

Whereas, sensors 1 and 2 are considered for 4th sensor 

combination as they appear at 4 and 3 occasions respectively. 

The final sensor combinations consisted of sensors 2,3,7,9 and 

sensors 1,3,7,9 which were considered for further analysis. 

The choice of optimal sensors (final 4 sensors) required for 

amputee gestures were later decided based on classification 

accuracy obtained using these sensor combinations.  

To extract useful information from the segmented sEMG 

signals, 9 time domain features were extracted for each EMG 

sensor which includes a fourth-order auto regression (AR) 

model, root mean square (RMS), mean absolute value (MAV), 

variance (VAR), waveform length (WL) and zero crossing 

(ZC). These features were chosen based on the fact that time 

domain features such as AR and RMS can achieve higher 

performance than that of other feature extraction methods such 

as Fourier transform and wavelet transform for the detection 

of various hand and finger movements with EMG signals [7, 

17, 20]. Furthermore, it has been shown that AR coefficients 

are computationally efficient and robust to displacements in 

electrode positions [7, 32-35].  

 

Fig. 2.  Schematic diagram of the Icasso-based amputee gesture classification 

method proposed in this study. 
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Feature reduction: In order to reduce the dimensionality 

and to improve the class separability of extracted features, 

uncorrelated linear discriminant analysis (ULDA) feature 

projection technique was used. ULDA is a supervised method 

which uses features with class labels and maximises the ratio 

of the between-class distance to the within-class distance[36]. 

However, this method suffers from the problem of singularity  

in the scatter matrix that occurs when the feature vector 

dimension is much larger than the sample size [37] which is 

not applied to our EMG data since our sample size is much 

larger than the feature vector dimension. ULDA is an 

enhancement to LDA, which imposes the additional 

requirement that reduced features be statistically uncorrelated 

with one another; hence, minimising redundancies. It will 

reduce the size of the features to c-1 feature where c is the 

number of classes (c=11 for the current study). 

E. Data Classification and Cross-Validation using LDA  

In order to ascertain the robustness of the proposed gesture 

recognition scheme, the choice of classifier and statistical 

methods are very important. The previous studies reported in 

literature have used numerous classification schemes for EMG 

data, most popular among them include SVM [6], Neural 

network, k-Nearest Neighbors (kNN) and LDA [6]. For the 

amputee gesture data, classification is simply performed using 

LDA classifier. The advantage of using LDA is that it does not 

necessitate iterative training, which avoids the potential for 

under or over-training of the data [38]. Furthermore, using 

LDA, a high dimensionality problem can be well linearized 

during feature reduction. For each gesture, the first 3 trials 

were combined in one file to produce the training set while the 

rest of the trials were used as testing set. The training and 

testing sets were kept separately to calculate the classification 

error. To quantify the performance of the proposed method, 

the overall classification error (CE) was computed using: 

 

   
                                    

                                    
                 (1) 

 

In addition, confusion matrix (CM) which calculates the test 

results between predicted classes and the actual classes was 

also computed.   

To test the statistical significance between the 2 EMG 

sensor combinations, an independent-samples Mann-Whitney 

(nonparametric t test) test was applied to find differences in 

classification errors of the two sensor combination schemes 

(1,3,7,9 and 2,3,7,9), (1,3,7,9 and SFS), and (1,3,7,9 and 

Greedy search algorithm),  respectively.  This test assumes 

that results of the two distributions are identical.  

 

F. Effect of the Number of Sensors on Classification 

Performance  

In order to measure the efficacy of the proposed ICA 

clustering based sensor selection algorithm it is compared with 

two other popular methods 1) SFS [16, 17] and 2) sensor 

elimination technique (greedy search algorithm) [7]. The two 

methods are briefly explained below. The SFS is an iterative 

searching technique, in which one optimal sensor that 

produces the highest classification accuracy was firstly 

selected among all the sensors, and then another sensor that 

can achieve the maximum classification accuracy with the 

combination of the selected sensors are added. On the other 

hand, in a sensor elimination technique the main objective is 

TABLE I 

OVERALL CLUSTER COMBINATIONS FOR 11 SEMG SENSORS USING ICASSO 

FOR 5 TRANSRADIAL AMPUTEES 

Amputee 
ID 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

TR1 5, 10, 3 9, 8, 6 7, 2, 4 1, 11 

TR2 11, 3, 2 9, 5 7, 8, 6 1, 10, 4 

TR3 3, 8, 5 9, 4 7, 11, 10 1, 2, 6 

TR4 3, 6 11, 9, 10 7, 1, 4 2, 8, 5 

TR5 11, 3, 4 9, 10, 2 5, 7, 8 1, 6, 2 

 

 

 
Fig. 3(a) 

 

 
Fig. 3(b) 

 

Fig. 3.  (Left panel) Dendrogram (a tree-structured graph used to visualize the 
result of a hierarchical clustering) illustrating the arrangement in 11 sEMG 

sensors (as suggested by the R-index) of the ICA-estimates obtained with Icasso 

(a) for TR1 (b) for TR2. In both figures, the horizontal axis signifies the 
dissimilarity values at which clusters are merged at each possible partition level. 

