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Abstract 31 
 32 

Airway remodeling is a hallmark feature of asthma and COPD. Clinical studies and 33 

animal models have demonstrated increased airway smooth muscle (ASM) mass, and ASM 34 

thickness is correlated with severity of the disease. Current medications control inflammation 35 

and reverse airway obstruction effectively yet have limited effect on remodeling. Recently we 36 

identified the expression of bitter taste receptors (TAS2R) on ASM cells, and activation with 37 

known TAS2R agonists resulted in ASM relaxation and bronchodilation. These studies suggest 38 

that TAS2R can be used as new therapeutic targets in the treatment of obstructive lung diseases. 39 

To further establish their effectiveness, in this study we aimed to determine the effects of TAS2R 40 

agonists on ASM growth and pro-mitogenic signaling. Pre-treatment of healthy and asthmatic 41 

human ASM cells with TAS2R agonists resulted in a dose-dependent inhibition of ASM 42 

proliferation. The anti-mitogenic effect of TAS2R ligands was not dependent upon activation of 43 

PKA, PKC, or high/intermediate conductance calcium activated K+ channels. Immunoblot 44 

analyses revealed that TAS2R agonists inhibit growth factor-activated Akt phosphorylation 45 

without affecting the availability of phosphatidylinositol-3,4,5-trisphosphate, suggesting TAS2R 46 

agonists block signaling downstream of PI3K. Furthermore, the anti-mitogenic effect of TAS2R 47 

agonists involved inhibition of induced transcription factors (AP-1, STAT3, E2F, NFAT) and 48 

inhibition of expression of multiple cell cycle regulatory genes suggesting a direct inhibition of 49 

cell cycle progression. Collectively, these findings establish the anti-mitogenic effect of TAS2R 50 

agonists and identify a novel class of receptors and signaling pathways that can be targeted to 51 

reduce or prevent airway remodeling as well as bronchoconstriction in obstructive airway 52 

disease.  53 

Keywords: Asthma, bitter taste receptor, airway remodeling, GPCR, TAS2R 54 
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Introduction 55 

 G protein-coupled receptor (GPCR) signaling plays a vital role in the regulation of 56 

airway smooth muscle (ASM) contraction, relaxation, and proliferation (4; 12). Exaggerated 57 

presentation of pro-contractile GPCR agonists in the airways during allergic inflammation 58 

contributes to bronchoconstriction in obstructive airway disease such as asthma. Another salient 59 

feature of inflammatory airway diseases is airway remodeling that is characterized by excessive 60 

proliferation and accumulation of resident cells including ASM cells. Animal models 61 

demonstrate ASM mass is increased by allergic airway inflammation, while human studies 62 

demonstrate a progressive increase in ASM mass in asthmatics that increases both dynamic and 63 

fixed airway resistance, limiting the effectiveness of current rescue bronchodilators (11; 21; 22; 64 

26). Current anti-asthma therapies, including beta-agonists and corticosteroids, aim at alleviating 65 

bronchoconstriction and inflammation, respectively, but have a very limited effect on remodeling 66 

(21). Thus increase in ASM mass occurs unimpeded in asthmatics irrespective of how effectively 67 

asthma symptoms are managed. In addition to their lack of effect in vivo, both corticosteroids 68 

and beta-agonists have limited efficacy in inhibiting ASM proliferation by relevant mitogens in 69 

cell-based assays (5; 6; 10; 18; 21; 28; 30; 47; 55). Our previous studies have demonstrated that 70 

PKA plays a central role in mediating the functional effects of beta-agonists on ASM (37; 39; 71 

55). However, beta-agonist-stimulated PKA activity in ASM appears constrained by beta-2-72 

adrenoceptor (β2AR) desensitization (4; 13), rendering beta-agonists relatively weak anti-73 

mitogenic agents. Thus, the collective clinical and basic science findings to date support the need 74 

to identify new drugs that effect both ASM relaxation and inhibition of growth via novel and 75 

robust pathways.  76 
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Recently we identified expression of Type 2 taste receptors (TAS2Rs) known as bitter 77 

taste receptors (BTRs) on human ASM cells and demonstrated that stimulation of these receptors 78 

with known TAS2R agonists results in intracellular calcium elevation and, somewhat 79 

paradoxically, relaxation of ASM (14). Three independent laboratories have confirmed the 80 

airway relaxation effect of TAS2R agonists using mouse (51; 56), human (2; 14; 19) and guinea 81 

pig (44) airways. Aerosol exposure of airways to TAS2R agonists results in bronchodilation in 82 

normal and allergen- sensitized and challenged mice. In a recent study by Robinett et al. using 83 

asthmatic ASM cells and lung slices, TAS2R expression, signaling, and ASM relaxation and 84 

bronchodilatory effects were not altered under airway inflammatory conditions (1; 46). These 85 

studies suggest that agonists of TAS2Rs possess unique properties that can be exploited as a new 86 

class of anti-asthma drugs (16; 34). Studies to date of TAS2Rs in airways/ASM have focused on 87 

investigating acute effects of TAS2R agonists of airway resistance and ASM contraction. In the 88 

current study, we investigated the anti-mitogenic effects of chronic exposure of ASM cells to 89 

TAS2R agonists, and identify TAS2R agonists as potential novel therapeutics capable of 90 

modulating two important pathogenic mechanisms of asthma.    91 

  92 
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Experimental procedures 93 

Materials 94 

Antibodies against vasodilator-stimulated phosphoprotein (VASP) were from BD 95 

Biosciences (San Jose, CA, USA), and phospho-p42/p44, p38, p70S6K, cyclin D, and phospho-96 

Akt antibodies were from Cell Signaling Technology (Beverly, MA, USA). IRDye 680 or 800 97 

secondary antibodies were from Rockland (Gilbertsville, PA, USA). CyQUANT cell 98 

proliferation assay kit and propidium iodide were from Life Technologies (Grand Island, NY, 99 

USA). Papain dissociation kit, collagenase, and elastase were purchased from Worthington 100 

Biochemical Corporation (Lakewood, NJ, USA). Quantitative PCR arrays and SYBR green 101 

reagents were purchased from RealTime Primers (Elkins Park, PA, USA) and Applied 102 

