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Abstract. In this paper, we introduce a novel method for constructing synthetic,
but realistic, data of four Electroencephalography (EEG) channels. The data gen-
eration technique relies on imitating the relationships between real EEG data
spatially distributed over a closed-circle. The constructed synthetic dataset estab-
lishes ground truth that can be used to test different source separation techniques.
The work then evaluates three projection techniques – Principal Component Anal-
ysis (PCA), Independent Component Analysis (ICA) and Canonical Component
Analysis (CCA) – for source identification and noise removal on the constructed
dataset. These techniques are commonly used within the EEG community. EEG
data is known to be highly sensitive signals that get affected by many relevant
and irrelevant sources including noise and artefacts.
Since we know ground truth in a synthetic dataset, we used differential evolu-
tion as a global optimisation method to approximate the “ideal” transform that
need to be discovered by a source separation technique. We then compared this
transformation with the findings of PCA, ICA and CCA. Results show that all
three techniques do not provide optimal separation between the noisy and rele-
vant components, and hence can lead to loss of useful information when the noisy
components are removed.

Keywords: Synthetic multichannel EEG; artefact removal; PCA; ICA; CCA; op-
timal projection; differential evolution

1 Introduction

The Electroencephalography (EEG) is a well established modality for recording brain’s
electrical activities. In addition to the various signal sources arising from the cerebral,
scalp EEG is also influenced by a number of noise and artefact sources. These in-
clude scalp muscles, eye movements and blinks, breathing, heart beat, and electrical
line noise. Proper interpretation of EEG data is very important as artefact and noise
may bias the neurological interpretation [1–4].
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There has been attempts to extract relevant information from the EEG signals using
classical signal processing techniques, including adaptive supervised filtering, paramet-
ric and nonparametric spectral estimation, time frequency analysis, and higher-order
statistics. Unfortunately, all techniques face difficulties arising from the spectrum over-
lap of brain signals with artifacts. For instance, most of these techniques have been
reported to fail in completely eliminating ocular artifacts [5], [6], [7].

Multivariate techniques, such as Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA) and Canonical Component Analysis (CCA) have been
widely used in identifying the relevant sources and denoising the EEG data. The afore-
mentioned techniques are commonly used in processing EEG data [6, 8, 7]. However,
some important information might be lost while applying the above procedures to EEG
data. Identification and removal of exact location of noisy components are of great in-
terest to both engineers and clinicians. However, the number of sources, whether of
cerebral origin or artefacts, that contribute to the recorded scalp signal as well as their
combination methodology are not known. Thus, one possible approach to overcome
this limitation is the use of synthetic EEG data to model and project the sources.

This research reports on the ability of the three techniques – PCA, ICA and CCA
– in re-constructing the relevant sources using synthetic data. A novel method for con-
structing synthetic data of four EEG channels is presented with the aim of imitating
relationships between real EEG channels, spatially distributed with varying distances.
Five measures are presented to evaluate the performance of these methods, where the
first three evaluate the reconstruction of sources without eliminating noisy components,
while the remaining two evaluate the information loss and noise elimination ability of
these methods when removing noisy component(s). A differential evolution (DE) al-
gorithm is utilized to search for the optimal transformation, as the synthetic sources
are known a priori, to estimate the difference in performance of the three multivariate
methods to that of the “best” projection for each of the five evaluation measures.

The paper is organized as follows. Section 2 describes the construction of synthetic
data. Evaluation of the three projection techniques is presented in section 4, and a con-
clusion is given in section 5.

2 Construction of Synthetic Data

In the construction of synthetic data, we consider the case of limited number of EEG
channels (four in particular), and presume that there are five brain sources, four of them
are local, one for each channel, while the fifth one is global. We also presumed that
there are two noise sources, similar to the synthetic data described in [4]. The seven
synthesised sources are described as shown in Table 1. We also decided to change the
frequency of the second component for each of the five EEG sources in the second half
of the signal and make the EMG artefacts active during limited portions of the signal.
Figure 1 shows the seven sources, which are sampled at 256 Hz.

In order to define relationships between the four channels, we studied a real EEG
dataset that consists of 64 channels according to the montage shown in Fig. 2. The four
synthesized channels are considered to form a rectangle shape with different lengths of
its horizontal and vertical sides, as described in Table 2. The real EEG dataset was used
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Table 1. Synthesised sources

Source Equation Description
1 14 sin(2π × 4t) + 52 sin(2π × 22t) Delta and Beta
2 23 sin(2π × 7t) + 70 sin(2π × 19t) Theta and Beta
3 16 sin(2π × 5t) + 43 sin(2π × 11t) Theta and Alpha
4 44 sin(2π × 9t) + 56 sin(2π × 47t) Alpha and Gamma
5 34 sin(2π × 6t) + 24 sin(2π × 45t) Theta and Gamma
6 144 sin(2π × 31t) + 337 sin(2π × 51t) EMG artefact
7 282 sin(2π × 28t) + 246 sin(2π × 49t) EMG artefact
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Fig. 1. The seven original signal sources of the synthetic data

to calculate the correlation values between the six pairs of the four channels, i.e., {ch1,
ch2}, {ch1, ch3}, {ch2, ch3}, {ch1, ch4}, {ch2, ch4} and {ch3, ch4}.