(Right panel) The vertical axis indexes ICA-estimates as 4 major clusters. The 

colour scale indicates the cross-correlation coefficient between the muscle 
configurations of individual ICA-estimates. Clusters of ICA-estimates are 

indicated with red lines and their corresponding labels are depicted in the left 

vertical axis. 
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to find the smallest number of sEMG sensors that achieve a 

performance that is indistinguishable from that obtained using 

all available sensors. This helps us to find out which subset of 

sensors provides the best tradeoff between accuracy and 

number of sensors for each individual participant. 

Both SFS and sensor elimination technique (greedy search 

algorithm) were implemented for 12 finger movement classes 

for the five amputee persons. For the sEMG subset selected by 

the SFS method, first 3 trials were combined in one file to 

produce the training set while the rest of the trials were used 

as testing set. For the sensor elimination technique, 11 

iterations of the sensor elimination approach were performed.  
 

TABLE III (A) 
CONFUSION MATRIX (%) FOR SUBJECT 2 (TR2) USING SENSORS 1, 3, 7, 9 

 
 TABLE III (B) 

CONFUSION MATRIX (%) FOR SUBJECT 2 (TR2) USING SENSORS 2, 3, 7, 9 

 

TABLE III (C) 
CONFUSION MATRIX (%) FOR SUBJECT 2 (TR2) USING ALL SENSORS - ICA 

 
                TABLE III (D)  

CONFUSION MATRIX (%) FOR SUBJECT 2 (TR2) USING SFS SCHEME 

 
TABLE III (E)  

CONFUSION MATRIX (%) FOR SUBJECT 2 (TR2) USING GREEDY SEARCH 

METHOD 

 

TABLE II 
AVERAGE CLASSIFICATION ACCURACY FOR FIVE TRANSRADIAL AMPUTEE SUBJECTS USING ALL SENSORS, 2 DIFFERENT SENSOR  

COMBINATIONS (1, 3, 7, 9) AND (2, 3, 7, 9), SFS AND GREEDY SEARCH ALGORITHM. 

 

Classes 

Classification Accuracy 

(Mean±SD)Sensors 
(1,3,7, 9) 

Classification Accuracy 

(Mean±SD)Sensors 
(2, 3,7, 9) 

Classification Accuracy 

(Mean±SD) 
All sensors – using ICA 

Classification Accuracy 

(Mean±SD) 
All sensors - SFS 

Classification Accuracy 

(Mean±SD) 
All sensors -Greedy 

search method  

Little flexion (f1) 98.6±1.4 91.5±1.2 95.4±1.5 92.4±0.8 91.2±1.1 

Ring flexion (f2) 97.8±1.2 90.2±1.4 93.2±1.1 91.4±1.2 90.2±0.7 

Middle flexion (f3) 97.2±1.5 89.7±0.5 91.5±1.2 89.6±1.4 89.1±1.2 

Index flexion (f4) 98.8±1.2 89.5±1.3 92.3±1.6 89.7±0.9 89.3±1.3 

Little extension (e1) 97.2±1.3 90.1±1.7 91.7±1.2 88.6±1.1 89.1±0.9 

Ring extension (e2) 93.6±0.8 85.4±1.6 89.4±1.4 87.3±1.2 87.1±1.4 

Middle extension (e3) 92.9±1.4 86.0±0.4 89.0±1.3 86.2±1.1 86.0±1.0 

Index extension (e4) 97.5±1.6 90.1±1.2 92.8±1.6 89.9±1.4 89.7±1.5 

Thumb flexion (f5) 98.8±1.1 92.6±1.4 94.1±1.0 90.5±1.2 90.1±1.2 

Thumb extension (e5) 95.6±1.2 88.5±0.8 90.5±1.1 88.1±0.9 87.7±1.1 

Thumb abduction (a5) 94.6±1.5 87.1±0.5 91.2±1.2 89.3±1.1 88.9±1.3 

Average accuracy (%) 96.6±1.3 89.16±1.1 91.92±1.3 89.36±1.0 88.95±1.2 
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Within each iteration, the classification accuracy was 

calculated after eliminating one EMG sensor at a time. Then, 

the sensor that has the least contribution to the classification 

performance was removed. 