Biosystems (Grand Island, NY) respectively. Lentivirus expressing luciferase reporter was 103 

obtained from SABiosciences (Valencia, CA). Chloroquine, quinine, saccharine and other 104 

materials were obtained from Sigma (St. Louis, MO, USA) or from previously identified sources 105 

(11, 13). 106 

Cell culture 107 

Human ASM cultures were established from human tracheae or primary bronchi using an 108 

enzyme dissociation method (42). Human tracheae or bronchi were obtained from either 109 

National Disease Research Interchange or from human lung resection surgery and autopsy 110 

performed at Thomas Jefferson University under a protocol approved by the Thomas Jefferson 111 

University Institutional Review Board.  Briefly, ~0.5 g of wet tissue was obtained from 112 

trachealis muscle under sterile conditions. The tissue was minced and resuspended in 5 ml of 113 

Earle's Balanced Salt Solution (EBSS) buffer containing papain and DNase, and incubated at 114 
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37°C for 45 min. Collagenase (5 mg), elastase (10 U/ml) and 125 mg BSA were added to the 115 

tissue. Enzymatic dissociation of the tissue was performed for 45-60 min in a shaking water bath 116 

at 37°C. The cell suspension was transferred to a new tube and cells separated by centrifugation. 117 

The cell pellet was resuspended in EBSS containing ovomucoid inhibitor and the cell suspension 118 

was slowly overlaid on the ovomucoid solution in a new tube. Cells were separated by 119 

centrifugation and resuspended in Ham’s F-12 complete medium containing 10% fetal bovine 120 

serum (FBS; HyClone, Logan, UT) and 100 U/ml of penicillin, 0.1 mg/ml of streptomycin, and 121 

amphotericin B.  122 

ASM cells in subculture during the second through fifth cell passages were used. These 123 

cells retain functional signaling pathways that are important in mediating ASM excitation and 124 

contraction as determined by agonist-induced changes in cytosolic calcium (42). The cells were 125 

maintained in F-12 medium with no serum and supplemented with 5.7 µg/ml insulin and 5 µg/ml 126 

transferrin (arresting medium) for 48-72 h before the experiments. A select set of experiments 127 

were carried out using human ASM cells isolated from severe asthmatics (obtained from the 128 

laboratory of Dr. Reynold Panettieri, University of Pennsylvania, PA).  129 

Retroviral and lentiviral infection 130 

Stable expression of GFP, PKI-GFP, and RevAB-GFP was achieved by retroviral 131 

infection, as described previously (15; 20; 29; 55). Briefly, retrovirus for the expression of each 132 

was produced by cotransfecting GP2–293 cells with pVSV-G vector (encoding the pantropic 133 

VSV-G envelope protein) and either pLNCX2-GFP, or pLNCX2-PKI-GFP, and viral particles 134 

were harvested from supernatant. ASM cultures were infected with retroviral particles and 135 

selected to homogeneity (typically >95% GFP-positive, as demonstrated in ref. (20)) with 250 136 
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μg/ml G418. Stable lines expressing GFP exhibited properties similar to those of uninfected 137 

naive cells with respect to mitogen-stimulated DNA synthesis and cell proliferation, as reported 138 

previously (20; 30). 139 

Cignal Lenti luciferase reporter viral particles for different transcription factors were 140 

purchased from SA Biosciences and ASM cultures were infected with lentivirus as per 141 

manufacturer’s recommendation. Stable lines were selected using puromycin and maintained in 142 

complete medium containing selection antibiotic.   143 

Cell proliferation assay 144 

Cells, naive or stably selected after retroviral infection as described above, were plated in 145 

either a 96-well plate (CyQUANT assay), or 6-well plate (cell count, flow cytometry) and 146 

maintained in complete Ham's F-12 medium supplemented with 10% FBS. After 24 h, cells were 147 

switched to arresting medium and treated with growth factors (10% FBS, 10 ng/ml PDGF or 10 148 

nM EGF). 30 minutes before adding growth factors cells were pretreated with different bitter 149 

taste receptor agonists: chloroquine, quinine and saccharin, at concentrations noted in the Results 150 

section. After 72 h treatment with growth factors with vehicle or TAS2R agonists, media was 151 

changed to assay buffer containing CyQuant dye and fluorescence intensity measured as per 152 

manufacturer’s instructions. In some experiments cells were pretreated with the PKC inhibitor 153 

Bis I (5 or 50 µM) or calcium-activated potassium channel inhibitors IbTx (10 or 100 nM) or 154 

TRAM-34 (10 or 100 nM) prior to treatment with growth factor +/- TAS2R agonists. 155 

In an additional set of experiments, cells grown on 6-well plates treated as mentioned 156 

above were harvested by trypsinization and cell counts determined using a Coulter counter 157 

(Beckman Coulter, Fullerton, CA, USA).  158 
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Propidium iodide staining after treating cells with growth factor +/- TAS2R agonists for 159 

24 hours was performed as per (45). Briefly, human ASM cells were grown in F12 complete 160 

medium supplemented with 10% FBS and antibiotics. Sub-confluent cells were serum starved 161 

for 48 h and incubated in fresh medium containing PDGF with or without TAS2R agonists (250 162 

µM), cells harvested by trypsinization at 24 h and fixed in cold 70% ethanol. After counting, 163 

~500,000 cells were treated with RNAse and stained with propidium iodide (BD Pharmingen, 164 

San Jose, CA) for cell-cycle analysis. The samples were analyzed by flow cytometry (FACScan, 165 

BD Pharmingen) and Flowjo commercial software. 166 

Immunoblotting 167 

Cells were grown to near confluence in 6-well plates and growth arrested for 72 h in 168 

serum-free Ham's F-12/IT medium as described above. The cells were then stimulated with 169 

indicated TAS2R agonists for 15 min followed by PDGF or EGF for 30 min. In a select set of 170 

experiments, cells were treated as described above for 12 or 24 h. Cells were then washed twice 171 

with ice-cold buffer (25 mM Tris and 150 mM NaCl, pH 8.0) then solubilized in a 25 mM Tris 172 

buffer (pH 8.0) containing 150 mM NaCl, 20 mM NaF, 5 mM EGTA, 1 mM EDTA, 10 mM 173 

sodium pyrophosphate, 10 mM p-nitrophenyl phosphate, 1 mM benzamidine, 0.1 M 174 

phenylmethylsulfonyl fluoride, and 1% (v/v) Nonidet P-40 (lysis buffer) for 30 min at 4°C. 175 

