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Synopsis 
Ferlins are an ancient family of Ca2+-binding, multi-C2 domain vesicle fusion proteins. Of the six human ferlins, 
mutations in dysferlin cause muscular dystrophy and otoferlin cause deafness. We detail the tissue-distribution, 
subcellular localization and endocytic trafficking of the human ferlins. Dysferlin and myoferlin, type-I ferlins, 
localise to the plasma membrane and late endosomes, which display potential for occasional recycling. Otoferlin 
and Fer1L6, type-II ferlins, localise to dedicated recycling sub-compartments of the trans-Golgi network. We 
establish that type-I and type-II ferlins segregate into late-endosomal and recycling trans-Golgi compartments. 
 

 

Abstract  

Ferlins are a family of transmembrane-anchored vesicle fusion proteins uniquely characterized by 5-7 tandem 
cytoplasmic C2 domains, Ca2+-regulated phospholipid-binding domains that regulate vesicle fusion in the 
synaptotagmin family. In humans, dysferlin mutations cause limb-girdle muscular dystrophy (LGMD2B) due to 
defective Ca2+-dependent, vesicle-mediated membrane repair and otoferlin mutations cause non-syndromic 
deafness due to defective Ca2+-triggered auditory neurotransmission. In this study, we describe the tissue-
specific expression, subcellular localization and endocytic trafficking of the ferlin family. Dysferlin, myoferlin, and 
Fer1L6 are plasma membrane (PM) ferlins, whereas otoferlin and Fer1L5 localize predominantly to intracellular 
compartments. Studies of endosomal transit together with 3D-structured illumination microscopy reveals dysferlin 
and myoferlin are abundantly expressed at the PM and cycle to Rab7-positive late endosomes, supporting 
potential roles in the late-endosomal pathway.  In contrast, Fer1L6 shows concentrated localization to a specific 
compartment of the trans-Golgi/recycling endosome, cycling rapidly between this compartment and the PM via 
Rab11 recycling endosomes. Otoferlin also shows trans-Golgi to PM cycling, with very low levels of PM otoferlin 
suggesting either brief plasma membrane residence, or rare incorporation of otoferlin molecules into the PM.  
Thus, type-I and type-II ferlins segregate as PM/late-endosomal or trans-Golgi/recycling ferlins, consistent with 
different ferlins mediating vesicle fusion events in specific subcellular locations. 
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Abbreviations: DYSF: dysferlin; MYOF: myoferlin; OTOFN: neuronal otoferlin; OTOFUb: ubiquitous otoferlin; 
DDK: Flag epitope tag; HEK293: human embryonic kidney 293 cells; IRES: internal ribosome entry site; WGA: 
wheat germ agglutinin; 3D-SIM: three-dimensional structured illumination microscopy; ER: endoplasmic 
reticulum; GM130: Golgi matrix protein of 130 kDa; TGOLN2: trans-Golgi network integral membrane protein 2; 
LAMP1: lysosomal associated membrane protein 1. PM: Plasma membrane. 

 

 
 

Introduction 

Ferlins are an ancient family of vesicle fusion proteins characterized by the unique structure of 5-7 cytoplasmic 
C2 domains (Ca2+-regulated, phospholipid-binding domains), anchored by a C-terminal transmembrane domain 
(1). There are six mammalian ferlins - Fer1L1 (dysferlin), Fer1L2 (otoferlin), Fer1L3 (myoferlin) and Fer1L4-6. 
Type-I ferlins (dysferlin, myoferlin and Fer1L5) are defined by the presence of the DysF domain in the centre of 
the molecule (three C2 domains either side), an independently folding domain of unknown function (2, 3). In 
yeast, DysF domain containing proteins regulate peroxisome size and number (4). Type-II ferlins (otoferlin, 
Fer1L4 and Fer1L6) are defined by the absence of the DysF domain. All ferlins also contain Fer domains, 
conserved domains unique to the ferlin family that are yet to be structurally or functionally defined (5).  

The unifying feature of ferlin animal models from invertebrates to humans, are pathologies linked specifically to 
defects in Ca2+-dependent vesicle fusion (reviewed (1)). Ferlins are hypothesised to mediate vesicle fusion via 
their multiple C2 domains (1). C2 domains consist of around 100 amino acids and fold into a conserved, 
characteristic 8-stranded beta sheet structure (6). The synaptotagmin family of vesicle fusion proteins bear two 
C2 domains. Synaptotagmin-1 triggers synaptic vesicle fusion, and the crystal structures and Ca2+- and 
phospholipid-binding properties of the two C2 domains have been well characterized (6, 7).  In synaptotagmin-1, 
C2B binds Ca2+ in the top loop regions via a binding pocket of conserved aspartic acid residues, acquiring a 
positive charge that enables loop insertion into negatively-charged phospholipid membranes (8). Insertion of 
Ca2+-bound C2 domain loops into phospholipid membranes is proposed to induce membrane curvature and help 
overcome the energetic barrier for vesicle fusion with the target membrane (9).  

The structures of dysferlin C2A (10) and otoferlin C2A (11) have been solved.  Interestingly, alternate splicing of 
dysferlin exon 1 leads to two variant C2A domains. Structural and thermodynamic analyses indicate the canonical 
C2A domain functions as a Ca2+-dependent, phospholipid-binding domain.  In contrast, due to intrinsic positive 
electrostatic charges on the outer surface of C2Av1, this domain appears as a structural mimic of Ca2+-bound 
C2A, and is likely to be Ca2+ -independent under physiological conditions (10). In contrast, otoferlin C2A was not 
shown to bind Ca2+ or phospholipid membranes, consistent with a structural difference observed in one of the top 
loops that typically contribute to Ca2+ coordination in other C2 domains (11).  Therefore, otoferlin C2A does not 
possess a positively charged groove thought to mediate interaction with negatively charged lipids (11). Studies of 
isolated C2 domains from dysferlin (10, 12, 13) and otoferlin (14) show properties of Ca2+-  and phospholipid 
binding, though structural data was not available to demonstrate whether purified domains have assumed a 
classical C2 β-sheet fold. 