The nine cases listed in the table have different number of channel combinations,
which are: 38, 33, 26, 22, 18, 13, 10, 4 and 2 respectively, as the smaller the rectan-
gle the larger the number of possible combinations that can be formed using the 64
channels. In general, the obtained results indicate that the longest the rectangle side the
smaller the correlation between channels. We also noticed that vertical channels tend to
have smaller correlation compared to horizontal ones with similar distance (i.e., larger
inter-lobe differences compared to intra-lobe), and that the lower horizontal channels
(parietal/occipital) usually have higher correlation than their corresponding higher ones
(frontal/central).

We considered one of the two synthetic noise sources to be close to the upper left
corner of the rectangle (e.g., close to the left frontal channels), while the other has a
stronger effect on the lower right corner of the rectangle (e.g., close to the right pari-
etal/occipital channels). The observed synthetic signals of the four channels are formed
using a weighted sum of the seven sources. We fixed the weight of the local source of
each channel to 1.0 and varied the weights of EMG artefacts based on their distances
from each of the four channels. The objective was to search for an appropriate weight
value for the other local and global sources to achieve correlation values that are close
to the ones listed in Table 2. The weight search that was implemented using Differential
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Table 2. Considered scenarios based on distances between the four channels

Case D-h D-v Example Median Correlation between channels
{Ch1, Ch2, Ch3, Ch4} {1,2}, {1,3}, {2,3}, {1,4}, {2,4}, {3,4}

1 1 1 {F5, F3, FC5, FC3} {0.84, 0.78, 0.73, 0.71, 0.76, 0.83}
2 2 1 {F5, F1, FC5, FC1} {0.65, 0.79, 0.57, 0.52, 0.75, 0.65}
3 2 2 {F5, F1, C5, C1} {0.64, 0.52, 0.36, 0.30, 0.42, 0.66}
4 3 2 {F5, FZ, C5, CZ} {0.30, 0.55, 0.27, 0.23, 0.42, 0.38}
5 4 2 {F5, F2, C5, C2} {0.20, 0.57, 0.19, 0.20, 0.47, 0.20}
6 4 3 {F5, F2, CP5, CP2} {0.24, 0.24, 0.13, 0.22, 0.18, 0.21}
7 5 3 {F5, F4, CP5, CP4} {0.22, 0.28, 0.18, 0.27, 0.19, 0.52}
8 6 4 {F5, F6, P5, P4} {0.29, 0.10, 0.27, 0.37, 0.13, 0.59}
9 7 4 {F5, F8, P5, P8} {0.15, 0.07, 0.25, 0.37, 0.07, 0.54}

Fig. 2. EEG montage that shows distribution of 64 channels with examples of different distances
between the four selected channels (corners of the rectangles)

Evolution (DE) [9, 10] was restricted by an upper limit. The obtained weight matrices
are listed in Table 3. The nine obtained sets shown in Fig. 3 demonstrate that the vary-
ing level of correlation between the four signals with the first set (Fig. 3(a)) having the
maximum correlation between the four signals that are noticeably affected by the first
noise source. The effect of the first noise source was kept constant for the fist signal
and gradually decreased for the remaining three signals, especially the fourth one, as
the distance between the channels increased. In contrast, the effect of the second noise
source gradually increased for the fourth signal.

3 Evaluation of The Projection Techniques

It is important to find the optimal reconstruction matrices as their projections will serve
as a baseline to evaluate the performance of PCA, ICA and CCA. Finding these matrices
will also be helpful for the development of future projection techniques. Two objectives
will be defined and a search mechanism using DE will be utilized for this purpose. The
first objective is to search for the weight reconstruction matrix that maximises correla-
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Table 3. Weigh matrices for each of the nine cases. Weights that are in bold font were fixed, while
the remaining ones were optimized given that they do not exceed an upper limit

W1 W2 W3
S1 1.000 0.500 -0.500 -0.500 1.00 -0.450 0.450 0.450 1.000 0.450 -0.450 -0.353
S2 0.224 1.000 0.494 0.112 0.450 1.000 -0.183 0.370 -0.056 1.000 -0.450 -0.450
S3 0.500 -0.500 1.000 -0.127 0.348 -0.070 1.000 -0.304 0.234 0.019 1.000 -0.410
S4 0.500 0.379 0.440 1.000 -0.450 0.224 0.450 1.000 -0.45 0.240 0.450 1.000
S5 -0.122 0.110 -0.092 0.074 0.143 -0.281 -0.066 0.047 -0.248 -0.250 0.087 -0.134
S6 0.500 0.400 0.350 0.300 0.500 0.350 0.350 0.250 0.500 0.350 0.250 0.200
S7 0.020 0.030 0.040 0.050 0.020 0.040 0.04 0.070 0.020 0.040 0.070 0.150