Following scraping, cell lysates were centrifuged at 13,200 g at 4°C for 10 min. Supernatants 176 

were collected, then electrophoresed on 10% SDS-polyacrylamide gels, transferred to 177 

nitrocellulose membranes, and subsequently probed with the indicated primary antibodies and 178 

secondary antibodies conjugated with infrared fluorophores (15). 179 

Luciferase (Luc) reporter assay 180 
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For luciferase assays, human ASM cells were stably transfected with different luciferase 181 

constructs using lentivirus as described above, then harvested and plated into 24-well plates. The 182 

following luciferase constructs were investigated: CRE, STAT3, E2F, C/EBP, SRE, Myc, NFκB, 183 

NFAT, Smad, and AP-1. Cells were treated with vehicle or PDGF with or without TAS2R 184 

agonists for 8, 12 or 24 h. Cells were subsequently harvested in lysis buffer, protein 185 

concentration determined and equal amount of total protein loaded directly in the well with a 186 

reaction mix containing firefly luciferase substrate (Bright-Glo Luciferase Assay System, 187 

Promega, Madison, WI, USA) as per manufacturer's instructions. Luminescence [relative light 188 

units (RLU)/well] was quantified by a microplate luminometer. RLU data was normalized using 189 

total protein loaded onto to each well. 190 

RNA isolation, RT-PCR and Real-Time PCR array 191 

Cells grown on 6-well plates were treated with PDGF or vehicle with or without 192 

pretreatment with TAS2R agonists for 24 h and total RNA harvested using Trizol method as 193 

described in our previous studies (36; 48). Total RNA (1 µg) was converted to cDNA by RT 194 

reaction and the reaction stopped by heating the samples at 94o C for 5 min. Real-Time PCR 195 

array for cell cycle genes (catalog # HCC-1) was performed using SYBR green master mix as 196 

per the manufacturer’s recommendation using Applied Biosystems real time PCR machine. Raw 197 

Ct values were obtained using software recommended threshold fluorescence intensity. RNA 198 

expression data was calculated as described previously using internal control gene β-actin (14; 199 

48).  200 

Cellular phosphatidylinositol (3,4,5)-trisphosphate (PIP3) lipid production 201 
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   Phosphatidylinositides are cell membrane components and key molecules for growth 202 

factor activation and PI3K signaling. Human ASM cells plated on 15 cm plates were stimulated 203 

with PDGF with or without pretreatment with chloroquine and quinine for 30 min and 204 

phosphatidylinositides were extracted using chloroform/methanol (1:2, v/v), and PIP3 205 

concentration determined by Cova-PIP ELISA (Echelon Biosciences Inc) as per manufacturers’ 206 

instructions and as described previously (52).   207 

Statistical analysis 208 

Data are presented as mean ± SE values from n experiments, in which each experiment 209 

was performed using a different ASM culture derived from a unique donor. Individual data 210 

points from a single experiment were calculated as the mean value from 3 replicate observations 211 

for CyQuant assay, cell proliferation assay, flow cytometry, and luciferase assay. Data from 212 

ASM growth assays and luciferase assay were calculated and reported as fold change from basal 213 

or vehicle treated group. For immunoblot analyses, band intensities representing signals from 214 

secondary antibody blots conjugated with infrared fluorophores were visualized and quantified 215 

directly using the Odyssey Infrared Imaging System (Li-Cor, Lincoln, NE, USA). These values 216 

were normalized to values determined for β-actin or GAPDH and compared among stimuli and 217 

experimental groups. Statistically significant differences among groups were assessed by either 218 

analysis of variance (ANOVA) with Fisher's PLSD post hoc analysis using Prism Graphpad 219 

software (Graphpad, La Jolla, CA, USA), with values of p< 0.05 sufficient to reject the null 220 

hypothesis. 221 

  222 



 11

Results 223 

TAS2R agonists inhibit airway smooth muscle growth  224 

 TAS2R agonists inhibit airway smooth muscle growth - In this study, we used three 225 

different mitogens (FBS, PDGF, and EGF) to induce ASM growth and determined the effect of 226 

three different TAS2R agonists (chloroquine (Chloro), quinine (Quin) and saccharin (Sacch)) on 227 

mitogen-induced ASM growth.  ASM growth was determined using CyQuant assay. Pretreating 228 

human ASM cells with chloroquine or quinine significantly inhibited FBS- (66 and 74%, 229 

respectively) (Figure 1A), PDGF- (78 and 66%, respectively) (Figure 1B), or EGF (79 and 48%, 230 

respectively) (Figure 1C)-induced ASM growth in a dose-dependent manner (Figure 1). 231 

Saccharin was less effective in inhibiting ASM growth, yet significantly inhibited FBS, PDGF 232 

and EGF-induced ASM growth by 40, 60 and 33%, respectively, but only at the highest 233 

pretreatment concentration of 300 µM. 234 

Because a recent study has demonstrated that TAS2R expression and signaling is not 235 

altered under inflammatory conditions in human airways (46), and ASM from asthmatics have 236 

been shown to proliferate at a higher rate than the healthy controls (43), we tested the growth 237 

inhibitory effect of TAS2R agonists on asthmatic ASM cells. PDGF-induced ASM growth was 238 

higher in asthmatic ASM cells (Figure 1 D) and TAS2R agonists significantly inhibited this 239 

induction.  240 

 To explore whether the anti-mitogenic actions of TAS2R agonists are mediated via their 241 

effect on cell hypertrophy or hyperplasia, we assessed regulation of mitogen-induced increases in 242 

ASM cell number by standard cell counting. PDGF treatment resulted in a significant increase in 243 

human ASM cell counts, and TAS2R agonists chloroquine, quinine and saccharin inhibited this 244 
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hyperplasia by 79 ± 3, 41 ± 9, and 37 ± 3%, respectively (Figure 2). Changes in cell size 245 