Mutations in dysferlin cause limb-girdle muscular dystrophy type 2B (15, 16). Dysferlin knockout mouse muscle 
fibres display a primary defect in Ca2+-dependent membrane repair (17), a process involving Ca2+-triggered 

exocytosis to ‘patch’ membrane wounds (18). Dysferlin-laden vesicles show Ca2+-regulated accumulation at 
injury sites and appears to fill membrane lesions in human myotubes (19) and zebrafish skeletal muscle (20), 
consistent with dysferlin mediating vesicle fusion at sites of membrane injury. In humans, otoferlin mutations 
cause an inherited form of profound, non-syndromic deafness (21, 22). Otoferlin-knockout mice are also 
profoundly deaf, and show a primary defect in Ca2+-dependent synaptic exocytosis from the basolateral 
membrane of inner hair cells, abolishing neurotransmitter release to the auditory nerve (23).  

No disease-causing mutations have yet been identified in myoferlin, Fer1L4, Fer1L5 or Fer1L6. Myoferlin 
knockdown reduces endocytosis and subsequent degradation of growth-factor receptors (24), and reduces 
breast cancer cell line migration velocity (25). Myoferlin expression is upregulated in breast cancer biopsies (26), 
lung carcinoma (27), pancreatic adenocarcinoma (28), breast ductal adenocarcinoma (24) and chronic muscle 
disease in mice (29, 30). Fer1L4 mRNA is expressed in healthy stomach tissue and downregulated in gastric 
cancer samples, where it is proposed to be a pseudogene (31, 32).  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
In the synaptotagmin family there are thirteen members, with different synaptotagmins mediating vesicle fusion in 
specific tissues (33, 34) or subcellular compartments (35). Synaptotagmin-1 mediates fusion of neurotransmitter 
containing vesicles to synapses in nerves (10, 36, 37), while synaptotagmin-VII mediates insulin-containing and 
glucagon-containing vesicle fusion in pancreatic islet cells (38, 39). We hypothesise that analogous to the 
synaptotagmins each ferlin will mediate vesicle fusion events involving discrete cargo in specific tissues and at 
specific subcellular locations. 

In this study, we describe the tissue-specific expression, sub-cellular localization and endocytic trafficking of the 
human ferlin family. We show that dysferlin, myoferlin, and Fer1L6 are plasma membrane ferlins, whereas 
otoferlin and Fer1L5 predominantly localize to intracellular compartments. Studies of endosomal transit together 
with 3D-structured illumination microscopy (3D-SIM (40)) reveal that dysferlin and myoferlin transit to late 
endosomes, whereas otoferlin and Fer1L6 are trans-Golgi/recycling ferlins. Our data is consistent with different 
ferlins mediating vesicle fusion events in specific subcellular locations. 

 

Results 

Tissue-specific expression of each ferlin in human tissues. 

We investigated the expression of each of the six mammalian ferlins across 12 human tissues, using a semi-
quantitative PCR approach. We utilized two sets of primers specific for each ferlin, a pair amplifying the 5’ region 
of the gene (with one primer within the 5’ untranslated region, UTR, not shown) and a second pair amplifying the 
3’ region of the gene (with one primer within the 3’ UTR).  Results from the 3’ primer pair are shown in Figure 1, 
employing 30, 35 and 40 cycles of amplification to provide a rudimentary standard curve and to control for 
saturation.   

Dysferlin and myoferlin mRNAs are expressed ubiquitously, detected in all tissues analyzed (Figure 1A, DYSF, 
MYOF). Alternate splicing confers neuronal-specific and ubiquitous transmembrane domains for otoferlin (Choi et 
al., 2009), regulated by the inclusion or exclusion of exon 47 (Figure 1B). Exon 47 is expressed only in brain 
(Figure 1A, OTOF, higher band asterisked), conferring a neuronal specific transmembrane domain (OtofN). 
Interestingly, otoferlin mRNA bearing the alternate transmembrane domain encoded by exon 48 (where exon 47 
is absent) is detectable in all tissues apart from skeletal muscle and kidney (Figure 1A, OTOF, lower band). We 
refer to this otoferlin transcript as ubiquitous otoferlin (OtofUb). 

Fer1L4, L5 and L6 show more restricted patterns of expression. Fer1L4 is annotated as a non-protein coding 
RNA (NCBI Gene: 80307; ENSEMBL ENSG00000088340). Fer1L4 mRNA expression was observed primarily in 
the stomach (Figure 1A, L4). Fer1L5 expression was largely restricted to the pancreas (Figure 1A, L5), with other 
tissues analyzed generally showing low or absent expression of Fer1L4 or L5. Interestingly, Fer1L5 expressed in 
the pancreas is alternately spliced, removing exon 51 (Figure 1A, B). In Fer1L5 isoform 1, exon 51 encodes for 
the transmembrane domain. Splicing directly from exon 50 to 52 results in a +1 frame-shift, introducing an 
alternate stop codon early in exon 52 and removing the predicted luminal domain of Fer1L5 (Figure 1B, C). In 
stomach and esophagus, where low levels of Fer1L5 are expressed, doublet bands are observed with the 3’ 
primer pair; the upper band includes exon 51, whereas the lower band excludes exon 51 (Figure 1A, L5: 
stomach, esophagus). Fer1L6 expression is highest in heart, kidney and stomach, with lower levels observed in 
lung, liver, pancreas, thymus and colon (Figure 1A, L6). These expression data are consistent with RNA 
sequencing data recently available with open access; 
http://www.gtexportal.org; http://www.proteinatlas.org; 
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly. 
 
