
 Motor Imagery Task Classification Using a New Signal-
dependent Orthogonal Transform based Feature 

Extraction  

Mostefa Mesbah1, 2, Aida Khorshidtalab3, Hamza Baali4 and Ahmed Al-Ani5 

1 Department of Electrical and Computer Engineering College of Engineering, 
Sultan Qaboos University,  P O Box: 33, Muscat 123, Sultanate of Oman 

2 School of Computer Science and Software Engineering, The University of Western Australia, 
35 Stirling Highway, Perth, WA 6009, Australia 

3 Intelligent Mechatronics System Research Unit, Department of Mechatronics Engineering, 
International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia 

4 Malaysia Industry Transformation, Technology Park Malaysia, 57000 Kuala Lumpur 
5 Faculty of Eng and IT, University of Technology Sydney, Ultimo, NSW 2007 Australia 

mmesbah@ ieee.org,  ida.khorshidtalab@gmail.com, 
baaliha@yahoo.fr, Ahmed.Al-Ani@uts.edu.au 

Abstract.  In this paper, we present the results of classifying electroencephalo-
graphic (EEG) signals into four motor imagery tasks using a new method for 
feature extraction. This method is based on a signal-dependent orthogonal trans-
form, referred to as LP-SVD, defined as the left singular vectors of the LPC fil-
ter impulse response matrix. Using a logistic tree based model classifier, the ex-
tracted features are mapped into one of four motor imagery movements, namely 
left hand, right hand, foot, and tongue. The proposed technique-based classifi-
cation performance was benchmarked against those based on two widely used 
linear transform for feature extraction methods, namely discrete cosine trans-
form (DCT) and adaptive autoregressive (AAR). By achieving an accuracy of 
67.35%, the LP-SVD based method outperformed the other two by large mar-
gins (+25% compared to DCT and +6 % compared to AAR-based methods).  

Keywords: Brain-computer interface, channel selection, feature extraction, lin-
ear prediction, orthogonal transform 

1 INTRODUCTION 
The aim of Brain-computer interface (BCI) is to set a direct communication link be-
tween the brain and external electronic devices whereby brain signals are translated 
into useful commands. Such communication link would assist people suffering from 
severe muscular (motor) disabilities with an alternative means of communication and 
control that bypass the normal output pathways [1-3].  In this paper, we focus on an 
important sub-component of BCI systems, namely feature extraction. This sub-

 
 



component’s aim is to identify a set of features that are effective in discriminating 
between different classes of interest.  

Transform based approaches form an important class of feature extraction tech-
niques. Their aim is to find a more compact lower-dimensional representation in 
which most of the signal’s information is packed in a few number of uncorrelated 
coefficients. By eliminating irrelevant features (transform coefficients), these methods 
allow extracting effective features that preserve the generalization capability while 
lessening the computational complexity associated with the classification stage [4]. 
These transform-based approaches can be subdivided into linear and nonlinear, super-
vised and unsupervised, and signal dependent and signal independent methods. The 
most widely used linear techniques are PCA and LDA. The first one is unsupervised 
and aims at maximizing the variance of the projected data, using the eigenvectors of 
the sample covariance matrix, onto a low-dimensional subspace called principal sub-
space. In contrast, the latter is supervised and attempts to find a linear mapping that 
maximizes linear class separability of the data in a low-dimensional space [5].  

Recently, the authors introduced a signal-dependent linear orthogonal transform, 
referred to as LP-SVD transform [6]. The transform has the advantage of forming the 
transformation matrix using only the AR model parameters, instead of the data sam-
ples as in the case of PCA. This transform is used in this paper to map EEG data into 
a new domain where only a few spectral coefficients contain most of the signal’s 
energy. A subset of these transform coefficients, in conjunction with the LP coeffi-
cients and the error variance, were used as features in the classification of EEG into 
four class motor imagery tasks. The feature extraction  method was validated using 
BCI IIIa competition dataset and its classification capability was assessed against two 
state-of-the-art methods based on DCT and AAR transforms. 

The rest of the paper is organized as follows. Section II (a) describes the EEG data, 
its acquisition, and its pre-processing. Section II introduces the LP-SVD transform 
and    how it is used in feature extraction. Section III compares the classification per-
formance of the proposed LP-SVD based technique against two methods based on 
two of the most widely used linear transform for feature extraction. Section IV con-
cludes the paper. 