(hypertrophy) were determined by forward scatter analysis using flow cytometry. There was no 246 

significant effect of either PDGF or TAS2R agonists on ASM cell size as assessed by forward 247 

scatter analysis using flow cytometry (data not shown).  248 

TAS2R agonist-mediated anti-mitogenic effect does not involve PKA or PKC  249 

 We have recently demonstrated that PKA mediates the anti-mitogenic effect of several 250 

agents on ASM proliferation (37; 39; 55).  To assess the potential role of PKA in the growth 251 

inhibitory effect of TAS2R agonists, we stably expressed PKI, a PKA inhibitory peptide, in 252 

ASM cultures as described previously (36; 37; 55). PDGF-induced ASM growth was similarly 253 

inhibited by TAS2R agonists, chloroquine and quinine, in both GFP and GFP-PKI expressing 254 

ASM cultures (Figure 3A). Further, PKA activation was assessed by determining 255 

phosphorylation of VASP and luciferase assay using CRE-luc expressing cells. In GFP-256 

expressing cells, stimulation of cells with isoproterenol, but not chloroquine, resulted in 257 

phosphorylation of VASP as indicated by the mobility shift from 46 to 50 kDa (Figure 3B). 258 

Isoproterenol-induced VASP phosphorylation was significantly attenuated in PKI-GFP 259 

expressing cells confirming our previous observations. Treatment of ASM cells stably expressing 260 

CRE-luc with TAS2R agonists for 12 h did not result in any change in the expression of CRE-261 

induced luciferase (Figure 3C). As predicted, isoproterenol, prostaglandin E2 and forskolin 262 

treatment induced expression of luciferase robustly (Figure 3C, right panel). These findings 263 

suggest that PKA does not play a role in the TAS2R agonist-mediated anti-mitogenic effect on 264 

ASM. 265 
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TAS2R signaling in ASM involves activation of PLC and release of calcium from 266 

intracellular stores. Diacylglycerol (DAG) produced by PLC in turn activates PKC. To assess the 267 

potential role of PKC in the TAS2R agonist-induced anti-mitogenic effect on ASM, cells were 268 

pretreated with 5 or 50 µM Bis I, a pan-PKC inhibitor. Both concentrations failed to reverse the 269 

TAS2R agonist-induced growth inhibitory effect (Figure 4A and B). These findings suggest that 270 

PKC does not play a role in mediating the anti-mitogenic effect of TAS2R agonists. 271 

TAS2R agonists are known to induce membrane hyperpolarization potentially mediated 272 

via calcium-activated K+ channels in ASM when stimulated acutely. We therefore examined 273 

whether a change in electrical the activity of intermediate/high-conductance calcium activated K+ 274 

channels across the ASM plasma membrane plays a role in the regulation of ASM growth by 275 

TAS2R agonists. Pretreatment with IbTX, an inhibitor of large conductance calcium-activated 276 

potassium channels, did not affect the anti-mitogenic effect of chloroquine or quinine (Figure 277 

4C, D). Pretreatment of cells with another potassium channel inhibitor (intermediate 278 

conductance), TRAM-34, similarly did not inhibit the anti-mitogenic effect of chloroquine and 279 

quinine (data not shown).  280 

Effect of TAS2R agonists on mitogenic signaling in ASM 281 

 Because mitogenic signaling in ASM involves activation of MAP kinases (ERK and p38) 282 

(24; 27; 40), we assessed the regulatory effect of TAS2R agonists on MAP kinase activity in 283 

human ASM cells. Stimulation of human ASM cells with PDGF or EGF resulted in increased 284 

phosphorylation of p42/p44 and p38 MAP kinase, as reported previously (37; 55). TAS2R 285 

agonists did not inhibit PDGF or EGF-induced activation of p42/p44 and p38 MAP kinase 286 
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(Figure 5). Similarly, growth factors activated p38 MAP kinase and TAS2R agonists had no 287 

effect on this activation (Figure 5).  288 

Further, we assessed the effect of TAS2R agonists on the PI3K pathway by determining 289 

phosphorylation of (downstream) Akt. PDGF and EGF treatment resulted in an increased 290 

phosphorylation of Akt, and TAS2R agonists chloroquine and quinine significantly inhibited this 291 

phosphorylation (Figure 6). Previous studies have demonstrated that p70S6 kinase is a critical 292 

effector of mitogenic signaling mediated by receptor tyrosine kinases, GPCRs, and PI3K in ASM 293 

(3; 29; 32). As previously demonstrated, PDGF and EGF stimulation resulted in increased 294 

activation of p70S6 kinase. The TAS2R agonists chloroquine and quinine both significantly 295 

inhibited mitogen-induced activation of p70S6 kinase (~75% and 90% for PDGF, 73% and 69% 296 

for EGF, respectively; Figure 6). Saccharin was less effective in inhibiting phosphorylation of 297 

either Akt (28% for PDGF and 37%) or p70S6 kinase (48% for PDGF and 77% for EGF).  298 

To test whether TAS2R agonists directly block phosphatidylinositol (3,4,5)-trisphosphate 299 

(PIP3), production, we measured cellular production of PIP3 lipids after TAS2R agonists’ 300 

chloroquine and quinine treatment. PDGF stimulation increased PIP3 lipids significantly in 301 

human ASM cells. Yet, TAS2R agonists did not inhibit PIP3 production (Figure 7), suggesting 302 

TAS2R agonists blocked Akt kinase phosphorylation at a point downstream of PI3K activation 303 

in ASM cells. Thus, the growth inhibitory effect of TAS2R agonists does not appear to be 304 

mediated by the regulation of phospholipid accumulation upstream of PI3K. 305 

 Collectively, these data suggest that the anti-mitogenic effect of TAS2R agonists in ASM 306 

involves inhibition of Akt kinase and S6 kinase, yet does not involve regulation of calcium-307 
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activated potassium channel activity, PIP3 accumulation, or PKA, PKC, p42/p44 or p38 308 

pathways.   309 

TAS2R agonists inhibit activation of transcription factors capable of stimulating cell growth  310 

 ASM growth is promoted by growth factors, chemokines and inflammatory cytokines, 311 

and involves activation of multiple intracellular signaling cascades that ultimately induce several 312 

key transcription factors involved in regulating cell proliferation (9). Using luciferase reporter 313 

assays, we investigated activation of ten (CRE, STAT3, E2F, C/EBP, SRE, Myc, NFκB, NFAT, 314 