 

Dysferlin, myoferlin and Fer1L6 are plasma membrane ferlins, whereas otoferlin and Fer1L5 are 
predominantly intracellular 

We have shown previously that dysferlin localizes to the plasma membrane and to endosomal vesicles, using 
luminal and cytoplasmic epitopes to verify membrane topology (41).  Plasma membrane localization has been 
previously confirmed for myoferlin (42), and there are no studies confirming the precise subcellular localization of 
other ferlins.  We derived ferlin expression constructs with C-terminal epitope tags (MycHis for dysferlin or 
MycDDK for myoferlin, otoferlin, Fer1L5 and Fer1L6), which are luminal for intracellular ferlins or extracellular for 
plasma membrane ferlins. These epitope tags allow us to determine whether a ferlin is expressed at the plasma 
membrane, and to track endosomal retrograde trafficking. No commercial antibodies are available to the short 
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luminal domain (10-20 amino acids) of any ferlin. Based on the limited expression profile of Fer1L4 and difficulty 
deriving such large expression constructs, we did not generate a Fer1L4 construct for localization studies. 

To determine which mammalian ferlins target the plasma membrane, we performed surface labelling of live cells 
with anti-Myc647 (for flow cytometry) or anti-Myc555 (for confocal microscopy) at 8oC for 90 mins. We studied 
transfected HEK293 epithelia and C2C12 myoblasts, with consistency of observations between these disparate 
cell types. For simplicity, only results from HEK293 cells are presented in Figure 2. 

Dysferlin, myoferlin and Fer1L6 are readily detected at the plasma membrane, whereas otoferlin and Fer1L5 are 
predominantly intracellular (Figure 2). For flow cytometry, live cells were gated based on exclusion of propidium 
iodide, and transfected cells were gated by expression of EGFP via the internal ribosome entry site (IRES) within 
the expression vector. Figure 2Ai shows flow cytometry quantification of levels of surface-bound anti-Myc647, 
relative to the EGFP expressed from the same mRNA, over three experiments. Dysferlin has a MycHis tag, 
compared to a MycDDK tag for myoferlin and Fer1L6. Anti-Myc may exhibit different affinities for the different 
epitope tags, therefore relative plasma membrane levels of dysferlin cannot be directly compared to myoferlin 
and Fer1L6.  Figure 2Aii shows the normal distribution of surface-bound anti-Myc647 among the pool of 
transfected cells from duplicate samples in a single experiment. Western blotting from replicate samples 
performed on the same day confirms ferlin expression in cell pellets (Figure 2Aiii).  We obtained no evidence for 
cell surface expression of Fer1L5, whereas low levels of the ubiquitous isoform of otoferlin (OTOFUb) can be 
detected at the plasma membrane by flow cytometry (confirmed using an anti-Flag binding curve shown in 
Supplementary Figure 1A). Representative dot-plots of the flow cytometry data are displayed in Supplementary 
Figure 1A. 

To confirm plasma membrane localization, transfected HEK293s used for flow cytometry were also plated onto 
coverslips. Confocal microscopy of live cells surface-labeled with anti-Myc555 confirmed robust plasma membrane 
expression of dysferlin, myoferlin and Fer1L6 in transfected cells expressing EGFP (Figure 2B DYSF, MYOF, 
L6). We observed weakly positive cell surface labeling for anti-Myc555 in cells transfected with ubiquitous otoferlin 
(Figure 2B, OTOFUb).  We could not detect plasma membrane labeling for Fer1L5 or neuronal otoferlin (Figure 
2B OTOFN, L5), consistent with flow cytometry results. 

We next used 3D-structured illumination microscopy (3D-SIM) to compare the surface localization of each ferlin 
to the plasma membrane marker wheat germ agglutinin (WGA). In live cells, dysferlin, myoferlin and Fer1L6 
intercalate with WGA, indicating that the ferlin C-terminus is in the same plane of the plasma membrane as the 
WGA-labeled glycosylated proteins (Figure 2C). In permeabilised cells, ubiquitous and neuronal otoferlin and 
Fer1L5 are below the plane of the plasma membrane, consistent with intracellular localization and concordant 
with our flow cytometry and confocal microscopy results (Figure 2C).  

In summary, dysferlin, myoferlin and Fer1L6 are plasma membrane ferlins, Fer1L5 is an intracellular ferlin, and 
only low levels of otoferlin are present at the plasma membrane.  

 

Different ferlins localize to different compartments of the secretory pathway.  

Confocal microscopy of fixed and permeabilised HEK293 epithelia, C2C12 myoblasts and Cos-7 fibroblasts 
transfected with our ferlin expression constructs shows that each ferlin has a distinct subcellular localization 
(Figure 2D). Detailed co-localization studies with subcellular markers for calreticulin (endoplasmic reticulum), 
GM130 (cis-Golgi apparatus), TGOLN2 (also known as TGN38/46, trans-Golgi network), Rab5 (early 
endosomes), Rab7 (late endosomes) or LAMP1 (lysosomes) are presented in Figures 4, 5, 6 and 7.  As the 
yeast DysF domain-containing proteins Pex30p and Pex31p localize to peroxisomes in yeast (4) we examined 
ferlin localization to peroxisomes using the peroxisome marker Pex-14. No human ferlin co-localized with Pex14 
labeled compartments, and therefore this data is not presented. 

Dysferlin and myoferlin show widespread labeling of the plasma membrane and bright labeling of vesicular 
puncta within the perinuclear region and cytoplasm (Figure 2D).  Consistent with export to the plasma 
membrane, we observed some co-localization of dysferlin and myoferlin with secretory pathway markers 
(calreticulin-ER, GM130-Golgi, TGOLN2-trans-Golgi; Figure 3). However, more prominent co-localization was 
consistently observed with endosomal markers Rab5 and Rab7 (Figure 4, Supplementary Figure 2). Myoferlin 
showed strong co-localization with large Rab7-positive endosomes within in the perinuclear region and also in 
the cell periphery (Figure 4B, Supplementary Figure 2B). Dysferlin and myoferlin endosomes have a clearly 
observable lumen and range in size from several hundred nanometers to >1 micron - comparable in size to 
LAMP-1 positive organelles (Figure 4A, B, 3D-SIM; resolution of single z-plane ~300 nm). Despite abundant co-
labeling of dysferlin and myoferlin vesicles for late endosomal marker Rab7, we observed only occasional co-
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labeling with the lysosomal marker LAMP-1 in HEK293, C2C12 and Cos-7 cells (Figure 4A, B, LAMP1; 
Supplementary Animation 1A and B, Supplementary Figure 2). Thus dysferlin and myoferlin label a pool of large 
Rab7-positive late endosomes discrete from LAMP1-positive lysosomes. 