W4 W5 W6
S1 1.000 -0.400 -0.400 -0.400 1.000 -0.300 -0.300 -0.300 1.000 -0.250 -0.250 -0.250
S2 -0.400 1.000 -0.230 -0.400 -0.300 1.000 -0.300 -0.300 -0.250 1.000 -0.250 -0.250
S3 -0.400 -0.400 1.000 0.400 -0.280 -0.300 1.000 -0.172 -0.250 -0.250 1.000 0.250
S4 -0.400 0.198 -0.400 1.000 -0.300 0.300 -0.300 1.000 -0.250 0.016 -0.216 1.000
S5 -0.500 0.500 0.500 0.219 -0.750 0.750 0.418 0.070 -0.750 0.750 0.750 -0.266
S6 0.500 0.300 0.250 0.170 0.500 0.250 0.250 0.130 0.500 0.250 0.150 0.100
S7 0.020 0.050 0.070 0.200 0.020 0.055 0.070 0.250 0.020 0.055 0.100 0.300

W7 W8 W9
S1 1.000 -0.250 -0.250 0.250 1.000 -0.200 -0.200 0.200 1.000 -0.026 -0.150 0.150
S2 -0.250 1.000 -0.250 -0.250 -0.200 1.000 0.066 -0.200 -0.150 1.000 0.019 -0.150
S3 -0.250 -0.250 1.000 0.250 -0.200 -0.200 1.000 0.200 -0.150 -0.150 1.000 0.150
S4 -0.069 -0.059 0.250 1.000 0.200 -0.077 0.200 1.000 0.150 -0.150 0.150 1.000
S5 -0.750 0.672 0.551 0.094 -0.750 0.294 0.230 -0.603 -0.750 0.750 0.380 -0.732
S6 0.500 0.200 0.150 0.070 0.500 0.150 0.050 0.020 0.500 0.100 0.050 0.020
S7 0.020 0.060 0.100 0.350 0.020 0.065 0.150 0.450 0.020 0.070 0.150 0.500

tion with the original sources. We will first attempt to maximise the correlation with the
four local sources only, and then with all five EEG sources. Those two implementations
will be named DE1 and DE2. The second objective is to dedicate one component to
the two noise sources, i.e, maximise correlation with them, while the remaining three
components are to be dedicated to the EEG sources (one version (DE3) for the four
local sources, and another one (DE4) for all five EEG sources). This will enable the
removal of noisy component similar to how ICA, PCA and CCA are usually utilized in
EEG processing. We used five measures for evaluating the performance of ICA, PCA
and CCA. The first three for evaluating the transformation without removing any com-
ponent, and the the other two evaluate the estimated noise free signals after removing
noisy component(s). The five measures are:

1. Distance of reconstructed sources from the original local sources, i.e., distance be-
tween Corr(Sr, Sl) and Corr(Sl, Sl), where Corr(Sr, Sl) is the cross correlation
matrix between the reconstructed sources, Sr, and the original local sources, Sl,
while Corr(Sl, Sl) is the autocorrelation matrix of the original local sources. Note
that we manually arranged the components of ICA, PCA and CCA to achieve max-
imum cross correlation between Sr and Sl.

2. Correlation between the reconstructed sources and the two noise sources, Corr(Sr, Sn),
where Sn represents the two noisy sources.

3. Correlation between the reconstructed sources and the original global source, Corr(Sr, Sg),
where Sg is the global source.
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Fig. 3. Synthesised signals using the nine weight matrices.

4. Error remaining in the reconstructed signals after removing noisy component(s),
which is calculated using Corr(SigR, Sn), where SigR are the signals after re-
moving noisy components, while Sn is the noisy sources.

5. Information loss due to removal of noisy component(s), which is estimated using
Corr(Srn, [Sl, Sg]), where Srn is(are) the reconstructed noisy component(s) that
is(are) removed to obtain an estimate of noisy-free signals.