2 Methodology 
2.1 Data Acquisition and Pre-processing  

The dataset IIIa from the BCI competition III (2005) [7] was used to evaluate the 
effectiveness of the proposed feature extraction method. It is a widely used bench-
mark dataset of multiclass motor imagery tasks recorded from three subjects; referred 
to as K3b, K6b and L1b. The multichannel EEG signals were recorded using a 64-
channel Neuroscan EEG amplifier (Compumedics, Charlotte, North Carolina, USA). 
Only 60 EEG channels were actually recorded from the scalp of each subject using 
the 10-20 system and referential montage. The left and right mastoids served as refer-
ence and ground respectively. The recorded signal was sampled at 250 Hz and filtered 
using a bandpass filter with 1 and 50 Hz cut-off frequencies. A notch filter was then 
applied to suppress the interference originated from power lines. During the experi-



  

ments, each subject was instructed to perform imagery movements associated with 
visual cues. Each trial started with an empty black screen at 𝑡 = 0 seconds. At time 
point t = 2 seconds, a short beep tone was presented and a cross ‘+’ appeared on the 
screen to raise the subject’s attention. At t = 3 seconds, an arrow pointed to one of the 
four main directions (left, right, upwards or downwards) was presented. Each of the 
four directions, indicated by this arrow, instructed the subject to imagine one of the 
following four movements: left hand, right hand, tongue or foot, respectively. The 
imagination process was performed until the cross disappeared at t = 7 seconds. Each 
of the four cues was randomly displayed ten times in each run. No feedback was pro-
vided to the subject. The recorded dataset from subject K3b consists of 9 runs, while 
the ones from K6b and L1b consist of 6 runs each, which resulted in 360 trials for 
subject K3 and 240 trials for each of the other two subjects. 

2.2 The LP-SVD Transform  
The LP-SVD transform is constructed using a two-step process, namely the esti-

mation of LPC filter coefficients and the computation of the left singular vectors of 
LPC filter impulse response matrix using singular value decomposition (SVD).  

Linear prediction (LP) consists of computing the current signal observation, 𝑦 𝑛 , 
using a linear combination of its P past samples, namely,  𝑦 𝑛 − 𝑖   for  𝑖 = 1,… ,𝑃. 
This can be expressed mathematically by [8] 

𝑦 𝑛 = − 𝑎!𝑦 𝑛 − 𝑖
!

!!!

+ 𝑒 𝑛 ,                                                                              (1) 

where, 𝑎! are the linear prediction coefficients (LPCs), P is the prediction order 
and 𝑒 𝑛  is the prediction error. Equation (1) can be written in a more compact form 
using the following matrix notations: 

𝒚 = 𝑯𝒆,  (2) 

where 𝒚 = [𝑦 1 ,… , 𝑦 𝑁 ]! and 𝒆 = [𝑒 1 ,… , 𝑒 𝑁 ]! are respectively the 𝑁×
1  columns vectors of the data samples and the prediction residual, while 𝑯 is the 
𝑁×𝑁  impulse response matrix of the synthesis filter (also called LPC filter) whose 
entries are completely determined by the linear prediction coefficients 𝑎!. The matrix 
𝑯 is  lower triangular and Toeplitz. Applying the SVD to 𝑯 gives: 

𝒚 = 𝑼𝑫𝑽𝑻𝒆 (3) 

𝑼 and  𝑽 are the 𝑁×𝑁 orthogonal matrices containing the left and right 
eigenvectors of 𝑯 and 𝑫 is the 𝑁×𝑁 diagonal matrix of singular values [9].  

We define the transformation that maps the measurement vector  (𝒚)  to a feature 
vector (𝜽) by [6]:   

𝜽 = 𝑼𝑻𝒚  (4) 

It is important to note that the transform operation (𝑼𝑻𝒚) by itself does not achieve 



any dimensionality reduction. It only decorrelates and packs a large fraction of the 
signal energy into a relatively few transform coefficients as shown in Fig.1. 
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Fig. 1. Signal transformation using LP-SVD: (a) Original EEG signal trace from subject L1b, 
(b) Transform coefficients with AR(1) as a signal model. 

2.3 LP-SVD-based Feature Extraction  

Our approach involves extracting features from each EEG segment. These features 
include the estimated LP coefficients (𝑎!), the prediction error variance (  𝑉𝑟), and a 
subset of the most significant transform coefficients 𝜽. These features are described 
below. 