Otoferlin shows limited co-labeling with ER markers, some co-labeling with GM130 and more comprehensive 
overlap with the trans-Golgi marker TGOLN2 (Figure 5). We observed a very similar sub-cellular localization 
between the ubiquitous (OTOFUb) and neuronal isoforms of otoferlin (OTOFN - shown in Supplementary 
Animation 1B). 3D-SIM resolves that otoferlinUb and TGOLN2 co-label a web of interconnected tubules (Figure 5, 
3D-SIM). These intersecting tubules are within the same z-plane and clearly apparent within the reconstructed 
3D-SIM image of the trans-Golgi network (Supplementary Animation 1C). Generally otoferlin and TGOLN2 each 
labels discrete segments of this tubular network, with direct overlay of each fluorescent signal observed at 
junctions of intersecting tubules (Figure 5, 3D-SIM, Supplementary Animation 1C). Otoferlin resides on the 
cytoplasmic face of the trans-Golgi stacks, while TGOLN2 resides on the nuclear side (Figure 5, 3D-SIM). These 
data suggest otoferlin and TGOLN2 both localize to the trans-Golgi network, but separately label closely 
associated yet discrete sub-compartments.  

Fer1L6 shows highly concentrated localization to a distinct perinuclear structure that is partially co-labeled by 
TGOLN2 (Figure 6A, TGOLN2, 3D SIM, Supplementary Figure 3). Concentrated localization of Fer1L6 to this 
specific compartment was striking in lesser-transfected cells which show a distinct, piercing spot adjacent to the 
nucleus, through to highly over-expressing cells where this compartment expands and appears to induce a 
furrow in a nucleus (Figure 6B). Studies using the nuclear envelope marker Lamin A/C indicate the Fer1L6 
compartment is discrete from, but adjacent to the nuclear envelope (Figure 6C, left panel).  

In a single z-plane, the Fer1L6 compartment contains TGOLN2 positive regions, but is not entirely TGOLN2 
positive. Conversely some, but not all, TGOLN2 staining is present in the Fer1L6 compartment (Figure 6A, 
TGOLN2 confocal inset). 3D-SIM reveals the Fer1L6 compartment consists of two connected stacks 
(Supplementary Animation 1D). TGOLN2-positive vesicles are present within and in-between the stacks of 
Fer1L6 (Supplementary Animation 1D), highlighting the interplay between the Fer1L6 compartment and trans-
Golgi network. It is important to note that although Fer1L6 labels the plasma membrane (Figure 2B), when 
imaging permeabilized cells, the intensity of labeling of the perinuclear compartment is so great that imaging 
must be performed with low laser power, whereby the plasma membrane labeling appears faint.  

Fer1L6 shows a high degree of co-localisation with endocytosed transferrin, which labels the recycling 
endosome. To confirm that Fer1L6 localizes to a trans-Golgi/recycling compartment, we disrupted the Golgi 
apparatus with brefeldin-A. Brefeldin-A treatment of Golgi apparatus disperses cis-Golgi markers throughout the 
ER and cytoplasm, while TGOLN2 collapses to the perinuclear microtubule organization complex (43). Brefeldin-
A treatment for 2 hours disrupts the Golgi apparatus, dispersing GM130 staining throughout the cell (Figure 6D, 
left two panels). FerL6 localization is relatively unperturbed by brefeldin-A, consistent with FerL6 localization to 
specific sub-compartments of the trans-Golgi apparatus and recycling endosome (Figure 6D, right panel).  

The localization of Fer1L5 appears reticular by confocal microscopy and we initially surmised this likely 
represented the endoplasmic reticulum (ER).  However, evidence for fluorescent overlay with calreticulin (Figure 
7, calreticulin) or calnexin (data not shown) was weak, by confocal microscopy and 3D-SIM.  Labeling for ER 
markers and Fer1L5 were closely associated, but did not completely overlay. Fer1L5 also did not co-label with 
GM130 (Figure 7), TGOLN2 or LAMP1 (data not shown), and its localization remains uncertain.   

 

Endocytic trafficking of the ferlins. 

The C-terminal epitope tag on the luminal domain of our ferlin expression constructs allows us to specifically 
examine retrograde trafficking for plasma membrane ferlins. Live cells were incubated with anti-Myc at 37°C, 
which binds to the cell surface epitope tag and is co-endocytosed with the ferlin. Figure 8A image depicts the 
endocytic trafficking representative of each ferlin. As Fer1L5 is not at the plasma membrane, it was used to 
control for specificity of the retrograde tracing approach, confirming anti-Myc antibodies are not taken up by non-
specific means (Figure 8A, Fer1L5).  Retrograde tracing experiments recapitulate features of total intracellular 
staining for each ferlin (compare with Figure 2D). Specifically dysferlin and myoferlin label cytoplasmic 
endosomes, Fer1L6 shows concentrated return to a distinct perinuclear compartment and otoferlin undergoes 
retrograde traffic to a broader perinuclear compartment.  