IV. RESULTS AND DISCUSSION  

The overall average classification accuracies for 2 sensors 

combinations (2, 3, 7, 9,) and (1, 3, 7, 9,), for all sensors– 

using ICA, SFS and greedy search algorithm are shown in 

Table II. The overall classification performances of different 

number of sEMG sensors using Icasso clustering, SFS and 

greedy search algorithm are shown in Fig. 4 (a) and four 

sensor sensors combinations (2, 3, 7, 9, and 1, 3, 7, 9) in Fig 4 

(b) respectively. In addition, the classification errors for 

amputee subject 2 (TR2) in terms of confusion matrices for 

the proposed method, ICA separated data, SFS and greedy 

search algorithm are shown in Table III (a, b, c, d, e). 

Based on Table III and IV, it can be seen that the sensor 

combination 1, 3, 7, 9 gives higher classification accuracy as 

compared to all sensors and sensor combination 2,3,7,9. This 

is due to the fact that sensor 1 has appeared more times than 

sensor 2 in the Icasso clusters. The reason for this is the 

centrotypes derived from clusterisation of estimate sources 

obtained with a reasonable numbers of trials represent the best 

estimates available for the real sources. Furthermore, reliable 

components produced a ‗‗tight‘‘ cluster of estimated 

components that are very close to each other and well 

separated from the rest. This enabled us to determine the best 

sensor combination for the proposed amputee gesture 

recognition scheme. 

The outcome of this research showed an overall accuracy of 

> 90% for the classification of 11 finger movements using 

fewer sensors. It is interesting to note that, as compared to the 

proposed method, when only 4 sensors were used the other 

three methods demonstrated classification accuracy of around 

75% (Refer to Fig. 4a). Moreover, both SFS and Greedy 

search algorithms provided reasonably good accuracy when 

using all the sensors (Refer to Table III) however, they failed 

to demonstrate good accuracy while eliminating sEMG 

sensors (Refer to Fig. 4a). This demonstrated the efficacy of 

the proposed method over the other existing techniques. In 

particular, the proposed system can be applied in a practical 

setting to make transradial amputated subjects able to control 

most everyday tasks in dexterous robotic hand prosthesis with 

no prior experience. Further training the patient and the 

system are expected to further improve the classification 

results. The results of the statistical test showed that all p-

values obtained from the controls‘ results were significant (p-

value<0.05). This indicates that, there is a significant 

difference in the classification performance between the two 

sensor combination schemes (1,3,7,9 and 2,3,7,9), (1,3,7,9 and 

SFS), and (1,3,7,9 and Greedy search algorithm),  

respectively. 

These overall results indicate that applying the proposed 

ICA clustering method to the sEMG dataset showed the 

highest classification accuracy and outperformed the other two 

sensor selection/elimination methods and full set of sensors. 

Interestingly, the sensors used in the proposed method (Icasso 

selected sensors) 1,3,7,9 are clinically significant as they are 

closely connected to Brachioradialis, Flexor Carpi Radialis, 

Flexor Digitorum Superficialis and Flexor Carpi Ulnaris, 

which are responsible for most of the flexion and abduction 

tasks.   

In general, using more sEMG sensors could capture more 

electrophysiological information that may improve the overall 

performance of the movement classification of sEMG based 

PR systems. However, this would simultaneously increase the 

complexity and the cost of the sEMG controlled systems. 

Hence, it is necessary and also important find an appropriate 

number of sEMG sensors and their locations for the high 

performance of sEMG based prosthetic devices before it is 

clinically viable. In this regard the proposed ICA clustering 

method shown promising results, however, still the algorithm 

needs to be tested in real-time before it is clinically applicable 

for the amputees.  

The calibration procedure with the proposed ICA clustering 

technique for the EMG sensors may start by placing the full 

set of sensors at the amputee stump. Then, with the use of the 

proposed ICA clustering, the optimal reduced subset of EMG 

sensors will be identified. After finding the optimal EMG 

sensors with their locations, these sensors can be fitted 

permanently inside prosthesis socket by the prosthetist. The 

previous step is currently used in clinical practice. The 

amputee will wear the prosthesis for everyday use with the 

fitted optimized electrodes. Reducing the number of EMG 

sensors will minimize discomfort; reduce hardware and 

computational complexity as well as minimizing the cost. The 

above procedure based on ICA clustering can be used to fit 

large number of EMG sensors unlike the currently used 

protocol to fit only single or 2 EMG sensors [34]. 

A. Effect of the proposed scheme on amputation time 

At present, myoelectric prostheses empower amputees to 

perform few dexterous movements. However, the control 

possibilities are usually not natural and still limited. In the 

recent past, there have been significant improvements over the 

conventional myoelectric control strategy but these results can 

be further improved by a general description of the problem 

that include the combination of innovative machine learning 

algorithms, pattern recognition methods and the effect of 

clinical parameters (level of the amputation, dominance and 

time interval between amputation and rehabilitation) related to 

the amputation [38]. 

The classification accuracy does not change (affect) much 

with the time elapsed since the amputation as shown in Fig. 5. 