Smad, and AP-1) different transcription factors to gain further insight into the mechanisms 315 

mediating the anti-mitogenic effects of TAS2R agonists. As shown in Figure 8, PDGF-induced 316 

activation of AP-1, E2F, STAT3, and NFAT, and the TAS2R agonists chloroquine and quinine 317 

significantly inhibited activation of each of these transcription factors (Figure 8). Activation of 318 

CRE, SRE, NFkB, and Smad were not affected by TAS2R agonists. STAT3 activation reflects 319 

induction of PI3K signaling by PDGF, and TAS2R agonists inhibit this response consistent with 320 

our results from immunoblot analyses. An AP-1 reporter was used to determine the effect of 321 

TAS2R agonists on MAP kinase signaling. Although TAS2R agonists did not inhibit acute 322 

p42/p44 or p38 activation by growth factors, the luciferase assay data suggest that TAS2R 323 

agonists inhibit MAP kinase signaling under chronic treatment conditions. Inhibition of E2F 324 

activation by TAS2R agonists indicate inhibition of cell cycle progression induced by growth 325 

factors. To further confirm the transcriptional activation, we carried out real-time PCR arrays 326 

using cell cycle gene arrays. Table 1 depicts a list of genes that were upregulated at least 2-fold 327 

by PDGF, and inhibited by TAS2R agonists chloroquine or quinine. Cell cycle genes such as 328 

cyclins, cyclin-dependent kinases, G2/S-phase expressed gene, and cell division cycle 2, and 329 

proliferation markers such as proliferating cell nuclear antigen (PCNA) and Ki-67 were the 330 
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notable genes induced by PDGF, with all inhibited by TAS2R agonists. These real-time PCR 331 

data were further confirmed by assessing regulation of cyclin D protein. PDGF induced 332 

expression of cyclin D protein in a time-dependent manner, and TAS2R agonists inhibited this 333 

induction (Figure 9). Collectively these data suggest that the anti-mitogenic effect of TAS2R 334 

agonists involves inhibition of cell cycle proteins in human ASM cells.  335 

TAS2R agonists inhibit cell cycle progression  336 

 Findings from real-time PCR studies suggested that TAS2R agonists inhibit expression of 337 

cell cycle regulatory genes. We further analyzed the effect of TAS2R agonists on ASM cell cycle 338 

regulation using propidium iodide staining to assess the proportion of cells in G0 or G2/M/S 339 

phase. Pretreatment with chloroquine and quinine significantly decreased the proportion of cells 340 

in G0. PDGF treatment resulted in a modest but significant increase in the proportion of cells in 341 

S or G2/M phase suggesting mitosis (Figure 10). Pretreatment with TAS2R agonists chloroquine 342 

and quinine resulted in a higher proportion of cells in S and G2/M phases, suggesting that 343 

TAS2R agonists inhibit cell cycle progression.   344 

  345 
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Discussion 346 

In this study we establish that TAS2R agonists inhibit human ASM proliferation induced 347 

by a wide range of mitogens, and do so through a mechanism distinct from other known ASM 348 

anti-mitogenic agents. The TAS2R agonists chloroquine and quinine both inhibited ASM 349 

proliferation induced by FBS, PDGF, or EGF, whereas saccharine, previously demonstrated to 350 

be a relatively weak TAS2R agonist (35), showed a modest anti-mitogenic effect. These anti-351 

mitogenic effects were associated with a reduction in mitogen-induced PI3K and p70 S6 kinase 352 

activity yet had no effect on PKA or PKC activity, PIP3 accumulation, p42/p44 or p38 MAPK 353 

signaling. We further found that TAS2R agonists inhibited the induction of multiple pro-354 

mitogenic transcription factors by PDGF, including AP-1, STAT3, NFAT and E2F, as well as 355 

the induction of specific genes involved in cell cycle regulation. STAT3 activation reflects 356 

induction of PI3K signaling by PDGF and TAS2R agonists inhibit this response, consistent with 357 

our finding our TAS2R agonist inhibition of Akt phosphorylation (Akt phosphorylation occurs 358 

downstream of PI3K activation). Regulation of AP-1 reporter activity was used to further assess 359 

the regulatory effect of TAS2R agonists on mitogenic pathways. Although TAS2R agonists did 360 

not inhibit acute p42/p44 or p38 activation by growth factors, inhibition of PDGF-induced AP-1 361 

reporter activity suggests that TAS2R agonists inhibit MAP kinase signaling that occurs with 362 

chronic mitogen treatment. Growth factors mediating ASM growth activate both MAP kinase PI-363 

3 kinase signaling and presumably regulate gene expression and cell growth via activation of 364 

multiple transcription factors. In fact, PI3K signaling is known to play a major role in the 365 

regulation of both nonasthmatic and asthmatic ASM cell growth (3; 7; 25; 31; 33; 38; 50; 57). 366 

Thus, a strong inhibitory effect of TAS2R agonists on PI3K signaling and inhibition of multiple 367 

transcription factor activation is predicted to mitigate inflammation-induced airway smooth 368 
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muscle remodeling in asthma. Inhibition of E2F activation by TAS2R agonists indicates 369 

inhibition of cell cycle progression induced by growth factors. This was further supported by 370 

strong inhibition of cell cycle genes induced by PDGF.  371 

TAS2R agonists failed to induce PKA activity, evidenced by lack of cytosolic PKA 372 

substrate (VASP) phosphorylation or PKA-dependent transcriptional activity, and PKA 373 

inhibition had no effect on TAS2R inhibition of ASM proliferation. This is in agreement with the 374 

previous studies using human, guinea pig and murine airways that demonstrated a lack of PKA 375 

involvement in effecting ASM relaxation and bronchodilation. Beta agonists, mainstay asthma 376 

drugs, inhibit mitogen-stimulated increases in cell number or DNA synthesis in cultured ASM 377 

cells by only ~25%, whereas the more effective PKA activator PGE2 is a much stronger (~75% 378 

inhibition) anti-mitogen (37; 55). Our previous studies have demonstrated that both ASM 379 

relaxation, as well as the modest anti-mitogenic effect of beta agonists, is primarily mediated via 380 

activation of PKA. TAS2R agonists on the contrary do not generate cAMP and do not activate 381 