According to the above LP analysis, the EEG vector is described in terms of all-
poles filter coefficients and the prediction error. There are two classical approaches 
used to estimate the LP parameters, namely the autocorrelation and the covariance 
methods. In this study, we used the autocorrelation method as it guarantees the stabil-
ity of the filter and allows the efficient Levinson-Durbin recursion to be used to esti-
mate the model parameters [8]. Once the coefficients are estimated, the prediction 
error sequence can be computed using (1). The estimate of the prediction error 𝑒(𝑛) 
variance is given by: 

𝑉𝑟 =
1

𝑁 − 1
𝑒(𝑛) − 𝑒 𝟐

!

!!!

,                                                                              (5) 

where 𝑒 is the arithmetic mean of the prediction error vector 𝒆 and 𝑁 is its length. 

The data vector 𝒚 is presented in the new coordinates {𝒖𝒊} by the transform coeffi-
cients or scores 𝜃!. The transform coefficients corresponding to the 𝐾 largest singular 
values are selected as features: 

𝜽 = 𝑼𝒚 , The columns of 𝑼 are 𝒖!,𝒖!,… ,𝒖! . (6) 

 
a. DCT –based feature extraction procedure 

The DCT is a signal independent, real-valued, orthogonal transform that is asymp-
totically equivalent to the optimal principal component analysis (PCA) for highly 
correlated first-order stationary autoregressive signals [10]. The orthonormal basis 
vectors 𝒘! of an 𝑁 points discrete cosine transform (DCT-II) are giving by: 
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𝒘! =
!
!
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           (7) 

The 𝑁×𝑁 orthogonal DCT matrix is then defined as 𝑾 = (𝒘!,… ,𝒘!). It follows 
immediately that the relation between a data vector 𝒚 and its DCT transform 𝒀 is 
given by:  

𝒀 =𝑾𝑻𝒚  (8) 

The resulting DCT coefficients represented by the vector 𝒀 are concentrated in the 
low-frequency subspace as shown in Fig.2. Dimensionality reduction using DCT is 
realized by using only these low frequency coefficients as features and discarding the 
remaining high frequency coefficients. This is illustrated by the following linear map-
ping. 

𝒀 =𝑾𝒚 ,  (9) 

The columns of 𝑾 are 𝒘!,𝒘!,… ,𝒘!   

Fig. 2 shows an exemplary DCT coefficients vector of the EEG data of Fig.1. The 
energy of the transformed data is packed into the first few low frequency coefficients 
while all high frequency coefficients are relatively small.  
 

 
Fig. 2. DCT-II transform of the EEG signal shown in Fig.1(a) 

3 EXPERIMENTAL RESULTS AND DISCUSSION 
This section is divided into two parts. The first part is devoted to the AR model order 
selection. The second part evaluates the performance of the LP-SVD-based feature 
extraction method against two well-known related feature extraction methods. The 
classifier used to measure the performance is a logistic model tree implemented as 
part of the Weka software package with its default parameters [11]. This classifier, 
that uses SimpleLogistic, has a merit over other classifiers due to its use of 
LogitBoost. To evaluate the classification results, we used 10 fold cross-validation 
where the data is randomly split into 10 folds of equal size. 
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3.1 AR model selection 

To investigate the appropriate AR model order and the number of transform coeffi-
cients to be retained as features, we performed a series of simulations. In this part, 
only the parameters characterizing the LP-SVD transform are used as features, name-
ly, a subset of transform coefficients (𝜽), the LP coefficients (𝑎!) and the prediction 
error variance (𝑉𝑟). The features were extracted from the electrode sites over the pri-
mary motor area C3, CZ, and C4. These are widely considered to be the most in-
formative channels associated with motor imagery tasks [12 ]. 

We varied the AR model order from one to seven using the EEG segments from t = 
3.5 sec to t = 5.5 sec (501 samples) from each trial. The best model order was selected 
based on the resulting classification accuracy. This criterion is more suitable, in the 
present context, than the commonly used one in signal representation (modeling), 
namely the tradeoff between the model order and the prediction error variance. Table 
I shows the classification results as function of the order of the AR model. 