This result shows that the subjects could control the muscles 

despite central reorganization that takes place after 

amputation, in accordance to what described for the 

somatosensory path [39, 40]. In particular, we suggest that the 

increase in classification accuracy may be dependent on the 

natural reinnervation of the remnant muscles in the forearm. 

Moreover, results demonstrate that even subjects amputated 

few years ago can achieve good control of multifunctional 

upper limb prostheses. 
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B. Computational complexity measure 

The computational complexity of the proposed method was 

measured using the ratio of       ⁄ , where   is the number 

of finger movements and    is the number of sEMG sensors 

[7].Table IV presents a summary of the      ⁄ ratio for the 

proposed method and other benchmark methods presented in 

the paper. Here we achieved a highest ratio (2.75) for the 

proposed method as compared to the other methods and also 

with higher classification accuracy. This shows that the sensor 

selection method used in the study is less computationally 

intensive than other sensor selection methods since it has the 

benefit of selecting the best sensors based on source separation 

and Icasso clustering method. 

Several pattern recognition and machine learning 

application exist to analyse amputee sEMG data. The 

proposed research has potential to minimize the number of 

sensors required for EMG prosthetics; however, this scheme 

needs to be tested with larger number of amputees‘ data in 

order to realize its full potential. The study has limitation 

where only offline analysis was used to test the classification 

performance of PR system with the use of Icasso technique. 

The proposed method was not evaluated in real situations such 

as object grasping, pinching etc. Both robustness and 

reliability of the proposed method needs to be validated with a 

systematic analysis, preferably using more number of 

amputees, as it was shown that off-line accuracy and online 

performance of pattern recognition algorithm did not 

necessarily correlate [41].  

V. CONCLUSION  

In this paper, we propose combination of ICA and Icasso 

method to minimize the number of sEMG sensors and also to 

improve the robustness of myoelectric control system. 

Advantages of using ICA and Icasso as a pre-processing step 

are twofold; (i) it helps in reducing the number of sensors and 

(ii) using this approach, only the best sensors responsible for 

hand and finger actions are selected.  

The main contributions of this research are the following: 

(i) we introduced combination of source separation and model 

based technique to minimise the number of sEMG sensors, 

and (ii) classified 11 gestures for amputees with >90% 

classification accuracy. Consequently, this study has the 

potential for improving the usability and practicality of PR 

system in a realistic scenario and makes it clinically viable 

option. Moreover, the proposed technique could be tailored 

with more functional prosthetic arms using current machine 

learning approaches and most efficient rehabilitation 

programs.  

The amputation of the upper extremity, especially 

 

 
 

 
 

Fig. 4(a).  Average classification accuracy for different number of sEMG 

sensors using: i) All Sensors – ICA, ii) SFS and iii) greedy search algorithm. 

4(b). Average classification accuracy for 4 sEMG sensors using the proposed 

scheme: i) Sensors (1, 3, 7, 9) and ii) Sensors (2, 3, 7, 9)  

 
Fig. 5.  Graph showing the overall classification accuracy vs. time passed since 

the amputation in years for five amputee subjects. 
 

TABLE IV 
RESEARCH ILLUSTRATING THE NUMBER OF SEMG SENSORS USED, THE 

NUMBER OF FINGER MOVEMENTS CLASSIFIED, THE CLASSIFICATION 

ACCURACY AND THE RATIO OF THE NUMBER OF MOVEMENTS DECODED 

(𝑁𝑚) DIVIDED BY THE NUMBER OF EMG SENSORS (𝑁𝑐 ) 
 

Method 𝑁𝑐  𝑁𝑚 Overall Classification 

accuracy  
𝑁𝑚 𝑁𝑐ℎ⁄  

SFS  11 11 89.36±1.01 1 

GREEDY SEARCH 11 11 88.95±1.16 1 

ICA 11 11 91.92±1.29 1 

PROPOSED 

SENSORS 2,3,7,9 

4 11 89.16±1.1 2.75 

PROPOSED 

(SENSORS 1,3,7,9) 

4 11 96.6±1.3 2.75 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

transradial amputation is a severely impairing injury. As 

described in scientific literature, sEMG is a promising method 

to control non-invasive, dexterous, robotic prosthetic hands 

but still large numbers of EMG sensors are needed to achieve 

good performance. In this study, we tried to tackle this 

problem and propose a solution with the use of Icasso in order 

facilitate the design of practical PR systems toward the 

ultimate goal clinical implementation. 

Future research will be to develop a real time myoelectric 

system based on the proposed scheme and test the robustness 

of the individual features such as electrode shift, electrode size 

and orientation, on amputees. Furthermore, the proposed EMG 

sensor minimization technique will be implemented on 

hardware (prosthetic device) and with the help of clinicians 

and prosthetic experts appropriate clinical trials will be 

performed on amputees. 
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