PKA in mediating ASM relaxation, and our current findings similarly reveal the anti-mitogenic 382 

effect of TAS2R agonists to be PKA-independent. Therefore, TAS2Rs represent a novel class of 383 

asthma targets that mediate beneficial effects via a distinct mechanism. 384 

Further, our findings establish that the TAS2R mediated anti-mitogenic effect does not 385 

involve activation of either PKC or membrane hyperpolarization. TAS2R signaling involves 386 

activation of phospholipase C resulting in accumulation of DAG and activation of PKC. Our 387 

previous studies have demonstrated that TAS2R agonist stimulation results in hyperpolarization 388 

of the ASM membrane (8; 14). Membrane potential is known to be involved in the regulation of 389 

cell proliferation; hyperpolarization is associated with a quiescent cell phenotype. However, our 390 

results indicate that membrane potential activation of intermediate/high conductance calcium 391 
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activated K+ channel does not play a major role in mediating the anti-mitogenic effect of TAS2R 392 

agonists. 393 

Bitter taste receptors are expressed on human, murine, and guinea pig ASM and at least 394 

5-6 subtypes are expressed at a mid-high level (14; 19; 44; 51; 56). TAS2Rs are activated by a 395 

variety of structurally diverse chemical agents. Promiscuity of receptor activation by different 396 

ligands is evident in airways as well. High throughput screening of different bitter tastants using 397 

HEK293 cells expressing all the known human bitter taste receptors (also known as TAS2Rs) 398 

revealed that chloroquine and quinine bind to at least 3 subtypes of TAS2Rs expressed on human 399 

ASM cells and therefore may act as full agonists by eliciting a response via all the three 400 

subtypes. Saccharine on the other hand binds to only one subtype (35), which likely contributes 401 

to its relatively weak anti-mitogenic effect in human ASM. It is also possible that certain 402 

subtypes of TAS2Rs may activate different signaling mechanisms leading to a differential effect 403 

on ASM proliferation and anti-mitogenic signaling. Chloroquine and quinine demonstrated 404 

different level of inhibition of growth factor-induced gene expression in ASM cells presumably 405 

due to differences in the activation of signaling by different subtypes of TAS2Rs. We also 406 

recognize that the studies do not address signaling via any specific subtype of TAS2R due to a 407 

lack of sensitive tools to address receptor specificity. There are no well-characterized, 408 

commercially available antagonists of TAS2Rs. Additional medicinal chemistry and 409 

computational modeling studies are needed to develop novel antagonists of TAS2R. 410 

Furthermore, TAS2Rs have evolved as low affinity and low specificity receptors (41) and 411 

therefore, require µM concentrations of the agonists to activate these receptors. Similar ranges of 412 

concentrations are reported in studies using heterologous expression models as well (35). 413 
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Additional medicinal chemistry and computational modeling studies are needed to develop novel 414 

high affinity agonists and antagonists of TAS2R.  415 

In this study we focused primarily on investigating cell hyperplasia and hypertrophy as 416 

potential cellular mechanisms by which ASM growth is regulated. However, ASM growth is also 417 

regulated by additional mechanisms such as apoptosis and necrosis. ASM cells undergo 418 

apoptosis under various conditions and a decreased rate of apoptosis has been reported to 419 

contribute to excessive ASM mass in asthma (21). Recent studies demonstrated that statins 420 

inhibit ASM growth by inducing apoptosis of ASM cells (17). Effects of TAS2R agonists on 421 

ASM mass could also be due to cytotoxicity or necrosis. Future studies will address additional 422 

cellular mechanisms involved in the anti-mitogenic effect of TAS2R agonists.   423 

Airway remodeling continues to be a major clinical problem as none of the anti-asthma 424 

medications used currently for clinical management of asthma symptoms effectively mitigate 425 

features of airway structural changes (21; 22). The current findings demonstrate that TAS2R 426 

agonists inhibit mitogen-induced growth both in normal and asthmatic ASM cells. Under in-vitro 427 

conditions, beta-agonists modestly inhibit ASM growth (30; 55), and no clinical evidence exists 428 

supporting an in vivo anti-mitogenic effect of β-agonists. Clinical studies using biopsy samples 429 

obtained from asthmatics suggested no effect of long acting beta agonists on ASM mass (21). 430 

One study has suggested leukotriene receptor antagonists possess growth inhibitory effects in 431 

animal models (23), yet no human studies have provided evidence for an anti-remodeling effect 432 

of leukotriene receptor antagonists (21; 28). Interestingly, a recent in vitro study by Trian et al., 433 

using human bronchial epithelial and smooth muscle cell (obtained from severe persistent 434 

asthmatics) co-culture model demonstrated that epithelium-generated paracrine factors including 435 

leukotrienes regulate ASM proliferation that could be inhibited by pre-treating cells with 436 
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leukotriene receptor antagonist, montelukast (53). Additional in vivo studies are needed to further 437 

ascertain the effect of leukotriene receptor antagonists on airway remodeling in asthmatics. Beta 438 

agonists are the drug of choice for managing acute exacerbations, but several problems 439 

associated with the use of beta agonists such as tachyphylaxis, individual variations in 440 

responsiveness, and safety concerns (54) have been noted.  The recent discovery of taste receptor 441 

expression in ASM and the bronchodilatory effect of TAS2R ligands raise the possibility of a 442 

novel class of safe, effective anti-asthma medications.  443 

Interestingly, TAS2Rs are also expressed on ciliary epithelium and activation of these 444 

receptors results in an increased ciliary beat frequency suggesting that TAS2R agonists are 445 

useful in clearing mucus during airway inflammation (49). The findings from the present study 446 

demonstrate, for the first time, the anti-mitogenic effect of TAS2R agonists. Future in vivo 447 

studies are needed to corroborate these in vitro findings. Collectively, the findings to date 448 

suggest TAS2R agonists represent an exciting new class of anti-asthma drugs, based on their 449 

capacity to address multiple features of asthma pathology, including bronchospasm, airway 450 

mucus accumulation, and airway remodeling.  451 

  452 
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FIGURE LEGENDS 640 
 641 