Retrograde tracing of dysferlin and myoferlin (using antibody uptake experiments ranging from 15 – 90 minutes) 
shows transit in Rab7 late endosomes and eventual labeling of a small population of LAMP-1 positive lysosomes 
(Figure 8B, dysferlin and myoferlin). 3D-SIM clarified that dysferlin and myoferlin were within the lysosomal 
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membrane of some LAMP-1 positive organelles and intraluminal within others (Figure 8B, dysferlin and myoferlin 
and Supplemental Animation 2A and B). Data from retrograde tracing was consistent with total intracellular 
staining, with co-localization of dysferlin and myoferlin to Rab7 positive organelles a predominant feature of both 
intracellular staining and endocytic labeling (Figure 9A, Figure 4 Rab7). Collectively, our results suggest dysferlin 
and myoferlin may play dedicated roles within the late endosomal pathway, rather than merely transiting this 
route on their way to degradation. 

In contrast to dysferlin and myoferlin, antibody uptake experiments with Fer1L6 and otoferlin results in endocytic 
transit to the trans-Golgi apparatus (Figure 8B). As observed with total intracellular staining (Figure 5), retrograde 
labeling of otoferlin highlights a trans-Golgi compartment closely adjacent to, yet separate from, TGOLN2 (Figure 
8B, otoferlin; Supplementary Animation 2C). Retrograde labeling of Fer1L6 intensely highlights a specific sub-
compartment of the trans-Golgi network (Figure 8B, Fer1L6, Supplementary Animation 2D). TGOLN2 labels 
vesicles in and between Fer1L6 stacks, consistent with intracellular staining. 3D-SIM analyses confirm the 
Fer1L6 stacks are intimately associated with the trans-Golgi network, but separate from the trans-Golgi 
structure/stack labeled by TGOLN2.  

As our evidence suggests Fer1L6 shuttles to and from a recycling sub-compartment of the trans-Golgi stack, we 
explored whether Fer1L6 showed association with Rab11a-positive recycling endosomes. Endocytic tracing 
experiments reveal that Fer1L6 shows abundant co-localization with Rab11a-endosomal vesicles in the cell 
periphery (Figure 9B, Fer1L6 inset).  Thus, Fer1L6 transits to a larger perinuclear organelle co-labeled by 
Rab11a (Figure 9B, white arrows), transferrin uptake (Figure 9C) and TGOLN2. Therefore, we believe the 
Fer1L6 compartment that we observe in both intracellular staining and endosomal uptake represents the 
recycling endosomal compartment. Fer1L6 transit to the recycling endosomal compartment is very rapid, 
occurring following addition of anti-Myc to the media for as little as 10 minutes (Figure 9B, Fer1L6).   

Retrograde tracing of otoferlin, myoferlin and dysferlin (with anti-Myc) together with endocytosed transferrin594 
also showed some overlay of a perinuclear compartment, suggesting these ferlins may also transit the recycling 
endosome (Figure 9). Similarly, in contrast to Fer1L6, retrograde tracing of otoferlin did not show strong co-
labeling of peripheral vesicles positive for Rab11a-GFP (data not shown). Furthermore, co-uptake experiments 
with otoferlin (anti-Myc) and anti-TGOLN2 showed that although both proteins undergo retrograde transit back to 
the trans-Golgi network, we could not detect evidence for co-transit within the same endosomal vesicle 
population en route to the trans-Golgi. The precise endocytic pathway of otoferlin remains to be elucidated. 

 

Discussion 

In this study, we have characterized the mRNA expression, subcellular localization and endocytic trafficking of 
the human ferlin family in three cell lines of different lineages (HEK epithelia, C2C12 myoblasts and Cos-7 
fibroblasts.  Though we acknowledge the caveat of overexpression systems, in this case, antibodies to the 
luminal domain of ferlins required to trace endosomal passage are not available.  Comparing each of the ferlins 
to one another in different cell types, our results strongly suggest that different ferlins target different 
compartments of the secretory pathway. We establish the ferlins fall into two distinct categories: dysferlin and 
myoferlin are plasma membrane/endosomal ferlins, while otoferlin and Fer1L6 are trans-Golgi/recycling ferlins 
(Figure 10).  

Dysferlin and myoferlin are expressed at the plasma membrane and transit to the late-endosomal pathway. 
Although both dysferlin and myoferlin abundantly co-label Rab7 positive late endosomes, this is a particularly 
dominant feature for myoferlin.  The high level of co-localization with late endosomal compartments lead us to 
expect a greater proportion of myoferlin and dysferlin to be present within lysosomes, but this was not the case. 
At the lysosome, dysferlin and myoferlin are present both within the lysosomal membrane and lumen. We were 
specifically interested in this localization as it illuminates whether these two ferlins have eventuated at the 
lysosome via multivesicular bodies (where they would be intraluminal) or have been present within the 
membrane of the endosomal vesicle as it matures. 

There is mounting evidence supporting functional roles for dysferlin and myoferlin in the endo-lysosomal 
pathway. Dysferlin null-myoblasts have double the number of lysosomes in comparison to wild-type myoblasts 
(44), suggesting dysferlin may play a regulatory role in lysosomal biogenesis or maturation. In dysferlin-null 
myoblasts, insulin growth-factor receptor (IGFR) shows greater accumulation within lysosomes compared to wild-
type myoblasts (44), implicating a role for dysferlin in receptor trafficking through the endo-lysosomal pathway. 
Myoferlin knockdown in MDA-231 epithelial breast cancer cells decreases epidermal growth-factor receptor 
(EGFR) degradation, diminishing the cell proliferation response of epidermal growth factor (24). Myoferlin 
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knockdown does not reduce EGFR endocytosis but prevents EGFR degradation (24), indicating that myoferlin 
regulates transit of endosomal cargo to the lysosome. We propose that dysferlin and myoferlin are localised 
primarily within Rab7 late endosomes to exert functional roles in late-endosomal to lysosomal trafficking, as 
opposed to being trafficked to the lysosome exclusively for degradation. 