Results of the ICA, PCA, CCA and the four DE optimized methods, which represent
the upper limits to compare with, are shown in Table 4. The first three measures shown
in the table indicate that the three methods of ICA, PCA and CCA could not reach the
optimal performance in terms of correlation with the local and global EEG sources as
well as reducing the influence of noise. The table shows that the performance of ICA
was slightly better than CCA and noticeably better than PCA for the first two measures,
but slightly worse than them for the third measure. On the other hand, the performance
of CCA was slightly better than ICA and PCA in reconstructing the global source.
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Table 4. Performance of ICA, PCA, CCA and the four DE-optimized benchmark methods

Method Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Mean

M
ea

su
re

1 ICA 0.1624 0.2305 0.1836 0.2448 - 0.2922 0.2564 0.2229 0.2171 0.2262
PCA 0.2378 0.3341 0.2350 0.3201 0.2495 0.2562 0.2539 0.2179 0.2136 0.2576
CCA 0.3087 0.2119 0.1929 0.2131 0.2251 0.2388 0.2569 0.2743 0.2589 0.2423
DE1 0.0996 0.1710 0.1453 0.1854 0.1869 0.1886 0.1804 0.1208 0.1129 0.1545
DE2 0.1131 0.1708 0.1446 0.1920 0.1994 0.1963 0.1852 0.1318 0.1347 0.1631

M
ea

su
re

2 ICA 0.2804 0.3203 0.3488 0.3536 0.4433 0.3479 0.3337 0.3181 0.3252 0.3412
PCA 0.2738 0.3144 0.3291 0.3533 0.3667 0.3829 0.4264 0.4273 0.4341 0.3676
CCA 0.2729 0.2907 0.3301 0.3526 0.3695 0.3889 0.3673 0.3622 0.3701 0.3449
DE1 0.2391 0.0712 0.1588 0.0964 0.1412 0.1476 0.1658 0.3419 0.3612 0.1915
DE2 0.2075 0.0682 0.1605 0.0904 0.1170 0.1377 0.1702 0.3287 0.3365 0.1796

M
ea

su
re

3 ICA 0.0946 0.1700 0.0965 0.2925 0.1710 0.3872 0.3288 0.2612 0.3692 0.2412
ICA 0.0990 0.1713 0.1079 0.2613 0.3413 0.4189 0.3116 0.2450 0.3752 0.2591
ICA 0.0954 0.1704 0.1130 0.2905 0.3628 0.4467 0.3743 0.2876 0.4024 0.2826
ICA 0.0988 0.1714 0.1140 0.3378 0.4308 0.5435 0.4716 0.2646 0.3490 0.3091
ICA 0.0981 0.1745 0.1137 0.3598 0.4467 0.5722 0.4981 0.2939 0.4296 0.3319

M
ea

su
re

4 ICA 0.1268 0.1511 0.1591 0.1630 0.1397 0.1229 0.1202 0.0671 0.4641 0.1682
PCA 0.0697 0.1145 0.1019 0.0922 0.1342 0.1661 0.2033 0.1192 0.3433 0.1494
CCA 0.0702 0.0588 0.1119 0.1216 0.1505 0.1690 0.0335 0.0838 0.2148 0.1127
DE3 0.0081 0.0303 0.0180 0.0071 0.0068 0.0113 0.0013 0.0047 0.0013 0.0099
DE4 0.0089 0.0211 0.0091 0.0364 0.0139 0.0067 0.0089 0.0121 0.0070 0.0138

M
ea

su
re

5 ICA 0.2837 0.2945 0.3051 0.3388 0.3352 0.3781 0.3478 0.3546 0.3537 0.3324
PCA 0.3398 0.3742 0.3400 0.3835 0.3715 0.3855 0.3733 0.3332 0.3332 0.3594
CCA 0.3531 0.3066 0.2908 0.3198 0.3271 0.3236 0.3741 0.3682 0.3627 0.3362
DE3 0.1730 0.1258 0.0906 0.0294 0.0506 0.0754 0.1102 0.1887 0.1878 0.1146
DE4 0.1836 0.1287 0.0917 0.0342 0.0489 0.0804 0.1104 0.1966 0.1938 0.1187

Please note that measure 1 could not be calculated for ICA in the fifth case, as it only
managed to find two components and could not converge when calculating the third
one. For the fourth and fifth measures that deal with removing noisy component(s),
CCA tends to perform slightly better than ICA and PCA in terms of removing the noise
sources and not losing relevant EEG information, however, all three methods are not
optimal as removal of noisy sources led to noticeable loss of information.

4 Conclusion

In this paper, we proposed a new approach for the construction of synthetic EEG signals
using limited number of channels. The construction aimed at mimicking relationships
between real EEG channels. The distances were varied between channels, and hence,
varying their cross-correlation. The projections obtained using PCA, ICA and CCA
were evaluated using five measures and compared to a best approximate projection
that was obtained using a differential evolution algorithm. Results reveal that all three
projection techniques are not optimal in terms of reconstructing the original sources.
Also, the removal of noisy component(s) led to a loss of relevant information for all
three methods. These findings motivate the need for more research on the reconstruction
of relevant EEG sources. The proposed synthetic dataset construction method can serve
as one of the testbeds for evaluating EEG source separation techniques.
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