Figure 1.  Effect of bitter taste receptor (TAS2R) agonists on mitogen-induced ASM growth. 642 

Human ASM cells were pretreated with different concentrations of chloroquine (Chloro), quinine 643 

(Quin) or saccharine (Sacch) for 15 min and treated with FBS (A), PDGF (B) or EGF (C) for 72 644 

h. ASM cells obtained from severe asthma patients were treated with PDGF with or without pre-645 

treatment with TAS2R agonists (D). Total DNA content was determined by CyQuant assay and 646 

data presented as fold change in fluorescence from baseline. Note a significant (* p<0.05, n=6) 647 

inhibition of growth factor-induced ASM growth by TAS2R agonists. B-basal, F-FBS, E-EGF, 648 

P-PDGF. 649 

 650 

Figure 2. Bitter taste receptor agonists inhibit PDGF-induced ASM hyperplasia. Human ASM 651 

cells were pretreated with 50 or 100 µM chloroquine (Chloro), quinine (Quin) or saccharine 652 

(Sacch) and PDGF-induced hyperplasia was determined by cell count. Note a significant (* 653 

p<0.05) decrease in the ASM cell number by bitter tastants (n=6). Forward scatter analysis using 654 

flow cytometer revealed no effect of TAS2R agonists on ASM size (data not shown). 655 

 656 

Figure 3. Role of PKA in TAS2R-induced anti-mitogenic effects on ASM. We used human 657 

ASM cells stably expressioning PKI-GFP chimera or GFP alone and assessed cell growth by 658 

CyQuant assay (A). Pre-treatment with 100 µM Chloroquine (Chloro) or Quinine (Quin), 659 

inhibited FBS (left) or PDGF (right)-induced ASM growth in both GFP and PKI-GFP expressing 660 

ASM cells. cAMP/PKA activation in ASM cells was further assessed by western blotting (B) 661 

and CRE-Luc assay (C). TAS2R agonists treatment of ASM cells did not activate PKA as 662 

determined by phosphorylation of VASP in GFP cells (B). Isoproterenol was used as a positive 663 
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control. Stimulation of ASM cells for 8 h with Chloro and Quin did not activate CRE-Luc (C). 664 

Isoproterenol, prostaglandin E2 and forskolin (FSK) robustly induced CRE-Luc activation. (NS: 665 

non-significant; n=3-5). Collectively, these data suggest that TAS2R agonists do not activate 666 

cAMP/PKA pathway in ASM cells.  667 

 668 

Figure 4. Role of PKC and calcium-activated potassium channels in TAS2R-induced anti-669 

mitogenic effect on ASM. Human ASM cells were pretreated with vehicle, PKC inhibitor Bis I 670 

(A, B), or calcium activated potassium channel inhibitor IbTx (C, D) for 15 min followed by 671 

treatment with 100 µM chloroquine (Chloro) or quinine (Quin), and PDGF- (A and C) and FBS- 672 

(B and D) induced ASM growth was determined using the CyQuant assay. Inhibition of PKC or 673 

calcium-activated potassium channel did not affect anti-mitogenic effect of TAS2R agonists 674 

(NS: non-significant; n=5). 675 

 676 

Figure 5. Immunoblot analysis of effects of TAS2R agonists on mitogenic (MAPK) signaling in 677 

ASM. Human ASM cells were pretreated with chloroquine (Chloro), quinine (Quin) or 678 

saccharine (Sacch) for 15 min and stimulated with PDGF (left) or EGF (right) for 30 min, and 679 

lysates were harvested and subjected to immunoblot analysis for phospho-p42/44 (top), p38 680 

(bottom) (A). GAPDH expression was used as internal control. Shown are the representative 681 

images (A). Densitometric analysis of western blot images suggests that TAS2R agonists do not 682 

inhibit PDGF or EGF induced activation of ERK or p38 MAP kinase in ASM cells (n=4) (B). 683 

 684 

Figure 6. Effects of TAS2R agonists on PI3K and S6 kinase signaling in ASM. Human ASM 685 

cells were pretreated with chloroquine (Chloro), quinine (Quin) or saccharine (Sacch) and 686 
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stimulated with PDGF (left) or EGF (right), lysates were harvested and subjected to immunoblot 687 

analysis for phospho-Akt and phospho-p70S6K. Expression of β-actin was used as loading 688 

control. Shown are the representative western blot images (A). Densitometric analysis of western 689 

blot images from multiple experiments (n=5) suggests that TAS2R agonists significantly (* 690 

p<0.05) inhibit PDGF or EGF induced phosphorylation of Akt and p70S6K (B). 691 

 692 

Figure 7. Effect of TAS2R agonists on the induction of phosphatidylinositol-3,4,5-trisphosphate 693 

(PIP3). Human ASM cells were stimulated with PDGF with or without pretreatment with 250 694 

µM chloroquine (Chloro) and quinine (Quin) for 30 min and PIP3 concentration were 695 

determined by ELISA. PDGF stimulated PIP3 induction was unaffected by TAS2R agonists (* 696 

p<0.05, n=4). 697 

 698 

Figure 8. Inhibition of multiple transcription factors by TAS2R agonists. Human ASM cells 699 

stably expressing luciferase under the control of STAT3 (A), E2F (B), NFAT (C) and AP-1 (D) 700 

were treated with PDGF with or without pretreatment with chloroquine (Chloro), quinine (Quin) 701 

or saccharine (Sacch), and luciferase activity assessed after 24 h by a luminometer. Note a 702 

significant inhibition of PDGF-induced transcriptional activation by TAS2R agonists Chloro and 703 

Quin (* p<0.05, n=3-5). 704 

 705 

Figure 9. TAS2R agonists inhibit expression of cyclin D1 in ASM cells. PDGF treatment 706 

resulted in an increased expression of cyclin D1 at 12 h (data not shown) or 24 h, and 707 