In contrast to dysferlin and myoferlin, otoferlin and Fer1L6 show little labeling of endo-lysosomal organelles, and 
instead localise to trans-Golgi and recycling networks. However, while Fer1L6 is abundantly expressed at the 
plasma membrane, only very low levels of otoferlinUb are detectable at the plasma membrane. Fer1L6 shows 
profound and restricted localization to a brefeldin-A resistant region of the trans-Golgi/recycling endosomal 
compartment that is partially co-labeled by TGOLN2 and Rab 11a and abundantly labeled by endocytosed 
transferrin. Overexpression of Fer1L6 appears to induce expansion of this recycling compartment to such a 
degree that it deforms the nucleus, suggesting Fer1L6 may regulate its biogenesis. Otoferlin also localizes to a 
compartment of the trans-Golgi network that is immediately adjacent to, yet also distinct from TGOLN2-labeled 
membranes. While Fer1L6 endocytoses via Rab11a-positive endosomes to what we believe to be the 
Rab11a/TGOLN2 recycling endosomal compartment, otoferlin endocytoses to the trans-Golgi network via a 
different endocytic pathway. Thus, our data suggests otoferlin and Fer1L6 each recycle independently between 
different sub-compartments of the trans-Golgi network and the plasma membrane (Figure 10). 

The trans-Golgi recycling features we identify for ubiquitous otoferlin are consistent with roles defined for otoferlin 
in synaptic exocytosis (23) and synaptic vesicle recycling (45) in cochlear inner hair cells. It is this ubiquitous 
otoferlin isoform bearing the transmembrane domain encoded by exon 48 that is expressed in the human 
cochlear (46).  Otoferlin endogenously expressed within cochlear inner hair cells has previously been reported to 
localise to the Golgi apparatus (47), Rab8b-positive trans-Golgi compartments (48) and both apical and 
basolateral plasma membrane compartments (23, 49).  

We were surprised to be able to effectively label the endosomal passage of otoferlin by antibody uptake 
experiments, given the very low levels of plasma membrane labeling.  Perhaps rather than reflecting rare 
incorporation of otoferlin molecules into the plasma membrane, our data might suggest the exocytosis and 
endocytosis of otoferlin are closely coupled, resulting in only transient residence of otoferlin at the plasma 
membrane. Ours are only anecdotal observations, but perhaps relevant to expanding evidence implicating dual 
roles for otoferlin in the closely coupled exocytosis and recycling of synaptic vesicles in the cochlear.  

Our data are broadly consistent with previously published reports of ferlin subcellular localisation. We have 
previously shown dysferlin co-labels syntaxin-4-positive and caveolin-3-positive endosomes in C2C12 and 
primary human myotubes (41). Dysferlin and myoferlin have also been identified in GM130-positive Golgi 
compartments in primary lung epithelia (50) and cancer cell lines (myoferlin) (27), and in cytoplasmic puncta in 
mouse myoblasts (51-53) and human breast cancer cell lines(24); consistent with the endosomal localization we 
observe, though endosomal markers were not specifically studied. Endogenous otoferlin co-localises with the 
trans-Golgi t-SNARE syntaxin-16 in inner hair cells (54). Otoferlin expressed in HEK293 cells co-localizes with 
the trans-Golgi Rab8b (48), consistent with our study.  

Fer1L5 is similarly reported to show labeling of fine cytoplasmic tubules in mouse primary myoblasts (55, 56), 
and appears generally cytoplasmic in C2C12 (53). We did not observe the same intense patches of endogenous 
FerL5 labeling near or at the plasma membrane reported in C2C12  (53), though this labeling pattern was also 
not documented in primary myoblasts studied by the same authors (55, 56).  Discrepancies between the precise 
intracellular localization of Fer1L5 in different models may relate to the antibody employed, the specific Fer1L5 
isoform expressed (in our case human Fer1L5 NM_001293083.1) or intrinsic differences in the trafficking 
machinery in different cell types. Importantly, we could find no evidence for plasma membrane expression of 
Fer1L5 in HEK293, C2C12 or Cos7, and although Fer1L5 localization can be altered in absence of the endocytic 
recycling protein EHD1 (56), C2C12 express EHD1 and other members of the EHD family (53) and thus EHD 
proteins were not explored specifically as a basis for lack of export to the plasma membrane. In all three cell lines 
Fer1L5 staining appeared reticular but did not precisely co-label with ER markers calreticulin or calnexin by high 
resolution 3D-SIM, nor other markers of the secretory pathway, and thus we were unable to accurately refine its 
intracellular locale. No studies have investigated Fer1L6 sub-cellular co-localization to date, with our data 
presenting Fer1L6 as an interesting new marker of the TGN/recycling endosome. 

In conclusion, our study has identified a discrete split in endocytic trafficking routes between type-I (dysferlin and 
myoferlin, endo-lysosomal) and type-II (otoferlin and Fer1L6, trans-Golgi to plasma membrane recycling) ferlins. 
Structurally, the major difference between type-I and type-II ferlins lies in type-I ferlins possessing a DysF 
domain. No function has yet been attributed to the DysF domain, and we will now explore whether the DysF 
domain plays a role in endo-lysosomal targeting. Our study represents the first in-depth characterization of the 
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sub-cellular localization and trafficking of the human ferlin family. We establish that dysferlin and myoferlin transit 
the plasma membrane to late endosomes, otoferlin recycles to and from the trans-Golgi network and Fer1L6 
recycles to and from a trans-Golgi compartment via recycling endosomes. Defining specific tissue-specific 
expression and subcellular localization for each ferlin family member are important first steps to begin to address 
the different cellular cargo that may be regulated by the secretory and endocytic roles of this ancient family of 
vesicle fusion proteins.  

 

Materials and Methods 

Cell Culture 

HEK293 and Cos-7 cells were cultured in DMEM (Life Technologies) with 10% FBS (Life Technologies) and 
1:200 Gentamycin (Life Technologies). C2C12 myoblasts were cultured in 1:1 DMEM/F12 (Life Technologies) 
with 15% FBS and 1:200 Gentamycin. 