Table 1. AR Model Order Selection 

AR mod-
el order 

Subject 
L1b K3b K6b 

Accuracy (%) 
1 42.08 66.11 47.5 
2 32.5 63.61 28.75 
3 29.58 57.5 28.33 
4 26.25 58.61 36.25 
5 30 60.83 28.33 
6 22.5 56.94 24.16 
7 20.83 57.5 32.91 

 
For all subjects, the highest classification accuracy, on average, was obtained with 
first order AR model and using a subset of four transform coefficients with results 
ranging from 42.08% for subject l1b to 66.11% for subject K3b. Therefore, this model 
order and number of transform coefficients were used in subsequent analysis.  

3.2 Feature extraction evaluation 

 This part compares the performance of the feature extraction method to those using 
similar approaches, which are based on signal modeling and orthogonal transform. 
These techniques are based on adaptive autoregressive (AAR) model [12] and discrete 
cosine transform (DCT). In particular, Schlögl et al [12] applied a third order adaptive 
autoregressive (AAR) model for EEG signal analysis. The extracted AAR coeffi-
cients, which provide dynamic information about the signal spectrum, served as fea-
tures. The authors used three different classifiers namely, neural network based on k-
nearest neighbour (kNN), support vector machines (SVM), and linear discriminant 
analysis (LDA) to classify the EEG signal into one of the four classes described earli-
er. The results showed that the SVM-based classifier achieved the best accuracies 
followed by LDA and then kNN. The authors also reported that the best results were 
obtained when using the features extracted from all 60 monopolar channels. In this 



  

evaluation, we used these same channels to provide a fair comparison between the 
methods.  

To find the adequate number of DCT coefficients that achieve the highest classifi-
cation performance for the different subjects, we varied the number of retained DCT 
coefficients from 5 to 50 with a step size of 5. Table II summarizes the obtained clas-
sification results as a function of the number of retained DCT coefficients. The num-
ber of coefficients required, for subjects K6b, L1b and K3b, to achieve the highest 
classification accuracies were 15, 40, and 20, respectively. 

The performances of the three feature extraction approaches mentioned above are 
summarized in Table III. It can be seen that when only the transform coefficients were 
used as features, the proposed approach outperformed the DCT-based one by up to 23 
%  in terms of accuracy (for subject L1b) with 10 times fewer number of features. 
Meanwhile, when the LP coefficient and the residual error variance were added to the 
LP-SVD transform coefficients, our technique performed better than the two methods 
for subjects L1b and K6b and achieved comparable results to the AAR-based method 
for subject K3b. On average, the improvement, in terms of accuracy was about +25% 
compared to DCT and +6 % compared to AAR-based methods. It is pertinent to point 
out that, unlike DCT which results only in the transform coefficients as features, our 
method results in other features, LPC coefficients and residual signal variance, that 
led to a better characterization of the signal. In addition, the DCT is signal independ-
ent while our proposed transform is signal dependent. These two facts explain the 
difference in performance between the two methods. 

Table 2. Performance (classification accuracy) of DCT-based feature extraction using 60 Mo-
nopolar Channels  

Number  of coef-
ficients retained   

Subject 
K6b L1b K3b 

5 37.91 38.75 33.61 
10 43.75 41.25 36.94 
15 45.833 40.41 37.77 
20 40.00 42.08 38.05 
25 42.50 42.50 33.88 
30 41.25 41.66 35.83 
35 40.41 42.91 36.38 
40 40.00 43.75 33.611 
45 39.16 42.50 35.00 
50 38.75 39.16 34.44 

 

Table 3. Comparative analysis of different features extraction approaches  

Subject DCT coefficients 
(best results) 

AAR(3) Best 
SVM results [12] 

LP-SVD coefficients 
(4 coefficients) 

LP-SVD coefficients 
(4)+AR(1)+ Error variance 

ACC % 
L1b 43.75 53.90 52.50 58.75 
K3b 38.05 77.20 55.00 76.66 
K6b 45.83 52.40 67.08 66.66 
Avg 42.54 61.16 58.19 67.35 



4 Conclusion 
In the present study, we presented a feature extraction approach based on the combi-
nation of autoregressive modeling and orthogonal transformation. Results of classifi-
cation experiments, using a benchmark dataset from the BCI competition III, and 
comparison against closely related approaches, namely DCT and AAR, demonstrates 
that the proposed feature set is compact and offers a significant improvement in per-
formance as judged by the classification accuracy. The number of transform coeffi-
cients was kept constant during all the experiments. It would be interesting to address 
the issue of parameter tuning in future studies. Future work will also include adding 
more features to improve the performance beyond the one obtained in this study. 
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