Chloroquine (Chloro) and quinine (Quin) inhibited this response, (* p<0.05, n=3-5). Top: 708 

representative western blot image, Bottom: densitometric analysis.  709 
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Figure 10. Human ASM cell cycle analysis. Using flow cytometry and propidium iodide 710 

staining we determined the proportion of cells in G0, S and G2/M phase of cell cycle after 711 

treating cells with PDGF +/- TAS2R agonists. Chloroquine (Chloro) and quinine (Quin) 712 

pretreatment decreased proportion of G0 cells (A) and increased cells in S (B) and G2/M (C) 713 

phases of cell cycle (* p<0.05, n=4).  714 

  715 
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 716 

Table 1: Effect of TAS2R agonists on genes up-regulated by PDGF in human ASM cells. 717 

Human ASM cells were treated with PDGF +/- chloroquine (Chloro) or quinine (Quin) and total 718 

RNA harvested after 24 h. Gene expression was assessed by real-time PCR using cell cycle real-719 

time PCR gene arrays. Shown in the table are the genes up-regulated ≥2 folds above the basal by 720 

PDGF. Note several cell cycle regulatory genes were induced by PDGF and TAS2R agonists 721 

inhibited the expression of these genes (n=5). 722 

Gene name PDGF (P) P+Chloroquine P+Quinine P+Saccharin
Baculoviral IAP repeat-containing 5 (survivin) 8.64  ± 2.29 0.22 ± 0.09 3.82 ± 1.19 9.44 ± 2.17
Breast cancer 2, early onset 4.92  ± 1.66 0.21 ± 0.07 2.36 ± 0.92 7.25 ± 4.97
Cyclin A2 6.37  ± 2.7 0.18 ± 0.06 3.08 ± 1.1 8.52 ± 4.3
Cyclin B1 4.72  ± 2.15 0.64 ± 0.14 2.77 ± 0.95 5.86 ± 3.5
Cyclin B2 6.02  ± 1.7 0.22 ± 0.1 3.42 ± 1.24 7.91 ± 2.6
Cyclin D1 10.71  ± 6.38 2.36 ± 1.25 3.62 ± 1.9 13.05 ± 9.9
Cyclin D2 1.39  ± 0.25 0.22 ± 0.07 1.60 ± 0.53 0.88 ± 0.16
Cyclin E2 11.43  ± 3.35 0.97 ± 0.28 5.62 ± 0.8 11.05 ± 5.7
Cell division cycle 2 G1 to S and G2 to M 8.48  ± 2.93 0.09 ± 0.03 3.93 ± 1.7 14.25 ± 7.28
Cycle division cycle 20 homolog (S. cerevisiae) 11.79  ±7.9 0.95 ± 0.26 3.52 ± 1.05 10.64 ± 3.7
Cyclin-dependent kinase 2 2.59  ± 0.81 0.46 ± 0.11 2.31 ± 0.76 1.78 ± 0.37
CDK inhibitor 3 (CDK2-associated dual specificity phosphatase) 5.05  ± 1.6 0.30 ± 0.07 3.23 ± 1.71 3.78 ± 1.3
CDC28 protein kinase regulatory subunit 1B 2.34  ± 0.72 0.44 ± 0.09 1.78 ± 0.56 1.73 ± 0.36
DEAD/H box polypeptide 11 (CHL1-like helicase homolog , S. cerev 2.64  ± 1.12 0.29 ± 0.12 2.19 ± 0.61 3.08 ± 0.63
Kinetochore associated 1 3.44  ± 1.1 0.25 ± 0.18 2.44 ± 0.7 2.65 ± 0.63
Karyopherin alpha 2 (RAG cohort 1, importin alpha 1) 2.84  ± 0.8 0.78 ± 0.19 2.67 ± 0.87 1.99 ± 0.6
MAD2 mitotic arrest deficient-like 1 (yeast) 4.65  ± 1.46 0.45 ± 0.13 2.83 ± 0.94 4.05 ± 0.81
MCM2 minichromosome maintenance deficient 4 (S. cerevisiae) 3.92  ± 1.3 0.32 ± 0.10 2.89 ± 0.93 2.65 ± 0.44
MCM2 minichromosome maintenance deficient 5, cell division cycle 4 5.93  ± 2.2 0.06 ± 0.02 3.56 ± 0.88 3.43 ± 0.68
Antigen identified by monoclonal antibody Ki-67 10.17  ± 2.91 0.14 ± 0.09 4.56 ± 1.7 10.72 ± 3.49
Proliferating cell nuclear antigen 2.34  ± 0.8 0.23 ± 0.07 1.64 ± 0.49 1.53 ± 0.4
RAD51 homolog (RecA homolog E. coli) (S. cerevisiae) 6.62  ± 1.8 0.66 ± 0.5 4.62 ± 1.22 5.71 ± 1.4
Retinoblastoma-like 1 (p107) 3.14  ± 0.8 0.18 ± 0.14 2.68 ± 0.95 2.22 ± 0.67

Cyclin A1 4.98  ± 1.64 4.98 ± 1.93 5.09 ± 1.58 4.61 ± 1.67
Cyclin E1 2.01  ± 0.48 1.03 ± 0.14 2.31 ± 0.88 1.19 ± 0.22
Cyclin F 2.61  ± 0.76 0.20 ± 0.10 2.18 ± 0.5 1.89 ± 0.36
Cycle division cycle 34 homolog (S. cerevisiae) 1.38  ±0.39 0.56 ± 0.03 2.51 ± 1.07 0.53 ± 0.08
CDKinhibitor 2B (p15, inhibits CDK4) 2.34  ± 1.25 1.38 ± 1.02 2.92 ± 1.31 1.39 ± 0.69
MCM2 minichromosome maintenance deficient 2, mitotin (S. cerevisi 3.54  ± 0.92 0.41 ± 0.28 3.36 ± 1.02 2.56 ± 0.52
MCM2 minichromosome maintenance deficient 3 (S. cerevisiae) 2.77  ± 0.7 0.27 ± 0.10 2.38 ± 0.69 1.90 ± 0.30
Retinoblastoma binding protein 8 2.26  ± 0.4 0.82 ± 0.18 2.31 ± 0.44 1.24 ± 0.09

Genes not sensitive to either chloroquine or quinine treatment

Genes inhibited by choroquine and quinine treatment
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Figure 7 
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Cyclin D1 

β-actin 

Basal     Basal        PDGF    P+Chloro   Quin+P   Sacch+P 

Figure 9 



A. B. G0 phase S phase 

Figure 10 
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