Transfection 

HEK293 cells were transfected with calcium phosphate or PEI (polyethylenimine Max, Polysciences) in 10 cm2 
dishes (BD Falcon). Cos-7 cells were transfected with Lipofectamine® 3000 (Life Technologies) in 3 cm2 dishes. 
C2C12 myoblasts were transfected using GeneJuice® (Merck). For calcium phosphate, 100 μL of 0.25 M CaCl2 
(Sigma-Aldrich), 4 μg DNA and 100 μL of BES solution (50 mM BES, 280 mM NaCl, 1.5 mM NaHPO4⋅7H2O 
[Sigma-Aldrich]) was mixed and incubated at room temperature for 15 min prior to adding dropwise to cells. For 
PEI transfection, 8.3 μL 1 mg.mL-1 PEI, 3 μg DNA and 200 μL of 0.9% NaCl (Baxter) was mixed and incubated at 
room temperature for 15 min prior to adding dropwise to cells. Dishes were transfected for 8 hours prior to 
transfer of cells to coverslips. For Lipofectamine® 3000, 7.5 µL of Lipofectamine® 3000 reagent was mixed with 
125 µL of Opti-MEM® medium (Life Technologies) and was added to a master mix containing 125 µL of Opti-
MEM®, 3.75 µg of DNA and 5 µL of P3000™ reagent and incubated at room temperature for 5 minutes prior to 
adding dropwise to cells. For GeneJuice® transfection, 1.5 µL GeneJuice® and 50 µL of Opti-mem® were mixed 
for 5 minutes at room temperature. 0.5 µg DNA was added and incubated for 10 minutes, followed by dropwise 
addition to coverslips. For co-transfection of Rab5/11a-EGFP, 2.75 μg of ferlin DNA and 250 ng of Rab5/11a-
EGFP were used to minimize the effect of Rab over-expression on early and recycling endosomal pathways. 

Immunocytochemistry 

For all immunocytochemistry protocols, cells were plated on Number 1 thickness glass coverslips (TAAB 
Laboratory Equipment LTD) coated in poly-D-lysine (Sigma Aldrich) and mounted using ProLong Gold antifade 
reagent (Life Technologies). 

Cell surface staining: Coverslips were incubated in rabbit anti-Myc (Abcam) diluted in 2% BSA in HBSS 
(blocking buffer) (Life Technologies) at 8°C for 1.5 hours. Following blocking, coverslips were incubated in anti-
rabbit555 diluted in block at 8°C for 1 hour. Cells were then fixed in 3% PFA (Sigma Aldrich) and mounted as 
above.  

Antibody Endocytosis: Rabbit or mouse anti-Myc was diluted in 37°C DMEM + 10% FBS and used to replace 
coverslip growth media. Following antibody incubation, coverslips were acid-washed in 0.5 M glycine (Sigma 
Aldrich) (pH 2.2) and fixed in 3% ice cold PFA. Cells were permeabilised with 0.1% saponin (Sigma Aldrich) and 
incubated in the indicated organelle marker antibody diluted in blocking buffer at room temperature for 1.5 hours. 
Coverslips were incubated with anti-mouse488 and anti-rabbit594

 for 1 hour at room temperature, followed by DAPI 
for 10 minutes. Coverslips were then mounted as above. 

Intracellular Staining: Coverslips were fixed in 3% PFA and permeabilised in 0.15% triton (Sigma Aldrich) (or 
0.2% saponin for LAMP1 or 0.3% triton for Rab7). Coverslips were incubated in rabbit (Abcam) or mouse (Santa 
Cruz) anti-Myc and the indicated organelle marker antibody diluted in blocking buffer at room temperature for 1.5 
hours. Coverslips were incubated with anti-mouse488 and anti-rabbit594

 for 1 hour at room temperature, followed 
by DAPI for 10 minutes. Coverslips were then mounted as above. 

Microscopy: All microscopy was undertaken using a Leica SP5 confocal microscope, or on a DeltaVision OMX 
V3 Blaze 3D structured illumination microscope (57) where indicated. 

Flow Cytometry 

Ferlin-pIRES2 EGFP transfected HEK293 cells were trypsinised and replated for 2 hours. Cells were then 
removed from plates with VerseneTM (Life Technologies) and pelleted. Cell pellets were resuspended in rabbit 
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anti-Myc in HBSS with 2% FBS for 1.5 hours at 10°C. Cells were then pelleted and washed, and resuspended in 
anti-rabbit647 (Life Technologies) in HBSS with 2% FBS for 1 hour at 10°C. Cells were again pelleted, washed 
and resuspended in HBSS with 1:200 propidium iodide (Life Technologies), following which cells were measured 
using a BD LSRII flow cytometer with FACS Diva software. 

Western Blot 

Cell pellets were lysed in RIPA buffer and separated on a 4-12% SDS-PAGE gel (Life Technologies). Protein 
was transferred onto PVDF membrane (Merck-Millipore). Membranes were blocked in 5% skim milk in PBS+ 
Tween-20 (block) and incubated in primary antibody at 4°C overnight, then HRP-conjugated secondary antibody 
(Thermo-Fischer Scientific) for 2 hours at room temperature. Blots were developed using ECL reagent (GE 
Healthcare). 

Polymerase Chain Reaction 

PCR was carried out for 30, 35 and 40 cycles with 58°C annealing and 40 second extension (70 second for 
GAPDH) using Taq DNA polymerase (Life Technologies). cDNA was sourced from Clontech (Human  MTC 
Panel 1, Immune Panel and Gut Panel). Primers were designed to the 3` of each ferlin using Primer 3.0 and 
synthesized by Sigma-Aldrich.  

Dysferlin Fwd: CAAGCTGGAAATGACCTTGG,  
Dysferlin Rev: GCCTAGGAGGTCTGGAGGAG.  
Otoferlin Fwd: AGGCAGAGAAGAACCCAGTG,  
Otoferlin Rev: AAGCCACTGAAAGGAAATGC.  
Myoferlin Fwd: CATGAACCCCAAGCTGGAC,  
Myoferlin Rev: TGCAAACGTTGCTTGTTGG.  
Fer1L4 Fwd: AAAGCAGAGGAGGAGGAAGG,  
Fer1L4 Rev: GGGTGAGTGTCCAAGGTCAG.  
Fer1L5 Fwd: CTGGAGATTCTGTCAGAGAAGG,  
Fer1L5 Rev: GTTGGTAGCAGGAGGAAAGC.  
Fer1L6 Fwd: CTGTTGGAAAAGCCCGAAAG,  
Fer1L6 Rev: CCAAGAAGGGTTGATCTGTCC.  

All PCR products were excised, purified (QiaexII Gel Purification Kit, Qiagen) and sequenced by the Australian 
Genome Research Foundation to confirm product specificity. 

Antibodies and Fluorescent reagents 

Rabbit anti-myc, 1:500 (surface and endosomal uptake), 1:4000 (intracellular) (Abcam); mouse anti-myc 9E10 
1:100 (uptake), 1:500 (intracellular) (Santa Cruz); LAMP1 1D4B, 1:100 (Hybridoma Bank); LAMP1 4A3, 1:100 
(Hybridoma Bank); TGOLN2/TGOLN2, 1:4500 (intracellular) or 1:250 (endosomal uptake) (Prestige 
Antibodies/Sigma Aldrich); Pex14, 1:1000 (Prestige Antibodies/Sigma Aldrich); GM130, 1:250 (BD Bioscience); 
Calreticulin 1:500 (Chemicon International); Calreticulin 1:200 (Novus Biological); Rab7 1:25 (Cell Signaling 
Technologies); EGFP (1:250); Transferrin from human serum594, 100 µg.mL-1  (Life Technologies), Wheat germ 
agglutinin (WGA)488 1:500 (Life Technologies); 4',6-diamidino-2-phenylindole (DAPI) 1:5000 (Life Technologies); 
anti-mouse488, 1:200 (Life Technologies); anti-mouse594, 1:200 (Life Technologies); anti-rabbit647, 1:200 (Life 
Technologies). 

Expression Constructs and Cloning 

pcDNA4-EGFP-DysferlinMycHis was a generous gift from Kate Bushby (Institute of Human Genetics, International 
Centre for Life, Newcastle upon Tyne, UK).  The EGFP was removed with blunt religation following digestion with 
BsrG1 and KpnI.  The cDNA is dysferlin isoform 1 (NP_003485.1), that is with exon 1, exon 17 and without exon 
5a and exon 40a.). Myoferlin (NM_013451.3), OtoferlinNeuronal (NM_194248.2), Fer1L5 (NM_001293083.1) and 
Fer1L6 (NM_001039112.2) were purchased in the pCMV6 MycDDDK vector from Origene. OtoferlinUbiquitous 
(NM_001287489.1) was derived via PCR of human brain cDNA, with primers replacing the exon 48 stop codon 
with an MluI restriction site.  A SacII – MluI fragment bearing the C-terminal domain of OtoferlinUb was subcloned 
into pCMV-OtoferlinNeuronal. All ferlin constructs were sub-cloned into pIRES2 EGFP for plasma membrane 
detection studies.  

Image Processing and Statistical Analysis 

All 3D-SIM images were processed using FIJI (58) and the FIJI 3D viewer plugin (59). Graphing and statistical 
analysis was undertaken using Graphpad Prism. 
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Figure 2: Dysferlin, myoferlin and Fer1L6 are plasma membrane ferlins. A i) Histogram showing the plasma 
membrane expression of each ferlin in transfected HEK293 cells quantified by flow cytometry. HEK293 cells were 
transfected with pIRES constructs expressing each mammalian ferlin bearing a luminal Myc tag.  The internal 
ribosome entry site (IRES) separately co-translates EGFP and the ferlin from the same mRNA. Live cells were 
dissociated from the plate with Versene and labelled with anti-MycAlexa647 at 8°C for 90 minutes in blocking 
solution (HBSS with 10% FBS). Live cells were gated by exclusion of propidium iodide and surface bound anti-
MycAlexa647 is plotted relative to the EGFP fluorescence for each sample. The dashed line indicates background 
non-specific staining of vector-only controls. Error bars represent S.D. of three experimental replicates performed 
in duplicate. ii) The normal distribution of surface anti-MycAlexa647 labeling observed in duplicate samples from a 
single experiment. The transfection efficiency calculated by the GFP-positive gate with flow cytomtery was: Dysf 
– 25.5%, Myof – 14.6%, Fer1L5 – 25.5%, Fer1L6 – 6.69% and OtofN – 11.7, %, OtofUb – 10.2%, control pIRES 
vector – 7.38%. iii) Western blot of samples probed with anti-Myc from the same experiment confirming each 
ferlin is expressed. 10 µg of transfected HEK293 RIPA lysate, as determined by BCA assay, was separated by 
SDS-PAGE and transferred onto PVDF membrane. B- Additional cells from ‘A’ were replated onto coverslips and 
subject to surface labeling with anti-Myc (Alexa555). Microscopy shows dysferlin, myoferlin and Fer1L6 are 
abundantly expressed at the cell surface. OtoferlinUb is detectable at low levels on the cell surface, whereas the 
neuronal isoform of otoferlinN and Fer1L5 are not present at levels above background at the plasma membrane, 
consistent with flow cytometry results. Images were captured using a Leica SP5 confocal. Scale bars: 10 μM. C) 
3D-structured illumination microscopy (3D-SIM) of live surface-stained cells (Left; DYSF, MYOF, Fer1L6), or total 
intracellular staining of fixed and permeabilised cells (Right; OTOFUb, OTOFN and Fer1L5). Images shown are 
single y-z planes with the apical membrane above and the basolateral membrane below. D) Confocal microscopy 
of total intracellular labeling of fixed and permeabilised HEK293 (top panel), Cos-7 (middle panel) and C2C12 
(bottom panel) cells transfected with each ferlin expression construct reveals a unique subcellular localization for 
each ferlin. Confocal images are presented as single Z-sections. 
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